

32228-000 19.03.00.0009

RESOURCE CONSERVATION AND RECOVERY ACT (RCRA) FACILITY ASSESSMENT SAMPLING VISIT REPORT

GROUPS I and II

GROUP I SOLID WASTE MANAGEMENT UNITS 26, 49, 50, AND 56

GROUP II SOLID WASTE MANAGEMENT UNITS 19, 28, AND 48

U.S. NAVAL STATION MAYPORT, FLORIDA

Unit Identification Code No. N60201

Contract No. N62467-89-D-0317/028

Prepared by:

ABB Environmental Services, Inc. 2590 Executive Center Circle, East Tallahassee, Florida 32301

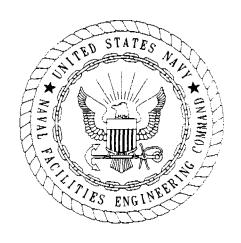
Prepared for:

Department of the Navy, Southern Division Naval Facilities Engineering Command 2155 Eagle Drive North Charleston, South Carolina 29418

David Driggers, Engineer-in-Charge

December 1995

This document Resource Conservation and Recovery Act Facility Assessment Sampling Visit. Group I and II SWMUs, U.S. Naval Station, Mayport Florida has been prepared under the direction of a Florida Registered Professional Geologist. The work and professional opinions rendered in this report were conducted or developed in accordance with commonly accepted procedures consistent with applicable standards of practice. If conditions are determined to exist that differ from those described, the undersigned geologist should be notified to evaluate the effects of any additional information on the assessment and recommendations in this document. This document was prepared for U.S. Naval Station, Mayport, Florida, and should not be construed to apply to any other site.


Francis K. Lesesne

Professional Geologist

State of Florida License No. 1020

Date: 28 July 95

MA

CERTIFICATION OF TECHNICAL DATA CONFORMITY (MAY 1987)

The Contractor, ABB Environmental Services, Inc., hereby certifies that, to the best of its knowledge and belief, the technical data delivered herewith under Contract No. N62467-89-D-0317/028 are complete and accurate and comply with all requirements of this contract.

DATE: July 25, 1995

NAME AND TITLE OF CERTIFYING OFFICIAL: Margaret E. Layne, P.E. Task Order Manager

NAME AND TITLE OF CERTIFYING OFFICIAL: Examcis K. Lese

Project Technical Lead

FOREWORD

To meet its mission objectives, the U.S. Navy performs a variety of operations, some requiring the use, handling, storage, or disposal of hazardous materials. Through accidental spills and leaks and conventional methods of past disposal, hazardous materials may have entered the environment in ways unacceptable by today's standards. With growing knowledge of the long-term effects of hazardous materials on the environment, the Department of Defense (DOD) initiated various programs to investigate and remediate conditions related to suspected past releases of hazardous materials at their facilities.

One of these programs is the Installation Restoration (IR) program. This program complies with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the Superfund Amendments and Reauthorization Act (SARA). The acts, passed by Congress in 1980 and 1986, respectively, established the means to assess and cleanup hazardous waste sites for both private-sector and Federal facilities. These acts are the basis for what is commonly known as the Superfund Program.

Originally, the Navy's part of this program was called the Navy Assessment and Control of Installation Pollutants (NACIP) program. Early reports reflect the NACIP process and terminology. The Navy eventually adapted the program structure and terminology of the standard IR program.

The IR program is conducted in several stages as follows.

- The Preliminary Assessment (PA) identifies potential sites through record searches and interviews.
- A Site Inspection (SI) then confirms which areas contain contamination, constituting actual "sites". (Together, the PA and SI steps were called the Initial Assessment Study (IAS) under the NACIP program.)
- Next, the Remedial Investigation and the Feasibility Study (RI/FS) together determine the type and extent of contamination, establish criteria for cleanup, and identify and evaluate any necessary remedial action alternatives and their costs. As part of the RI/FS, a Risk Assessment identifies potential effects on human health or the environment to help evaluate remedial action alternatives.

 The selected alternative is planned and conducted in the remedial design and remedial action stages. Monitoring then ensures the effectiveness of the effort.

A second program to address present hazardous material management is the Resource Conservation and Recovery Act (RCRA) Corrective Action Program. This program is designed to identify and clean up releases of hazardous substances at RCRA-permitted facilities. RCRA ensures that solid and hazardous wastes are managed in an environmentally sound manner. The law applies primarily to facilities that generate or handle hazardous waste.

The RCRA program is conducted in the following three stages.

- The RCRA Facility Assessment (RFA) identifies solid waste management units (SWMUs), evaluates the potential for releases of contaminants, and determines the need for future investigations.
- The RCRA Facility Investigation (RFI) then determines the nature, extent, and fate of contaminant releases.
- The Corrective Measures Study (CMS) identifies and recommends measures to correct the release.

The hazardous waste investigations at Naval Station Mayport are presently being conducted under the RCRA Corrective Action Program. Earlier preliminary investigations had been conducted at Naval Station Mayport under the Navy's NACIP program and IR program following Superfund guidelines. In 1988, in coordination with the U.S. Environmental Protection Agency (USEPA) and the Florida Department of Environmental Regulation (FDER; now know as the Florida Department of Environmental Protection [FDEP]), the hazardous waste investigations were formalized under the RCRA program.

Mayport is conducting the cleanup at their facility by working through the Southern Division, Naval Facilities Engineering Command (SOUTHNAVFACENGCOM). The USEPA and the FDEP oversee the Navy environmental program. All aspects of the program are conducted in compliance with State and Federal regulations, as ensured by the participation of these regulatory agencies.

Questions regarding the RCRA program at NAVSTA Mayport should be addressed to Mr. David Driggers, Code 1852, at (803) 743-0501.

EXECUTIVE SUMMARY

This Resource Conservation and Recovery Act (RCRA) Facility Assessment Sampling Visit (RFA SV) report (Confirmatory Sampling Report) addresses the following solid waste management units (SWMUs).

Group I SWMUs

- SWMU 26, Landfill C
- SWMU 49, Flight Line Retention Ponds
- SWMU 50, East and West Dredge Spoil Disposal Areas
- SWMU 56, Building 1552 Accumulation Area

Group II SWMUs

- SWMU 19, Naval Aviation Depot (NADEP) Blasting Area
- SWMU 28, Defense Reutilization and Marketing Office (DRMO) Yard
- SWMU 48, Former Chemistry Laboratory Accumulation Area

The confirmatory sampling events were conducted in accordance with the RCRA Corrective Action Program at Naval Station (NAVSTA) Mayport described in the Corrective Action Management Plan (ABB Environmental Services, Inc. [ABB-ES]; 1995a), under U.S. Environmental Protection Agency (USEPA) Permit Identification Number FL9 170 024 026.

The RFA/SV activities were conducted because a release of RCRA hazardous substances from these Group I and II SWMUs to the environment was suspected, but not confirmed. The purpose of this report is to describe the sampling activities, findings, conclusions, and recommendations of the RFA/SV activities at the Group I and II SWMUs.

The Group I RFA/SV investigations at NAVSTA Mayport did not find evidence of a significant release of target analytes selected from the Appendix IX (40 Code of Federal Regulations Part 264) Groundwater Monitoring List or USEPA Contract Laboratory Program from SWMU 19, Naval Aviation Depot (NADEP) Blasting Area; SWMU 26, Landfill C; SWMU 28, Defense Reutilization and Marketing Office (DRMO) Yard; SWMU 48, Former Chemistry Laboratory Accumulation Area; and SWMU 56, Building 1552 Accumulation Area. This conclusion is based on the concentration and frequency of detection of the various compounds and elements detected during the investigation, comparison to screening values developed from background samples (surface and subsurface soil, surface water, sediment, and groundwater), human health risk based values, and values developed from evaluation of adverse ecological effects of various chemicals on benthic organisms in sediment. These sites are recommended for no further investigation at this time.

Ecological diversity and aquatic and sediment toxicity testing should be conducted at SWMU 49, Flight Line Retention Pond, and SWMU 50, East and West Dredge Disposal Areas, to assess whether continued discharge from the industrial area is adversely affecting the ecology of the two SWMUs.

TABLE OF CONTENTS

<u>Chap</u>	ter	Title	Page	No.
1.0	INTRO	ODUCTION	 TION	1-1
	1.1	PROGRAM		1-1
	1.2		• •	
	1.2	1.2.1 SWMU Group I Investigations		
		1.2.2 SWMU Group II Investigations		
	1.3			
2.0	SOLTI	D WASTE MANAGEMENT UNIT (SWMU) 26, LANDFILL C		2-1
2.0	2.1	SITE DESCRIPTION AND BACKGROUND		2-1
	2.2	RFA SV FIELD INVESTIGATIONS		2-1
	2.3	FINDINGS		2 - 3
	2.4			2-24
	2.5			2-25
	2.5	2.5.1 Conclusions		2-25
		2.5.2 Recommendations		2-26
3.0	SWMU	49, FLIGHT LINE RETENTION PONDS		3-1
	3.1	SITE DESCRIPTION AND BACKGROUND		3-1
	3.2	RFA SV FIELD INVESTIGATIONS		3 - 2
	3.3	FINDINGS		3 - 5
	3.4	PRELIMINARY RISK EVALUATION		3-23
	3.5	CONCLUSIONS AND RECOMMENDATIONS		3-26
	3.5	3.5.1 Conclusions		3-26
		3.5.2 Recommendations		3-27
4.0	SWMU	50, DREDGE SPOIL DISPOSAL AREAS		4-1
7.0	4 1	SITE DESCRIPTION AND BACKGROUND		4-1
	4.2	RFA SV FIELD INVESTIGATIONS		4 - 3
	4.3	FINDINGS		4-4
	7,5	4.3.1 SWMU 50 Surface Water and Sediment Samples		4-6
	4.4	-		4 - 8
	4.5	CONCLUSIONS AND RECOMMENDATIONS		4-22
		4.5.1 Conclusions		4-22
		4.5.2 Recommendations		4-23
5.0	SWMII	56, BUILDING 1552 ACCUMULATION AREA		5 - 1
5.0	5.1	SITE DESCRIPTION AND BACKGROUND		5-1
	5.2			5 - 3
	5.3	FINDINGS		5 - 3
	5.4	PRELIMINARY RISK EVALUATION		5-18
	5.5	CONCLUSIONS AND RECOMMENDATIONS		5 - 22
	٠. ٥	5.5.1 Conclusions		5-22
		5.5.2 Recommendations		5-23
		D.D ECOCHIMOTOMOTOMO		

TABLE OF CONTENTS (Continued)

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

Chap	ter	TitlePay	<u>ge No.</u>
6.0	SWMU	19, NAVAL AVIATION DEPOT (NADEP) BLASTING AREA	. 6-1
	6.1	SITE DESCRIPTION AND BACKGROUND	. 6-1
	6.2	RFA SV FIELD INVESTIGATIONS	. 6-1
	6.3	FINDINGS	. 6-4
	6.4	PRELIMINARY RISK EVALUATION	. 6-15
	6.5	CONCLUSIONS AND RECOMMENDATIONS	. 6-20
		6.5.1 Conclusions	. 6-20
		6.5.2 Recommendations	. 6-20
7.0	SWMU	28, DEFENSE REUTILIZATION AND MARKETING OFFICE (DRMO) YARD	. 7-1
	7.1	SITE DESCRIPTION AND BACKGROUND	. 7-1
	7.2	RFA SV FIELD INVESTIGATIONS	. 7-1
	7.3	FINDINGS	. 7-4
	7.4	PRELIMINARY RISK EVALUATION	. 7-28
	7.5	CONCLUSIONS AND RECOMMENDATIONS	. 7-37
		7.5.1 Conclusions	. 7-37
		7.5.2 Recommendations	. 7-38
8.0	SWMU	48, FORMER CHEMISTRY LABORATORY ACCUMULATION AREA	. 8-1
	8,1	SITE DESCRIPTION AND BACKGROUND	. 8-1
	8.2	RFA SV FIELD INVESTIGATIONS	. 8-1
	8.3	FINDINGS	. 8-3
	8.4	PRELIMINARY RISK EVALUATION	. 8-19
	8.5	CONCLUSIONS AND RECOMMENDATIONS	. 8-21
		8.5.1 Conclusions	. 8-21
		8.5.2 Recommendations	. 8-21
9.0	SUMM	IARY	. 9-1
,,,	9.1	GROUP I SWMUS	
	,	9.1.1 SWMU 26, Landfill C	
		9.1.2 SWMU 49, Flight Line Retention Ponds	
		9.1.3 SWMU 50, East and West Dredge Spoil Disposal Areas	
		9.1.4 SWMU 56, Building 1552 Accumulation Area	
	9.2	GROUP II SWMUS	
		9.2.1 SWMU 19, Naval Aviation Depot (NADEP) Blasting Area .	
		9.2.2 SWMU 28, Defense Reutilization and Marketing Office	
		Yard	. 9-4
		9.2.3 SWMU 48 Former Chemistry Laboratory Accumulation Area	. 9-4

REFERENCES

TABLE OF CONTENTS (Continued)

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

APPENDICES

Appendix A: Target Analyte List
Appendix B: Data Summary Tables
Appendix C: Risk Evaluation Calculations
Appendix D: AFFF Material Safety Data Sheets
Appendix E: Dredge Material Disposal Correspondence
Appendix F: Mayport Turning Basin 1993 Sampling Event
Appendix G: Groundwater Data
Appendix H: Response to Regulatory Comments

LIST OF FIGURES

<u>Figu</u>	re <u>Title</u>	Page	No.
1-1	Facility Location Map		1-2
1-2			
1-2	Solid Waste Management Units (SWMUs)		1-5
	Group I Solid Waste Management Units (SWMUs)		1-7
1-4	Group II Solid Waste Management Units (SWMUs)		
2-1	Sampling Locations at SWMU 26, Landfill C		2-2
2 - 2	Monitoring Well Locations and Potentiometric Surface Map of SWMU		
_	August 30, 1994		
3-1	b as as a suite (), Tailone bank Reconcion tonds		3 - 3
3 - 2	1994 Surface Water and Sediment Sampling Locations at SWMU 49,		
	Flight Line Retention Ponds		3-4
4-1	ı U		
	Eastern and Western		4-2
5-1	1992 and 1994 Sampling Locations at SWMU 56, Building 1552 Accum	ula-	
	tion Area		5-2
5-2	Monitoring Well Locations and Potentiometric Surface Map of SWMU		
	August 30, 1994		5-4
6-1	Location of Soil Samples Collected for Extraction Procedure Toxic		
	Testing July 1989, SWMU 19, NADEP Blasting Area		6-2
6-2	1994 Soil and Sediment Sampling Locations, SWMU 19, NADEP Blastin	nø	• -
	Area		6-5
7-1	1994 Soil and Groundwater Sampling Locations, SWMU 28, DRMO Yard		7-2
7 - 2	Monitoring Well Locations and Potentiometric Surface Map of Soli		, - 2
, _	Waste Management Units (SWMUs) 28 and 48, August 30, 1994		7-6
8-1	1994 Soil and Groundwater Sampling Locations, SWMU 48, Former Ch		
0.1	Laboratory		
	Laboracory		8-2

LIST OF TABLES

<u>Table</u>	Title	Page	No.
1-1	Solid Waste Management Units Requiring a Resource Conservation an	ıd	
	Recovery Act (RCRA) Facility Assessment Sampling Visit (RFA SV)		1-3
2-1	Solid Waste Management Unit (SWMU) 26 Water Level Data, August 30),	
	1994		2-4
2 - 2	Summary of Monitoring Well Installations Near SWMU 26		2-7
2 - 3	Average Groundwater Velocities at SWMU 26		2-8
2-4	Organic Analytes Detected in Soil Samples at SWMU 26		2-9
2-5	Inorganic Analytes Detected in Soil Samples at SWMU 26		2-11 2-13
2-6	Chemicals of Potential Concern (CPCs) in Surface Soil at SWMU 26		2-13
2 - 7	Chemicals of Potential Concern (CPCs) in Subsurface Soil Samples		2-15
0.0	SWMU 26		2-13
2-8	Water Quality Parameters for Groundwater at SWMU 26		2-10
2-9	Semivolatile Organic Analytes Detected in Groundwater Samples at		2-19
0 10	SWMU 26		2-20
	Chemicals of Potential Concern (CPCs) in Groundwater at SWMU 26		2-20
	Inorganic Analytes Detected in Groundwater Samples at SWMUs 2 and		2-23
3-1	Water Quality Parameters for SWMU 49 Surface Water Samples		3-6
3-1	Inorganic Analytes Detected in Surface Water Samples at SWMU 49,		3 0
3-4	1992		3 - 7
3-3	Inorganic Analytes Detected in Surface Water Samples at SWMU 49,	• •	J ,
3-3	1994	_	3-8
3-4	Chemicals of Potential Concern (CPCs) in Surface Water Samples at	_	
•	SWMU 49		3-9
3 - 5	Semivolatile Organic Analytes Detected in Sediment Samples at SW	1 U	
	49, 1992		3-12
3 - 6	Pesticides and Polychlorinated Biphenyls (PCBs) Detected in Sedir	nent	
	Samples at SWMU 49, 1992		3-13
3 - 7	Inorganic Analytes Detected in Sediment Samples at SWMU 49, 1992		3-14
3 - 8	Organic Analytes Detected in Sediment Samples Collected at SWMU	49, 1	. 994 5
3-9	Inorganic Analytes Detected in Sediment Samples Collected at SWM		
	1994		3-17
3-10	• • • • • • • • • • • • • • • • • • • •		
	49, 1994		3-19
4-1	Inorganic Analytes Detected in Surface Water Samples at SWMU 50		4-5
4-2	Chemicals of Potential Concern Detected in Surface Water at SWMU		, ,
	April 1992		4 - 8
4-3	Organic Analytes Detected in Sediment Samples (Saturated) at SWM		4-9
	50		4-9
4-4	Inorganic Analytes Detected in Sediment Samples (Saturated) at St		4-10
, -	50		4-TC
4-5	Organic Analytes Detected in Sediment Samples (Unsaturated) at S		4-11
1. c	50	 ፈነ	→ _ T]
4-6	Inorganic Analytes Detected in the Sediment Samples (Unsacurate	<i>u)</i>	4-13

LIST OF TABLES (Continued)

5-1 Average Groundwater Velocities at SWMU 56
50
5-1 Average Groundwater Velocities at SWMU 56
5-2 Organic Analytes Detected in Soil Samples at SWMU 56
5-3 Inorganic Analytes Detected in Soil Samples at SWMU 56 5-10 5-4 Chemicals of Potential Concern in Surface Soil at SWMU 56
5-4 Chemicals of Potential Concern in Surface Soil at SWMU 56 5-13 5-5 Chemicals of Potential Concern in Subsurface Soil at SWMU 56 5-16 5-6 Water Quality Parameters for Groundwater Samples at SWMU 56 5-19 5-7 Chemicals of Potential Concern in Groundwater at SWMU 56
5-5 Chemicals of Potential Concern in Subsurface Soil at SWMU 56 5-16 5-6 Water Quality Parameters for Groundwater Samples at SWMU 56 5-19 5-7 Chemicals of Potential Concern in Groundwater at SWMU 56 5-20 6-1 Extraction Procedure Toxicity Analytical Results for Soil Samples at SWMU 19, 1989
5-6 Water Quality Parameters for Groundwater Samples at SWMU 56 5-19 5-7 Chemicals of Potential Concern in Groundwater at SWMU 56 5-20 6-1 Extraction Procedure Toxicity Analytical Results for Soil Samples at SWMU 19, 1989
5-7 Chemicals of Potential Concern in Groundwater at SWMU 56 5-20 6-1 Extraction Procedure Toxicity Analytical Results for Soil Samples at SWMU 19, 1989
6-1 Extraction Procedure Toxicity Analytical Results for Soil Samples at SWMU 19, 1989
SWMU 19, 1989
6-2 Organic Analytes Detected in Soil Samples at SWMU 19 6-7 6-3 Inorganic Analytes Detected in Soil Samples at SWMU 19 6-9 6-4 Chemicals of Potential Concern in Surface Soils at SWMU 19 6-11 6-5 Chemicals of Potential Concern in Subsurface Soil at SWMU 19 6-13 6-6 Inorganic Analytes Detected in Sediment Samples at SWMU 19 6-16 6-7 Chemicals of Potential Concern in Sediment Sample at SWMU 19
6-3 Inorganic Analytes Detected in Soil Samples at SWMU 19 6-9 6-4 Chemicals of Potential Concern in Surface Soils at SWMU 19 6-11 6-5 Chemicals of Potential Concern in Subsurface Soil at SWMU 19 6-13 6-6 Inorganic Analytes Detected in Sediment Samples at SWMU 19 6-16 6-7 Chemicals of Potential Concern in Sediment Sample at SWMU 19 6-17 6-8 Toxicity Characteristic Leaching Procedure Testing of Black Beauty at SWMU 19
6-4 Chemicals of Potential Concern in Surface Soils at SWMU 19 6-11 6-5 Chemicals of Potential Concern in Subsurface Soil at SWMU 19 6-13 6-6 Inorganic Analytes Detected in Sediment Samples at SWMU 19 6-16 6-7 Chemicals of Potential Concern in Sediment Sample at SWMU 19 6-17 6-8 Toxicity Characteristic Leaching Procedure Testing of Black Beauty at SWMU 19
6-5 Chemicals of Potential Concern in Subsurface Soil at SWMU 19 6-13 6-6 Inorganic Analytes Detected in Sediment Samples at SWMU 19 6-16 6-7 Chemicals of Potential Concern in Sediment Sample at SWMU 19 6-17 6-8 Toxicity Characteristic Leaching Procedure Testing of Black Beauty at SWMU 19
6-6 Inorganic Analytes Detected in Sediment Samples at SWMU 19 6-16 6-7 Chemicals of Potential Concern in Sediment Sample at SWMU 19 6-17 6-8 Toxicity Characteristic Leaching Procedure Testing of Black Beauty™ at SWMU 19
6-7 Chemicals of Potential Concern in Sediment Sample at SWMU 19 6-17 6-8 Toxicity Characteristic Leaching Procedure Testing of Black Beauty™ at SWMU 19
6-8 Toxicity Characteristic Leaching Procedure Testing of Black Beauty™ at SWMU 19
at SWMU 19
7-1 Summary of SWMU 28 Water Level Data
7-2 Summary of Monitoring Well Installations Near SWMU 28
7-3 Average Groundwater Velocities at SWMU 28
7-4 Organic Analytes Detected in Surface Soil Samples Collected at SWMU 28
28
7-5 Inorganic Analytes Detected in Surface Soil Samples Collected at SWMU 28
SWMU 28
SWMU 28
7-7 Inorganic Analytes Detected in Subsurface Soil Samples Collected at
SWMU 28
7-8 Chemicals of Potential Concern in Surface Soil at SWMU 28 7-22
7-9 Chemicals of Potential Concern in Subsurface Soil at SWMU 28 7-25
7-10 Water Quality Parameters for SWMU 28 Groundwater Samples 7-29
7-11 Organic and Inorganic Analytes Detected in Groundwater Samples At
SWMU 28
7-12 Chemicals of Potential Concern in Groundwater at SWMU 28 7-33
8-1 Monitoring Well Installations Near SWMU
8-2 Average Groundwater Velocities at SWMU 48
8-3 Organic and Inorganic Analytes Detected in Surface Soil Samples at
SWMU 48
8-4 Inorganic Analytes Detected in Subsurface Soil Samples at SWMU 48 . 8-9
8-5 Chemicals of Potential Concern in Surface Soil at SWMU 48 8-10
8-6 Chemicals of Potential Concern in Subsurface Soil at SWMU 48 8-12
8-7 Water Quality Parameters for Groundwater at SWMU 48 8-14
8-8 Organic Analytes Detected in Groundwater Samples at SWMU 48 8-15

LIST OF TABLES (Continued)

Table	e	Title	Pag	<u>e No.</u>
		Analytes Detected in Groundwater Samples at SWMU 48 .		
8-10	Chemicals	of Potential Concern in Groundwater at SWMU 48		8-17

GLOSSARY

AFFF aqueous film-forming foam

AOC Area of Concern

APHA American Public Health Association AWQC ambient water quality criteria

bls below land surface

CAMP Corrective Action Management Plan

CERCLA Comprehensive Environmental Response, Compensation, and

Liability Act

CFR Code of Federal Regulations
CMS Corrective Measures Study
COD chemical oxygen demand

DDD dichlorodiphenyldichloroethane
DDE dichlorodiphenyldichloroethane
DDT dichlorodiphenyltrichloroethane

DOD Department of Defense

DRMO Defense Reutilization and Marketing Office

EP Extraction Procedure
ER-L effects range-low
ER-M effects range-median

ESE Environmental Science and Engineering, Inc.

FAC Florida Administrative Code

FDEP Florida Department of Environmental Protection FDER Florida Department of Environmental Regulation

ft/ft feet per foot

GIR General Information Report

HHCPC human health chemicals of potential concern

HI hazardous index

HSWA Hazardous and Solid Waste Amendments of 1984

IAS Initial Assessment Study IR Installation Restoration

MCL maximum contaminant level mg/kg milligrams per kilogram

MPT Mayport

msl mean sea level

 $\begin{array}{ll} \text{mg}/\ell & \text{milligrams per liter} \\ \mu\text{g}/\text{kg} & \text{micrograms per kilogram} \\ \mu\text{g}/\ell & \text{micrograms per liter} \end{array}$

NACIP Navy Assessment and Control of Installation Pollutants

NADEP Naval Aviation Depot

NAVSTA Naval Station

NCP National Oil and Hazardous Substances Contingency Plan

GLOSSARY (Continued)

NEESA Naval Energy and Environmental Support Activity

NGVD National Geodetic Vertical Datum

NIRP Navy Installation Restoration Program

NOAA National Oceanic and Atmospheric Administration

NOEL no observed effects level

OVA organic vapor analyzer
OWTP oily waste treatment plant

PA Preliminary Assessment

PAH polynuclear aromatic hydrocarbons

PCB polychlorinated biphenyl PEL probable effects level

QA quality assurance QC quality control

RBC risk based concentration

RCRA Resource Conservation and Recovery Act of 1976, as amended

RFA RCRA Facility Assessment
RFI RCRA Facility Investigation

RI/FS Remedial Investigation/Feasibility Study

SARA Superfund Amendments and Reauthorization Act

SI Site Inspection

SOUTHNAV- Southern Division, Naval Facilities Engineering Command

FACENGCOM

SMP Site Management Plan SSL soil screening level

SV Sampling Visit

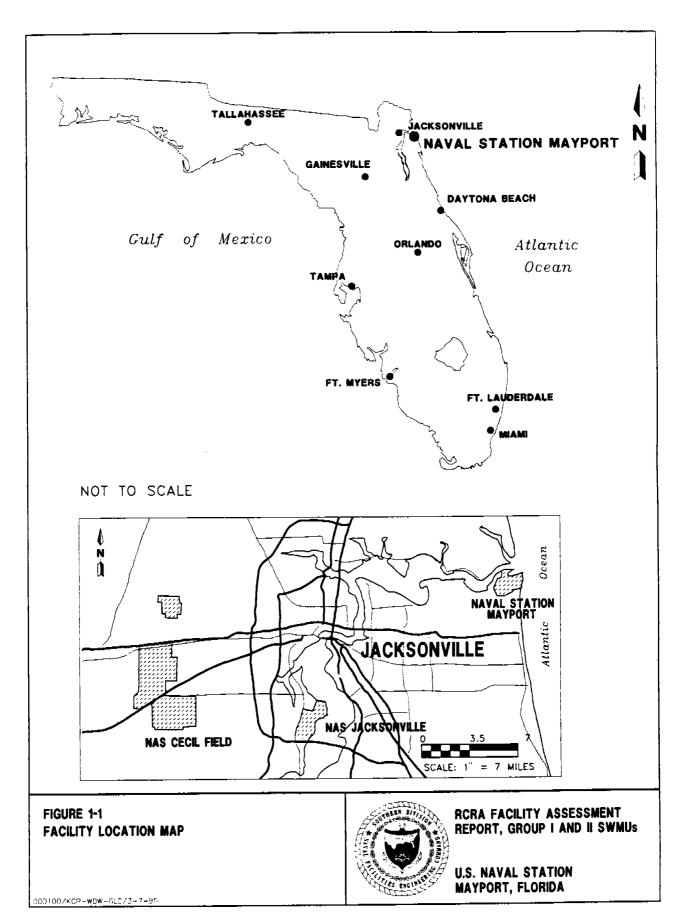
SVOC semivolatile organic compound SWMU Solid Waste Management Unit

TCLP Toxicity Characteristic Leaching Procedure

USC U.S. Code

USEPA U.S. Environmental Protection Agency

VOC volatile organic compound VSI Visual Site Inspection


1.0 INTRODUCTION

This report presents the site descriptions and background, field investigative activities, findings, preliminary risk evaluation, and conclusions and recommendations of the Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA) Sampling Visit (SV) for confirmatory sampling at Groups I and II Solid Waste Management Units (SWMUs) at U. S. Naval Station (NAVSTA) Mayport, Florida. NAVSTA Mayport is located in northeastern Duval County, Florida, at the confluence of the St. Johns River and the Atlantic Ocean. Figure 1-1 presents the regional setting of NAVSTA Mayport.

The RCRA Corrective Action Program General Information Report (GIR) for NAVSTA Mayport (ABB-ES, 1995b) provides information common to all four SWMU groups being investigated including background sampling information and analytical methodology, risk assessment approach, and the ecological characterization of NAVSTA Mayport. The NAVSTA Mayport GIR includes a summary of published information including geography, physiography, demographics, climate, regional geology, and hydrogeology; methods and procedures used to conduct the field activities; methodology used to validate analytical data and conduct risk assessments; and characterization of station-wide background conditions including surface and subsurface soil, surface water, sediment, and groundwater that will be used to evaluate the data from each RFA SV SWMU. The information contained in the GIR (ABB-ES, 1995b) is common to all of NAVSTA Mayport's SWMUs, and it will not be repeated in this confirmatory sampling report.

1.1 RESOURCE CONSERVATION AND RECOVERY ACT (RCRA) CORRECTIVE ACTION PROGRAM. The U.S. Environmental Protection agency (USEPA) issued permit No. H016-118598 (FL9 170 024 260) to NAVSTA Mayport on March 25, 1988, in accordance with the Hazardous and Solid Waste Amendments (HSWA) of 1984. The permit was revised and reissued on June 15, 1993 (USEPA, 1988a). An RFA Visual Site Inspection (VSI) for NAVSTA Mayport was conducted on behalf of the USEPA Region IV by their contractor, A.T. Kearney, Inc. (A.T. Kearney, 1989). The RFA identified 56 SWMUs and 2 areas of concern (AOC) at NAVSTA Mayport. Eighteen SWMUs were determined to require an RCRA Facility Investigation (RFI) because hazardous substance releases to the environment were confirmed and required further characterization to determine the nature and extent of contamination. Fifteen SWMUs were determined not to require further action because no release of hazardous substances to the environment had occurred. Twenty-three SWMUs were determined to require further investigation because hazardous substance releases to the environment were suspected but not confirmed. RFA SVs have been conducted at 7 of these 23 sites to confirm the presence or absence of a release(s) to the environment (Table 1-1). SWMU 51 consists of petroleum underground storage tanks and appurtenances and is being managed under a different program of RCRA (e.g., 40 Code of Federal Regulations [CFR], Part 280, Subtitle C, Regulation of Underground Storage Tanks). The other 15 SWMUs will be investigated during subsequent RFA SVs.

Due to the number of SWMUs at NAVSTA Mayport, the diversity of their past and/or present operations, and the magnitude of permit requirements, the USEPA recommended that a phased approach be used to implement RFI, RFA SV, and other corrective action activities. A Corrective Action Management Plan (CAMP) was prepared that describes the phased approach, proposed schedule, and strategy to

Table 1-1

Solid Waste Management Units Requiring a Resource Conservation and Recovery Act (RCRA) Facility Assessment Sampling Visit (RFA SV)

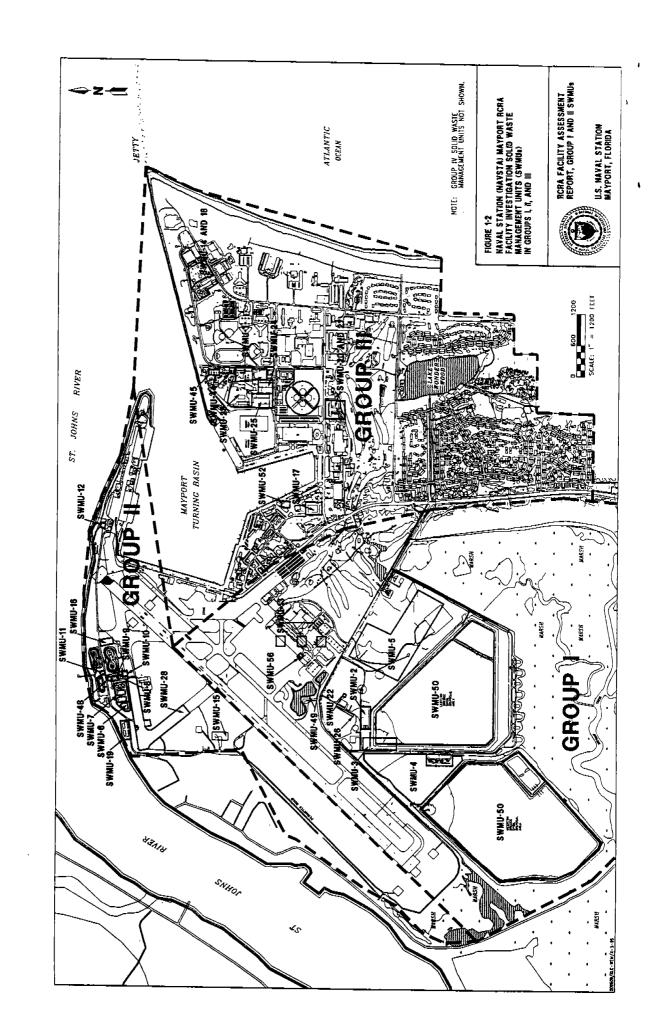
Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

Group I-Ri	FA SV Solid Waste Management Units	RFA SV Conducted (Yes/No)
2 6	Landfill C	Yes
49	Flight Line Retention Ponds	Yes
50	East and West Dredge Spoil Disposal Areas	Yes
56	Building 1552 Accumulation Area	Yes
Group II F	FA SV Solid Waste Management Units	RFA SV Conducted (Yes/No)
19	Naval Aviation Depot (NADEP) Blasting Area	Yes
28	Defense Reutilization Marketing Office (DRMO) Yard	Yes
48	Former Chemistry Laboratory Accumulation Area	Yes
51	Waste Oil Tanks	No¹
Group III I	RFA SV Solid Waste Management Units	RFA SV Conducted (Yes/No)
18	Fleet Training Center (FTC) Diesel Generator Sump	. No
20	Hobby Shop Drain	No
21	Hobby Shop Scrap Storage Area	No
23	Jacksonville Shipyard, Inc. (JSI), Area	No
24	North Florida Shipyard, Inc. (NFSI), Area	No
25	Atlantic Marine, Inc. (AMI), Area	No
29	Oily Waste Pipeline Break	No ¹
44	Wastewater Treatment Facility Clarifiers 1 and 2	No
45	Sludge Drying Beds	No
46	Shore Intermediate Maintenance Activity (SIMA) Engine Drain Sump	No
52	Public Works Department (PWD) Service Station Storage Area	No ¹
Group IV	RFA SV Solid Waste Management Units	RFA SV Conducted (Yes/No)
47	Oily Waste Collection System	No
53	Sewer Pipelines	No
54	Oil/Water Separators	No
55	Storm Sewer and Drainage System	No
AOC A	Fuel Distribution System	No ²
AOC B	Underground Product Storage Tanks	No ²

¹ SWMUs 29, 51, and 52 area being assessed under Chapter 62-770, Florida Administrative Code (FAC) (State Underground Petroleum Environmental Response).

Note: AOC = Area of Concern.

² Area of concern (AOC) requires assessment to determine if confirmatory sampling is warranted.


implement the RCRA Corrective Action Program at NAVSTA Mayport. The original CAMP is located in Appendix F of Volume I of the USEPA-approved RFI workplan (ABB-ES, 1991). The CAMP identifies the operational groups of SWMUs, ranks them by their relative risks to human health and the environment, and contains the proposed schedule for the field investigations and report submittals. A revised CAMP was submitted for regulatory approval in March 1995 (ABB-ES, 1995a).

Four SWMU groups are defined in the CAMP. SWMU Groups I through III are presented on Figure 1-2. SWMU Groups I through III were defined by grouping of individual SWMUs within a geographic area that have similar past waste management practices and the potential for similar corrective measures. Group IV SWMUs are not directly associated within a given geographic area, but consist of utility networks and systems that span multiple geographic areas and are not shown on Figure 1-2.

The Group I SWMUs are located in the southwest part of NAVSTA Mayport and include former landfills, active dredge spoil disposal areas, and other individual SWMUs. These SWMUs were incorporated into Group I because of their proximity to each other, common drainage to the Sherman Creek watershed, similarity of past waste disposal activities, and the potential for similar or related corrective measures. Group I SWMUs were ranked as Priority 1 because of a "high perceived risk" for numerous contaminants to cover a large areal extent affecting large volumes of soil and groundwater.

The Group II SWMUs are located along the northern part of NAVSTA Mayport contiguous with the St. Johns River and include current and former hazardous and solid waste storage areas and petroleum waste treatment and disposal facilities. The SWMUs were incorporated into Group II because of their proximity to each other and to the St. Johns River and their potential for similar or related corrective measures. Group II SWMUs were ranked as Priority 2 because of a "moderate perceived risk" for contaminants to cover an area affecting moderate volumes of soil and groundwater, and the potential for adverse impacts on ecological receptors by soil and groundwater. This report presents the results of RFA SV activities at the SWMUs in Group I and II (Table 1-1) identified by the permit as requiring Confirmatory Sampling.

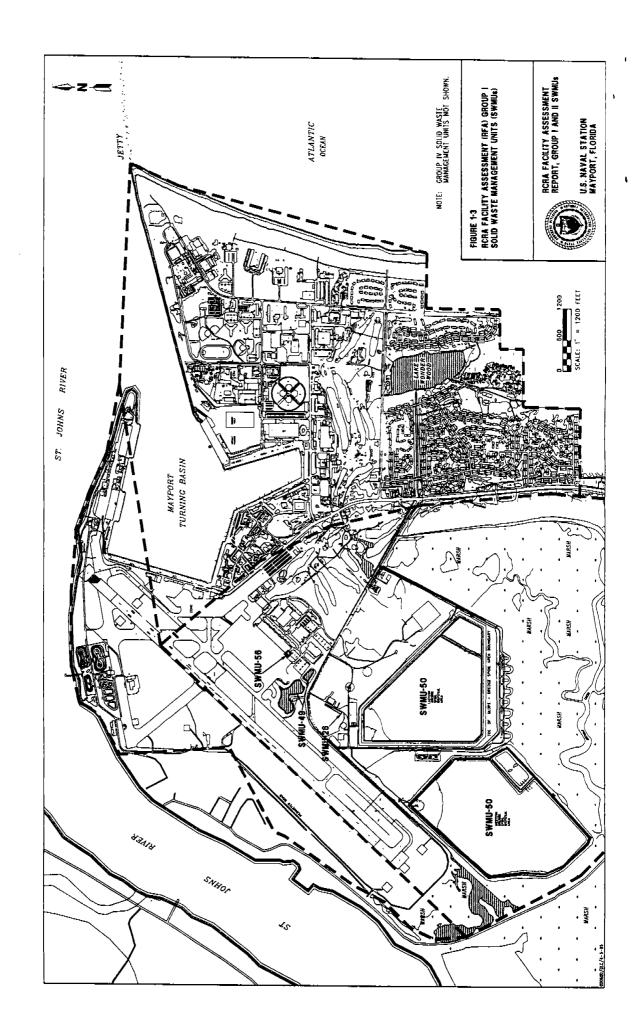
- 1.2 PREVIOUS INVESTIGATIONS AT GROUPS I AND II SWMUS. The following presents a brief summary of the historical evolution of the investigations at NAVSTA Mayport's Groups I and II SWMUs. Group III and IV SWMUs will be addressed in subsequent confirmatory sampling events in accordance with the schedule presented in the NAVSTA Mayport CAMP (ABB-ES, 1995a).
- 1.2.1 SWMU Group I Investigations Phase 1 of the RCRA Corrective Action Program addressed the SWMUs located in Group I and included field investigation activities for both the RFI site characterizations and RFA SVs. The Group I SWMUs that require an RFI are SWMUs 2, 3, 4, 5, 13, and 22 (USEPA, 1988a; A.T. Kearney, 1989) (Figure 1-2) RFI field activities for SWMUs in Group I were performed in early 1992 and a Phase 1 RFI report was submitted to USEPA and Florida Department of Environmental Protection (FDEP) in November 1992 (ABB-ES, 1992a). Data gaps were identified and additional site characterization activities were conducted in 1994. The results of these investigations will be presented in a separate report.

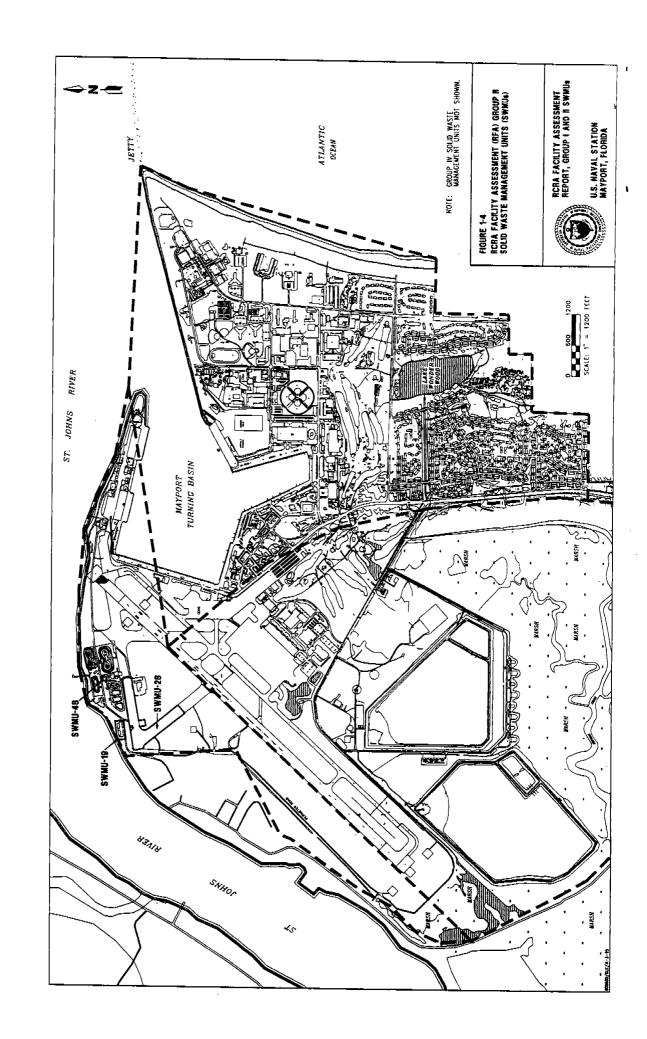
The Group I SWMUs requiring confirmatory sampling are SWMUs 26, 49, 50, and 56. Figure 1-3 presents the locations of the Group I RFA SV SWMUs. SWMU 26 is Landfill C. SWMU 49 consists of the two Flight Line Retention Ponds. SWMU 50 includes the East and West Dredge Spoil Disposal Areas. SWMU 56 is the Building 1552 Accumulation Area.

An RFA SV workplan (confirmatory sampling) for these Group I SWMUs was prepared and submitted for regulatory review in February 1992 (ABB-ES, 1992b). The workplan was approved by regulatory agencies and implemented in late April 1992. A RFA SV report (confirmatory sampling report) was submitted in November 1992 (ABB-ES, 1992c). Several data gaps were identified and subsequently addressed in the RFA SV workplan, Addendum 1, Group I Area, submitted in November 1993 (ABB-ES, 1993a). Field activities for the Group I RFA SV SWMUs were conducted during August and September 1994. This report presents the results from both confirmatory sampling events.

1.2.2 SWMU Group II Investigations Phase 2 of the RCRA Corrective Action Program addressed the SWMUs located in Group II and included field investigative activities for both the RFI site characterizations and RFA SVs.

The Group II SWMUs that require an RFI are SWMUs 6, 7, 8, 9, 10, 11, 12, 15, and 16 (USEPA, 1988a; A.T. Kearney, 1989) (Figure 1-2). Releases of hazardous substances to the environment have been confirmed at these sites. RFI field activities for the SWMUs in Group II were initiated in March 1993 and completed in December 1994. The results of these activities will be presented in a separate report.


The Group II SWMUs requiring confirmatory sampling are SWMUs 19, 28, and 48. Figure 1-4 presents the locations of the Group II RFA SV SWMUs. SWMU 19 is the Naval Aviation Depot (NADEP) Blasting Area, SWMU 28 is the Defense Reutilization and Marketing Office (DRMO) Yard, and SWMU 48 is the Former Chemistry Laboratory Accumulation Area.


An RFA SV workplan (confirmatory sampling) for these Group II SWMUs was prepared and submitted for regulatory review in November 1993 (ABB-ES, 1993b). Field activities for the Group II RFA SV SWMUs were conducted during August and September 1994. This report presents the results of the confirmatory sampling event.

1.3 RFA SV REPORT FORMAT. This report on confirmatory sampling activities at the Groups I and II RFA SV SWMUs presents one chapter per SWMU. Each chapter includes a site description and site history, field investigative activities, findings, a preliminary risk evaluation, and conclusions and recommendations. Each chapter contains the following elements.

<u>Site Description and Background</u> provides literature information and previous investigative data describing waste management practices, types and quantities of contaminants, and affected media at that SWMU.

RFA and SV Field Investigations describes the data collection activities and deviations, if any, from the workplan that occurred during the Groups I and II RFA SVs.

<u>Findings</u> presents the results of laboratory analyses of environmental samples (surface and subsurface soil, surface water, sediment, and groundwater) collected during the Groups I and II RFA SV field investigations.

<u>Preliminary Risk Evaluation</u> presents the preliminary assessment of risk for human health and the environment for the SWMU.

<u>Conclusions and Recommendations</u> provides an assessment of the findings relative to the bench mark screening criteria for each media at a site (soil, surface water, sediment, or groundwater).

Data analysis has been focused to support one of the following recommendations for each SWMU: (1) take no further action, (2) investigate nature and extent of contamination by performing an RFI, or (3) implement interim measures.

Except as noted within this report, field activities were conducted in accordance with the approved Phase 1 RFA SV workplan (ABB-ES, 1992b); Addendum 1, Group I SWMUs (ABB-ES, 1993a); and the Phase 2 RFA SV workplan for Group II SWMUs (ABB-ES, 1993b). The general operating guidelines for access, security, and field team organization implemented during RFA SV activities were consistent with RFI requirements as described in Chapter 2.0, Site Management Plan (SMP), of the RFI workplan, Volume II (ABB-ES, 1991). In addition, Section 3.1, General Site Operations, of the RFI workplan, Volume II, provides descriptions of field personnel responsibilities, sample identification, sample management, chain of custody, project documentation, field changes, corrective actions, decontamination, waste management, and other general project standards and procedures. These general requirements were followed during the Groups I and II RFA SV activities.

The following chapters summarize SWMU site descriptions and background, describe the rationale and procedures for field investigations, and present the findings from data gathering activities. The chapters appear in the following order.

Group I SWMUs

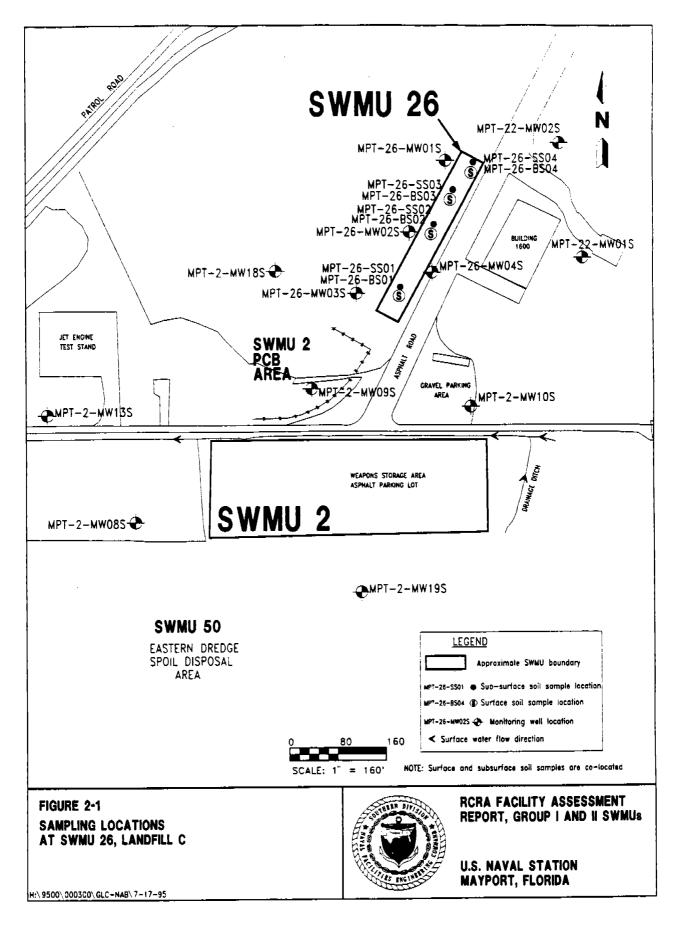
- · Chapter 2.0, SWMU 26 Landfill C
- · Chapter 3.0, SWMU 49 Flight Line Retention Ponds.
- · Chapter 4.0, SWMU 50 East and West Dredge Spoil Disposal Areas
- · Chapter 5.0, SWMU 56 Building 1552 Accumulation Area

Group II SWMUs

- · Chapter 6.0, SWMU 19 Naval Aviation Depot (NADEP) Blasting Area
- Chapter 7.0, SWMU 28 Defense Reutilization and Marketing Office (DRMO)
 Yard
- · Chapter 8.0, SWMU 48 Former Chemistry Laboratory Accumulation Area.

2.0 SOLID WASTE MANAGEMENT UNIT (SWMU) 26, LANDFILL C

2.1 SITE DESCRIPTION AND BACKGROUND. Landfill C (SWMU 26) is located north of Landfill B (SWMU 2) in the central part of NAVSTA Mayport (Figure 1-3). SWMU 26 was reported to be used in 1963 for one-time disposal of scrap metal and construction debris transported to NAVSTA Mayport from Green Cove Springs Naval Facility (A.T. Kearney, 1989). Currently, no written documentation has been found to corroborate the disposal of material from the Green Cove Springs Naval Facility. The disposal area consisted of a trench approximately 100 feet long, 20 feet wide, and 8 feet deep into which debris was placed. The landfill is now covered with soil and supports vegetation (Disturbed Messic Flatwood; with slash pines, cedar, cherry laurels, and cabbage palms and a dense undergrowth of woody and herbaceous plants [ABB-ES, 1995b]). No hazardous wastes were disposed at the site according to the IAS (Environmental Science and Engineering, Inc. [ESE], 1986).


SWMU 26 was identified during the IAS as Naval Installation Restoration Program (NIRP) Site 3. The IAS recommended no further investigation because no hazardous wastes were known to have been disposed in SWMU 26 during its brief period of operation in 1963. The SWMU was not identified in the original HSWA permit as an SWMU requiring an RFI (USEPA, 1988a). The RFA (A.T. Kearney, 1989) recommended that documentation be obtained verifying the types of waste disposed at this site. Alternatively, the RFA suggested that soil sampling be conducted to determine if a release to the soil had occurred.

Historical data suggest that only construction debris was disposed at SWMU 26. Prior to the RFA SV field investigation, no additional documentation describing the materials disposed at this site was found. The available historical documentation was reported in the IAS (ESE, 1986) and RFA (A.T. Kearney, 1989).

2.2 RFA SV FIELD INVESTIGATIONS. In the absence of additional supporting documentation, soil sampling was conducted in April 1992 to assess whether hazardous constituents have been or are being released at the site. The sampling event consisted of collecting four surface (land surface to a depth of 6 inches) and four subsurface soil samples (4 to 4.5 feet beneath the land surface) to evaluate soil as a potential exposure pathway. The locations of the surface and subsurface soil samples are shown on Figure 2-1.

The detection of volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) in soil samples collected during the April 1992 investigation at SWMU 26 suggest that materials other than "construction debris" may have been deposited in the trench that comprises Landfill C. During the sampling event the water table at the SWMU 26 area was found to be approximately 4.5 feet below land surface (bls). Because the suspected depth of the trench is 8 feet bls, it is apparent that the "debris" was deposited below the water table and a release to groundwater is possible.

Based on the soil sampling results, four monitoring wells were installed at SWMU 26 and groundwater samples were collected in July 1994 to assess whether hazardous constituents have been released to groundwater at or near the site and to evaluate groundwater as a potential exposure pathway. Monitoring well locations are presented on Figure 2-1.

Because many field activities are similar for all NAVSTA Mayport SWMUs, the sampling procedures for RFI and RFA SV (confirmatory sampling) events are described in Section 2.1, Summary of Exploration and Sampling Program, of the NAVSTA Mayport GIR (ABB-ES, 1995b). Site-specific elements and deviations from sampling procedures, if any, particular to SWMU 26 are discussed in subsequent paragraphs, and standard operating procedures are referenced where necessary. Monitoring well installation, soil and groundwater sampling procedures, and associated equipment decontamination procedures were conducted in general conformance with USEPA Region IV Standard Operating Procedures (USEPA, 1991a).

<u>Soil Sample Collection Procedure</u>. Surface and subsurface soil sampling was accomplished as described in the NAVSTA Mayport RFI workplan (ABB-ES, 1991), and Subsection 2.1.1, Soil Sampling, of the GIR (ABB-ES, 1995b).

Monitoring Well Installation Procedure. Drilling and well installation was accomplished as described in the NAVSTA Mayport RFI workplan (ABB-ES, 1991), and Subsection 2.1.1, Monitoring Well and Piezometer Installation, of the GIR (ABB-ES, 1995b).

Groundwater Sample Collection Procedure. Groundwater sampling was accomplished as described in Subsection 2.1.4, Groundwater Sampling, of the GIR (ABB-ES, 1995b). The groundwater sample collection method used was low flow sampling.

Laboratory Analysis. Soil and groundwater samples were analyzed for target analytes selected from the Groundwater Monitoring List contained in Appendix IX, 40 CFR, Part 264, and USEPA Contract Laboratory Program target compound list and target analyte list, including VOCs, SVOCs, pesticides, PCBs, metals, and cyanide. The analysis was conducted using methods contained in Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, USEPA SW846 (USEPA, 1986). A list of the target analytes is provided in Appendix A. Analytical results from the 1992 sampling event were presented in the RFA SV Report, Phase 1 (ABB-ES, 1992c), and results of the 1994 sampling event are provided in Appendix B.

2.3 FINDINGS. The following presents a brief description of the results of the RFA SV sampling activities at SWMU 26. The findings include site geologic and hydrogeologic conditions and results of the analyses of surface and subsurface soil samples and groundwater samples.

Site Geology. In June 1994, four soil borings were drilled at SWMU 26 for the installation of shallow monitoring wells (monitoring wells with screens placed across the water table) (Figure 2-1). Boring logs for these four monitoring wells and the other monitoring wells shown in Table 2-1 are presented in the NAVSTA Mayport GIR, Appendix A, Boring Logs (ABB-ES, 1995b).

Subsurface soils encountered during installation of the four monitoring wells at SWMU 26 had considerable variation over the short lateral distance between each location. The following is a description of the subsurface soils encountered at each of the four locations.

 Boring MPT-26-MW01S (located near the northern corner of SWMU 26) encountered a silty sand to a depth of approximately 5.5 feet bls, which was overlying a clayey sand to the explored depth of 12.5 feet bls.

Table 2-1 Solid Waste Management Unit (SWMU) 26 Water Level Data, August 30, 1994

Groups I and II RFA SV Report U. S. Naval Station Mayport, Florida

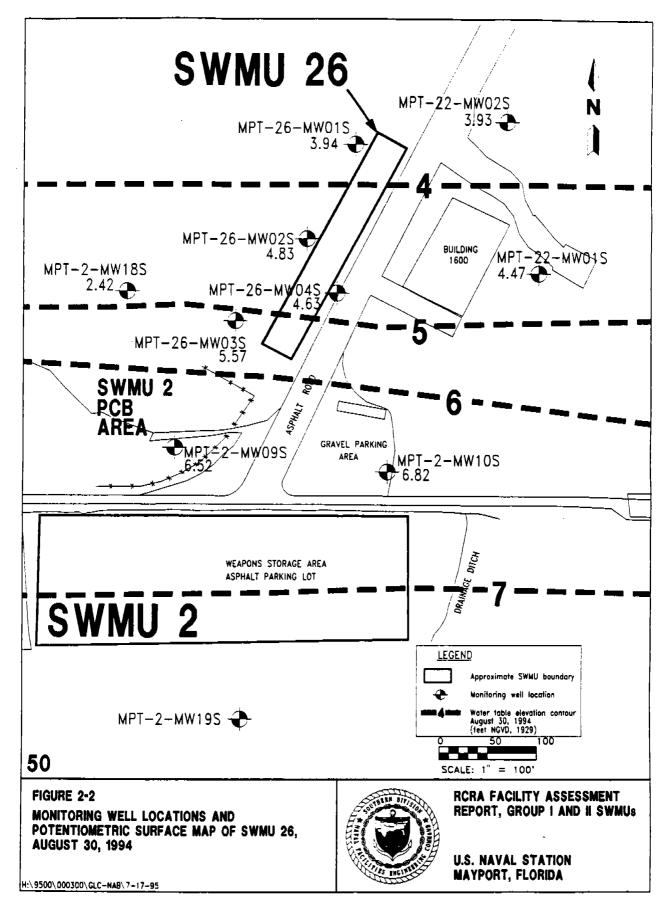
			Water Level	
Well or Piezometer	Elevation (NGVD)	Time (EST)	Depth (TOC)	Elevation (msl)
MPT-2-MW08S	10.55	06:39 pm	3.51	7.04
APT-2-MW09S	10.50	12:00 pm ¹	3.51	7.04
MPT-2-MW10S	10.02	12:45 pm	3.20	6.82
UPT-2-MW18S	6.37	12:32 pm	3.95	2.42
MPT-22-MW01\$	7.15	12:10 pm	2.68	4.47
MPT-22-MW02S	6.70	12:05 pm	2.77	3.93
MPT-26-MW01\$	5.58	12:20 pm	1.91	3.94
MPT-26-MW02S	6.68	12:25 pm	2.50	4.38
MPT-26-MW03S	7.05	12:28 pm	1.48	5.57
MPT-26-MW04S	7.21	12:48 pm	2.58	4.63

¹ Water level recorded by a programmable electronic monitor.

Notes: NGVD = National Geodetic Vertical Datum of 1929.

EST = Eastern Standard Time. TOC = top of casing as datum.

msi = mean sea level.


- Boring MPT-26-MW02S (located on the west central side of SWMU 26) encountered a silty sand from the land surface to the explored depth of 12.5 feet bls.
- Boring MPT-26-MW03S (southwest corner of SWMU 26) encountered four distinct lithologic materials, a silty sand from the land surface to a depth of approximately 3.5 feet, underlain by silty sands and gravel to approximately 10 feet bls, which occurred over a silty clay to approximately 11.5 feet bls, and was terminated in a clayey sand at 12.5 feet.
- Boring MPT-26-MW04S (southeast side of SWMU 26) encountered a silty sand from the land surface to approximately 8 feet bls, which overlies a clay layer that occurred to a depth of approximately 10.7 feet bls, and was terminated in a silty sand at a depth of 12.5 feet bls.

Geologic cross sections provided in the NAVSTA Mayport GIR (see Figures 3-3 and 3-4, ABB-ES, 1995b) depict subsurface geologic conditions in the vicinity of SWMU 26.

Site Hydrogeology. The groundwater level at each SWMU 26 monitoring well and for other RFI and RFA SV sites at NAVSTA Mayport was measured during a 7-hour period on August 30, 1994. The depth to the groundwater at each location was measured relative to a notch or mark on the north side of each monitoring well surveyed to the National Geodetic Vertical Datum (NGVD) of 1929 (commonly referred to as mean sea level [msl]). The depths to groundwater measured at each of the SWMU 26 monitoring wells are provided in Table 2-1 along with depths to groundwater measured at other monitoring wells in the vicinity of the site. Also shown on the table are values for the water level measurements relative to the NGVD datum. The elevation data were used to prepare a map of the potentiometric surface (lines that represent altitudes of equal height above the reference datum) of the water table zone of the surficial aquifer (Figure 2-2). The potentiometric surface map of the water table is used to infer that groundwater flow is from higher to lower altitudes in a direction perpendicular to the equipotential Based on the equipotential lines shown on Figure 2-2, the groundwater flow direction at SWMU 26 is generally toward the north.

The hydraulic position of the monitoring wells relative to SWMU 26 also is based on the equipotential lines shown on Figure 2-2. Monitoring wells MPT-2-MW09S and MPT-2-MW10S are located hydraulically upgradient from SWMU 26 (Table 2-2). Monitoring wells MPT-26-MW03S and MPT-26-MW04S are along a similar hydraulic equipotential line as the southern part of SWMU 26. Monitoring wells MPT-26-MW01S and MPT-26-MW02S are located hydraulically downgradient of SWMU 26.

An approximation of the horizontal linear velocity of groundwater flow in the water table zone of the surficial aquifer in the vicinity of SWMU 26 is based on the potentiometric surface (hydraulic gradient) of the water table, estimates of radial hydraulic conductivities at monitoring well locations, and an estimate of the porosity (ratio of the volume of voids to total volume of the soil) of the saturated subsurface soil. The horizontal linear velocity was calculated from a modified form of Darcy's equation and represents the ratio of linear travel distance to travel time between two points (Freeze and Cherry, 1979). The horizontal linear velocity is expressed as $V_{\rm D}/N_{\rm e}$, where $V_{\rm D}$ is the Darcy velocity ($V_{\rm D}$ = KI, K = radial hydraulic conductivity, and I = hydraulic gradient) and $N_{\rm e}$ is the effective porosity of the saturated geologic stratum. An effective

porosity of 0.35 is used in the calculations. (See Section 3.2.3, Physical Characteristics of Soil, in the NAVSTA Mayport GIR [ABB-ES, 1995b]).

Table 2-2
Summary of Monitoring Well Installations Near SWMU 26

Groups I and II RFA SV Report U. S. Naval Station Mayport, Florida

SWMU Number	Monitoring Well No.	Hydraulic Position to SWMU 26	Diameter (inches)	Total Depth (feet)	Screened interva
2	MPT-2-MW08S	S	2	10	3 to 10
2	MPT-2-MW09S	U	2	10	3 to 10
2	MPT-2-MW10S	U	2	15	5 to 10
2	MPT-2-MW18S	s	2	12.5	2 to 12
22	MPT-22-MW01S	s	2	12	2 to 12
22	MPT-22-MW02S	s	2	13.5	3 to 13
26	MPT-26-MW01S	D	2	12.5	2 to 12
26	MPT-26-MW02S	D	. 2	12.5	2 to 12
26	MPT-26-MW03S	s	2	12.5	2 to 12
26	MPT-26-MW04S	_s	2	12.5	2 to 12

Notes: SWMU = solid waste management unit.

bis = below land surface.

In-situ radial hydraulic conductivity values for monitoring wells in the vicinity of SWMU 26 are presented in Table 2-3. The range of in-situ radial hydraulic conductivity values in the vicinity of SWMU 26 is approximately 4.6 feet per day (MPT-2-MW18S) to 5.7 feet per day (MPT-2-MW05S). The hydraulic gradient appears to be relatively uniform over SWMU 26 (0.003 foot per foot [ft/ft] on August 30, 1994) and an approximation of the horizontal linear velocity of the groundwater ranges from approximately 0.05 to 0.09 foot per day.

Based on the values for horizontal linear velocity and assuming no dilution, dispersion or retardation, a contaminant in the water table zone of the surficial aquifer may travel at rates of 18 to 33 feet per year (Table 2-3).

Surface and Subsurface Soil Analytical Results. Tables 2-4 and 2-5 summarize the validated analytical results for organic and inorganic target analytes, respectively, detected in the surface and subsurface soil samples collected at SWMU 26. Complete analytical results were presented in the RFA SV Report, Phase 1 (ABB-ES, 1992c). A summary of frequencies of detection, range of detection limits, range of detected concentrations, and arithmetic mean and bench mark comparison values are provided in Tables 2-6 and 2-7 for surface and subsurface soil samples, respectively. The target analytes detected in the environmental samples were compared to background screening values computed from station-wide surface and subsurface soil samples (ABB-ES, 1995b), and benchmark values from

S = hydraulically sidegradient.

U = hydraulically upgradient.

D = hydraulically downgradient.

USEPA Region III risk based concentrations (RBC) (USEPA, 1995), the USEPA Superfund soil screening levels (SSLs) (USEPA, 1994), and the State of Florida cleanup goals (FDEP, April 1995). Surface and subsurface soil concentrations were compared to an aggregate residential exposure (child and adult) for USEPA Region III RBCs and USEPA SSLs. Values for Florida cleanup goals consist of aggregate residential exposure (child and adult) for surface soil, whereas subsurface soil concentrations were compared to an industrial worker exposure.

Table 2-3
Average Groundwater Velocities at SWMU 26

Groups I and II RFA SV Report U. S. Naval Station Mayport, Florida

		WAYPO	t, Fibrida		
Location	Estimated Effective Porosity	Hydraulic Conductivity (ft/day)	Estimated Gradient ¹ (ft/ft)	Estimated Linear Velocity (ft/day)	Estimated Linear Velocity (ft/year)
MPT-2-MW05S	0.35	5.7²	0.003	0.05	18
MPT-2-MW10S	0.35	5.5³	0.003	0.05	18
MPT-2-MW09S	0.35	5.5³	0.003	0.05	18
MPT-2-MW18S	0.35	4.6	0.007	0.09	33

^{&#}x27; Based on synoptic water table elevations.

Notes: ft/day = feet per day. ft/ft = feet per foot. ft/year = feet per year.

Each of the bench mark criteria provided in Tables 2-6 and 2-7 are human health based and represent the lower of either a noncarcinogenic Hazard Index (HI) where values of less than 1 represent a concentration at which noncarcinogenic effects are not likely, or a lifetime excess cancer risk of 10^{-6} , which represents a chance of 1 in 1,000,000 for an adverse carcinogenic effect for a continuous lifetime exposure. The concentrations listed for the USEPA Region III RBCs correspond to an HI of 0.1, whereas the USEPA Superfund SSLs and the State of Florida cleanup goals are based on an HI of 1. The Federal National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Final Rule, (40 CFR, Part 300) states that for carcinogens a lifetime excess cancer risk in the range of 10^{-4} (a chance of 1 in 10,000 for an adverse carcinogenic effect for a continuous lifetime exposure) to 10^{-6} represents concentrations that are considered by USEPA to be protective of human health.

Four surface and subsurface soil sample pairs were collected on April 21, 1992, along the center line of SWMU 26 on 75-foot centers (Figure 2-1). Surface soil samples were collected from 0 to 0.5 foot bls. The subsurface soil samples were collected above the water table at a sampling interval of 4 to 4.5 foot bls.

Surface soil at SWMU 26 consists of light tan, fine- to medium-grained sand with numerous shell fragments. Subsurface soil collected at sampling locations MPT-26-SS/BS02 and MPT-26-SS/BS03 was similar to the surface soil. At sample

² Measured during the Expanded Site Inspection, October 1987 (E.C. Jordan, 1988).

³ In-situ conductivity measurement at MPT-2-P-5, February 1992.

⁴ in-situ conductivity measurement at MPT-2-MW18S, December 12, 1994.

		Organic #	Analytes D	Tal	Table 2-4 Organic Analytes Detected in Soil Samples at SWMU 26	amples	at SWMU	26				-
			Gro	ups I and U.S. N Mayp	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	eport						
Analytical Batch No.	ch No.:		21510		21510	0	21510	0	21510		21510	
Sample Matrix:	×		Soil		Soil		Soil		Soil		Soil	
Sample Location:	lion:		MPT-26-SS01	3501	MPT-26-S501	SS01	MPT-26-BS01	BS01	MPT-26-BS01	BS01	MPT-26-SS02	3802
Sample No.:			MPT26SS01	S01	MPT26SS01Dup	01Dup	MPT26BS11	3511	MPT26BS11Dup	11Dup	MPT26SS02	202
Date Sampled	75		04/21/92	76,	04/21/92	76,	04/21/92	/92	04/21/92	/92	04/21/92	92
Sample Depth (ft bls):	h (ft bis):		0 to 0.5	κύ	0 to 0.5	1.5	4 to 4.5	1.5	4 to 4.5	5.5	0 to 0.5	ıči
CAS RN	Common Name	Units	Conc.	Qual.	Conc.	Oual.	Conc.	Qual.	Conc.	Oral.	Conc.	Qual.
	Volatile Organics						-	-				
67-66-3	Chloroform	μg/kg	ŀ	1	:		ŀ		ιo	7	ı	
78-93-3	2-Butanone	µg/kg	1	:	ဖ	¬	o	7	1 0		1	-
108-88-3	Toluene	ид/ка	•	1	1		1		1		1	
1330-20-7	Xylene	µ9/kg	ဧ	ے	8	7	;		ı		:	
75-05-8	Acetonitrile	µg/kg	ı	ı	1		1		1		ŀ	
	Semivolatile Organice						•			,	,	•
84-74-2	Di-n-butylphthalate	µg/kg	t	1	₽	7	1		<u>.</u>		24	- ,
117-81-7	bis(2-Ethylhexyl)phthalate	ид/ка	;	-	,		1		42	_	38	٦
See notes at end of table.	end of table.											

			Organic	T Analytes	rable 2-4 Detecter	Table 2-4 (Continued) Organic Analytes Detected in Soil Samples at SWMU 26	ed) amples	at SWMU	56				
				g	roups I and U.S. N Mayo	Groups I and II RFA SV Report U.S. Naval Station Mavport, Florida	leport						
		+ NE.		21510		21510		21510	0	21510		21510	0
- A	Analytical Batch No.:	Ion No.:		Soil		Soil	• 1	Soil	_	Soll		Soll	
Sa.	Sample Matrix: Sample Location:	.: 	-	MPT-26-BS22	BS22	MPT-26-SS3	SS3	MPT-26-BS3	-BS3	MPT-26-SS4	-SS4	MPT-26-BS4	-BS4
Š (MPT26BS12	3812	MPT26SS03	S03	MPT26BS13	8513	MPT26SS04	S04	MPT26BS14	9514
E C	Sample No.: Date Sampled:	÷		04/21/92	76/	04/21/92	/92	04/21/92	/92	04/21/92	/92	04/21/92	/92
Š (4 to 4.5	5:	0 to 1.5	πċ	4 to 4.5	4.5	0 to 1.5	5.	4 to 4.5	4.5
S S	Sample Deptin (it bis):	In (It Dis):	Units	Cone.	Qual	Conc.	Qual.	Cone.	Qual.	Conc.	Oual.	Conc.	Qual.
5	N C C C C C C C C C C C C C C C C C C C	School Action											
	,		()			ŀ		;		1		1	
67.	67-66-3	Chloroform	70/kg	:						1		Ξ	
78	78-93-3	2-Butanone	ng/kg	۷_	-	(o	,	:		,	_	: 1	
<u> </u>	108-88-3	Toluene	p/g/kg	1		1		1	•	- '	- c		
13	1330-20-7	Xylene	µg/kg	1		-	י	α	¬ -	n ;	, -	4 6	, -
75	75-05-8	Acetonitrile	µg/kg	ı		1		ଷ	¬ 	* 7	,	5	
		Semivolatile Organics	_	<u>.</u>					,		_	<u></u>	
<u></u>	84-74-2	Di-n-butylphthalate	µ9/kg	43	<u>-</u>	69	っ	54	<u>-</u>	64 -	· ·	3	-
_=	117-81-7	bis(2-Ethylhexyl)phthalate	μg/kg	;	_	94	<u>-</u>			38	-		
Ž	Notes: Lab	% 2 % 8	il Energy and riconmental s in feet below n.	d Environmen ample. land surface.	tal Suppor	Il Energy and Environmental Support Activity (NEESA) Level C. rironmental sample. In feet below land surface. Th.	ESA) Level	<u>ن</u>					
ل													

		Inorg	anic Ana	lytes De	Table 2-5 Inorganic Analytes Detected in Soil Samples at SWMU 26	2-5 ı Soil Sar	nples at	SWMU 2	9			
				Group	Groups I and II RFA SV Report U.S. Naval Station Mayport, Fiorida	FA SV Repc Station Torida	Ħ					
Analytical Batch No.:	ch No.:		21510	2	21510	10	21510	9.5	21510		21510	1 0
Sample Matrix:	¥		Soil		Soil		Soil	·	Soil		Soll	
Sample Location:	lion:		MPT-26-SS01	-SS01	MPT-26-SS01	-8801	MPT-26-BS01	3-BS01	MPT-26-BS01	-BS01	MPT-26-SS02	-8802
Samole No.:			MPT26SS01	SS01	MPT26SS01Dup	S01Dup	MPT26BS11	3BS11	MPT26BS11Dup	S11Dup	MPT26SS02	SS02
Date Sampled:	Ť		04/21/92	/92	04/21/92	1/92	04/21/92	1/92	02/21/92	1/92	04/21/92	76/1
Sample Depth (ft bis):	h (ft bls):		0 to 1.5	1.5	0 to 1.5	1.5	4 to	4 to 4.5	4 to 4.5	4.5	4 to 4.5	4.5
CAS BN	Common Name	Units	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Oual.
7440-38-2	Arsenic	mg/kg	0.68	7	0.57	٦	0.74	- 7	0.57	77	0.76	ָּד
7440-39-3	Barinm	mg/kg	4.5	7	6.3	ה	4.7	7	4.1	7	3,4	ت.
7440-41-7	Beryllium	mg/kg	0.11	7	0.11	7	0.11	7	I		0.11	7
7440-47-3	Chromium	mg/kg	3.9		4.1		2.5	7	1.8	ה	2.7	
7440-48-4	Cobalt	mg/kg	i		1		t		ł		1	
7440-50-8	Capper	mg/kg	8.8		5.0	7	4. 10.	7	£.	¬	7.4	
7440-92-1	Lead	mg/kg	ı		:		1		1		;	
7440-02-0	Nickel	mg/kg	6.8	<u>,</u>	4.8	٦	2.3	ר	:		4.2	- ·
7440-62-2	Vanadium	mg/kg	6	7	3.7	7	1.7	ר	1.0	<u> </u>	5. 4.	<u>-</u>
7440-66-6	Zinc	mg/kg	29.7	-,	14.3	- -	15.4	2	3.8	¬	19,4	¬
5955-70-0	Cyanide	mg/kg	1.3		1.7		0.25	٦	0.21	-	:	
See notes at	See notes at end of table.											

		lnori	Table 2-5 (Continued) Inorganic Analytes Detected in Soil Samples at SWMU 26	Table rtes Det	Table 2-5 (Continued) s Detected in Soil San	tinued) oil Samp	les at SW	MU 26	•			
				Groups	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	SV Report ttion ida	l					
1000			21510		21510	0	21510	0	21510		21510	<u> </u>
Analytical Batch Ivo	.: 02		Soil		Soll	_	Soil		Soll		Soll	
Sample Matrix:			MPT-26-BS02	205	MPT-26-SS03	.SS03	MPT-26-BS03	BS03	MPT-26-SS04	504	MPT-26-BS04	BS04
Campio Coard			MPT26BS12	S12	MPT26SS03	SS03	MPT26BS13	3S13	MPT26SS04	S04	MPT26BS14	BS14
Sample No			04/21/92	35	04/21/92	/92	02/21/92	76/	04/21/92	35	04/21/92	/92
	<u> </u>		4 to 4.5	£.	0 to 1.5	5.	4 to 4.5	5.	0 to 1.5	5	4 to 4.5	4.5
Sample Deptil (II DIS)	(SIG)			300	2000	Oual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.
CAS RN	Common Name	URIS	Collec	-	90 0	-	1.1	7	1.6	ſ	2	
7440-38-2	Arsenic	mg/kg	0.67	,	98:0	, -		, -	a.	7	o	7
7440-39-3	Barium	mg/kg	2.2	-	2.7	ت	R.Y	, .	i 6	, -	2	-
7440-41-7	Beryllium	mg/kg	0.07	7	0.13	-, 	0.1	- -	0.33	3	3 ;	,
7440-47-3	Chromium	mg/kg	2.6		3.4		2.8		89		4.7	
7440 49.4	Cobalt	mg/kg	1		1	_	1		4.4	-	-	- -
7440-60-B	Copper	mg/kg	1.3	٦	4.6	¬	6. 6.	7	7.0		3.4	¬
0.00.00	in debt	mo/ko	1		,		1		4.6	٦	3,5	<u>-</u>
7440-92-1	nean .	6 (A)	; 		9.1	_	3.3	,	4.4	7	3.7	¬
7440-02-0	Nickel	64/6m	6	 	2.4		2.6	ſ	8.6	٦,	6.3	ר
7440-62-2	Vanadium	Su/Su	, «	· -	15.3		10.2	7	17.5	<u> </u>	12.5	7
7440-66-6	Zinc	5y/Bills	26	·					1.6		ლ	
5955-70-0	Cyanide	mg/kg	,		-		١					
Notes: Laborat	Laboratory data validated at Naval Energy and Enviro	Naval Energ	Energy and Environmental Support Activity (NEESA) Level C. onnental sample.	mental Su	ipport Activity	, (NEESA) L	evel C.		·			
= Squ H	Sunx Dup = duplicate of the sun surface it bis = sample collection depth in feet below land surface	epth in feet b	elow land sur	ace.								
Conc.	Conc. = concentration.											
mg/kg	mg/kg = milligrams per kilogram	ogram.										
	"J" = estimated value.											
UB " "	 analyte not detected. 											

		Chemica	cals of Potenti	Table 2-6 Is of Potential Concern (CPCs) in Surface Soil at SWMU 26	2-6 PCs) in Suri	ace Soil at S	WMU 26			
				Groups I and It RFA SV Report U.S. Naval Station Mayport, Florida	RA SV Report Station Florida					
Analyte	Frequency of Detection'	Range of Reporting Limits	Range of Detected Concentrations ²	Mean of Detected Concentrations ³	Background Screening Value⁴	Risk Based Screening Concentration ⁵	Superfund Proposed Soil Screening Levets [®]	Cleanup Goals for the Military Sites In Florida	Analyte CPC? (Yes/No)	Reason
Volatiles (µg/kg)							;	;	;	
Acetonitrile	1/4	110 to 120	24	24	9	47,000	¥ Z	ď Ž	2	י מ
2-Butanone	2/4	12 to 14	ဖ	မ	9	4,700,00	¥	2,500,000	2	S, P, G
Tollsene	1/4	5 to 6	-	-	2	1,600,000	16,000,000	270,000	2	S, P, G
Xylene	3/4	6 to 6	1 to 5	2.8	Ø	16,000,000	160,000,000	6,400,000	Š	S, P,G
Semivoletiles (µg/kg)										1
Di-n-butylohthalate	4/4	Ä	54 to 220	102	Q	780,000	7,800,000	7,500,000	2	S, P, G
bis(2-Ethylhexyl) phthalate	3/4	390 to 780	38 to 94	56.7	2	46,000	46,000	45,000	£	လ် ရ
Pesticides/PCBs (µg/kg)	. B									
No analytes detected										
Inorganics (mg/kg)						ć	,	Š	,	
Arsenic	4/4	띰	0.63 to 1.6	96.0	2	0.37	0.4) O	2 <u>1</u>	6
Barium	4/4	Æ	2.7 to B.2	<u>4</u>	2.8	550	5,500	2,000	2 ;	ອ ນັ
Beryllium	4/4	R.	0.11 to 0.33	0.17	0.16	0.15	-	o.	¥es	1
Chromium	4/4	뛴	2.7 to 8.2	4.6	1.3	6E ₀ ,	390	150	2	လ် ရှိ
Cobalt	1/4	0.75 to 0.84	4.1	4.	2	470	V	4,700	Ž	တ တ်
Copper	4/4	ŭ Ž	4.6 to 7.4	6.5	-	290	¥ V	2,900	ž	S, P,G
Dra -	1/4	2,5 to 2.8	4.6	4.6	Q	1,400	11400	200	£	S, P,G
N. S.	4/4	또	2.4 to 5.8	6 6	2	160	1,600	1,500	£	S, P, G
Vanadium	4/4	£	2.4 to 8.6	ĸ	8	55	220	480	ž	S, P, G
Zinc	4/4	Ë	15.3 to 22	18.6	1.3	2,300	23,000	23,300	Š	S, P, G
Ovanide	2/4	0.19 to 0.21	1.5 to 1.6	1.6	Q.	160	1,600	1,600	ž	S, P, G
See notes on next page	<u>9</u>									

Chemicals of Potential Concern (CPCs) in Surface Soil at SWMU 26 Table 2-6 (Continued)

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

Votes from previous pages.

Value indicated by asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetected value, 1/2 the contract required quantitation Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values).

limit or contract required detection limit (CRDL) is used as a surrogate.

The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected including values qualified as "J"; it does not include The background screening value is twice the average of detected concentrations for inorganic analytes in background samples. Organic values are one times the those samples where the analyte was not detected ("U," or "UJ" qualifiers) and rejected ("R" qualifier).

mean of detected concentration. Organic values are included for comparison purposes only.

based concentrations (RBC) for residential surface soil exposure per January 1993 guidance (Selecting Exposure Routes and Contaminants of Concern by Risk-Based Source: USEPA. December, 1994. Soil Screening Guidance, Review Draft, USEPA, Office of Solid Waste and Emergency Response, Washington, D.C., EPA/540/R-Screening, EPA/903/R-93-001) was used for screening. Actual values are taken from the USEPA Region III risk based concentration tables dated February 9, 1995, For all chemicals except the essential nutrients (calcium, fron, magnesium, potassium, and sodium), U.S. Environmental Protection Agency (USEPA) Region III risk and are based on a cancer risk of 10° and an adjusted hazard quotient of 0.1. For the essential nutrients, screening values were derived based on recommended

Values are taken from the Florida Department of Environmental Protection memorandum, Cleanup Goats for Military Sites in Florida, dated April 5, 1995. The values

are for the aggregate resident based on a cancer risk of 10° and the child resident based on a hazard quotient of 1.

Analytes were included or excluded from the risk assessment for the following reasons:

S = the maximum detected concentration did not exceed the screening concentration and will not be considered further.

G = the maximum detected concentration did not exceed the Florida cleanup goals and will not be considered further.

B = the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations.

F = the frequency of detection was less than 5 percent and professional judgment was used to exclude analyte from further study.

C = the analyte is a member of a chemical class that contains other chemicals of potential concern (CPCs) (i.e., carcinogenic polynuclear aromatic

P = the maximum detected concentration did not exceed the USEPA proposed soil screening levels (SSLs), 9355.4-14FS, dated December 1994. M = the analyte was detected at less than 5 percent and is a CPC in more than one media. hydrocarbons [PAHs]).

11 USEPA Office of Solid Waste and Emergency Response (OSWER) Directive No. 9355.4-12 revised interim recommended soll cleanup for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and RCRA sites. 10 The value is based on chromium hexavalent form. The value is based on arsenic as a carcinogen.

The average of a sample and its duplicate is used for all table calculations. Notes:

Background sample locations include: MPT-B-SS1, MPT-B-SS2, MPT-B-SS3, MPT-B-SS4, MPT-B-SS5, and MPT-B-SS6. Sample locations include: 26SS01, 26SS02, 26SS03, and 26SS04. Duplicate background sample location includes; MPT-B-SS1DUP,

µg/kg = micrograms per kilograms. ND = not detected in any background samples. NA = not available.

reporting limits are same as range of detected concentrations. NR = not reported; analyte detected in each sample; mg/kg = milligrams per kilograms. PCBs = polychlorinated biphenyls.

		Chemicals o	Table 2-7 Chemicals of Potential Concern (CPCs) in Subsurface Soil Samples at SWMU 26	Table 2-7	2-7 n Subsurfac	e Soil Samp	les at SWMU	26		
				Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	4FA SV Report Station Florida					
Analyte	Frequency of Detection	Range of Reporting Limits	Range of Detected Concentrations ²	Mean of Detected Concentrations ³	Background Screening Value ⁴	Risk Based Screening Concentration ⁵	Superfund Proposed Soil Screening Levels ⁶	Cleanup Goals for the Military Sites In Florida ⁷	Analyte CPC? (Yes/No)	Reason
Volatiles (µg/kg)										
Acetonitrile	2/4	120 to 130	22 to 24	æ	2	47,000	NA V	N A	Š	s
2-Butanone	3/4	Ŧ	7 to 12	10	2	4,700,000	Ϋ́	17,000,000	2	S, P, G
Chloroform	1/4	5 to 6	ĸ	ĸ	2	10,000	110,000	400	욷	S, P, G
Xylene	2/4	6 to 6	CI	2	9	16,000,000	160,000,000	44,000,000	S S	S, P, G
Semivolatiles (µg/kg)										
Di-n-butylphthalate	4/4	R E	43 to 108	29	ᄝ	780,000	7,800,000	150,000,000	욷	လ ရ ရ
bis (2-Ethylhexyl) pht- halate	1/4	380 to 410	104	104	Š	46,000	46,000	200	8	လ ဂ ဂ
Pesticides/PCBs (µg/kg)										·
None			٠							
Inorganics (mg/kg)								,	:	
Arsenic	4/4	R	0.66 - 2	Ξ	6'0	*0.37	4.0	m	¥ 9 3	1
Barium	4/4	R	2.2 - 9	9.4	7.2	920	5,500	74,000	욷	လ ရ ၁
Beryllium	4/4	¥	0.07 - 0.23	0.12	0.14	0,15	0.1	0.2	∀ 08	,
Chromium	4/4	ĸ	2.2 - 7.4	3.8	3.4	¹⁰ 39	390	10220	2	S, P, G
Cobalt	1/4	0.75 to 0.89	1.4	1.4	1.04	470	¥ Z	110,000	Š	တ တ
Copper	4/4	뜅	1.3 to 3.9	2.9	3.6	290	¥ X	72,000	Ş	o O
Lead	1/4	1 to 2.2	3.5 to 3.5	3.5	2.8	11400	11400	1,000	2	S, P, G
Nicke	3/4	0.94	1,4 to 3.7	2.8	Q	160	1,600	11,000	2	S, P, G
Vanadium	4/4	Æ	1.4 to 6.3	3.2	3.2	32	250	4,800	Ş	S, P _. G
Zinc	4/4	Æ	9,6 to 12.5	10.5	4.8	2,300	23,000	552,000	2	S, P, G
Cyanide	2/4	0.22	0.23 to 3	8:	0.66	160	1600	40,000	£	S, P, G
See notes on next page	ge.									

Chemicals of Potential Concern (CPCs) in Subsurface Soil Samples at SWMU 26 Table 2-7 (Continued)

Groups I and II RFA SV Report U.S. Naval Station

				Maypon, Florida						
							Superfund	Cleanup	Anslyte	
	Continue	Banne of	Range of	Mean of	Background		Proposed Soil Goals for the	Goals for the	CPC	Reason
4	riedaensy	Reporting	Detected	Detected	Screening	Screening	Screening	Screening Military Sites (Nes/No)	(oN/sex	
Analyte	Defection	Limits	Concentrations ²	Concentrations ² Concentrations ³	Value	Concentration	Levels	in Florida7	(100)	
		i						(political policies and	todi tralino	

Value indicated by asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetected values, 1/2 the contract required quantitation Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values).

limit or contract required detection limit (CRDL) is used as a surrogate.

The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected, including value qualified as "J"; it does not include those

samples where the analyte was not detected ("U," or "UJ" qualitiers) and rejected ("R" qualifier).

For all chemicals except the essential nutrients (calcium, iron, magnesium, potassium, and sodium), U.S. Environmental Protection Agency (USEPA) Region III risk based The background screening value is twice the average of detected concentrations for inorganic analytes in background samples. Organic values are one times the mean of detected concentration. Organic values are included for comparison purposes only.

concentrations (RBC) for residential surface soil exposure per January 1993 guidance (Selecting Exposure Routes and Contaminants of Concern by Risk-Based Screening, EPA/903/R-93-001) was used for screening. Actual values are taken from the USEPA Region III RBC tables dated February 9, 1995, and are based on a cancer risk of 10° and an adjusted hazard quotient of 0.1. For the essential nutrients, screening values were derived based on recommended daily allowances (RDAs).

values are taken from the Florida Department of Environmental Protection memorandum, Cleanup Goals for Military Sites in Florida, dated April, 5, 1995. The values are Source: USEPA, December, 1994. Soil Screening Guidance, Review Draff, USEPA, Office of Solid Waste and Emergency Response, Washington, D.C., EPA/540/R-

for the Industrial Worker based on a cancer risk of 10° and the general worker based on a hazard quotient of 1.

Analytes were included or excluded from the risk assessment for the following reasons:

S = the maximum detected concentration did not exceed the screening concentration and will not be considered further.

G = the maximum detected concentration did not exceed the Florida cleanup goals and will not be considered further.

B = the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations.

C = the analyte is a member of a chemical class that contains other chemicals of potential concern (CPCs) (i.e., carcinogenic polynuclear aromatic hydrocarbons F = the frequency of detection was less than 5 percent and professional judgment was used to exclude analyte from further study.

P = the maximum detected concentration did not exceed the USEPA proposed soil screening levels (SSLs), 9355.4-14FS, dated December 1994. M = the analyte was detected at less than 5 percent and is a CPC in more than one media.

* The value is based on arsenic as a carcinogen.

11 USEPA Office of Solid Waste and Emergency Response (OSWER) Directive No. 9355.4-12 revised interim recommended soll cleanup for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites.

The average of a sample and its duplicate is used for all table calculations. Sample tocations include: 26BS11; 26BS12; 26BS13; 26BS14 Notes:

Duplicate sample locations include: 26BS11D

mg/kg = milligrams per kilograms. PCBs = polychlorinated biphenyls. Background sample locations include: MPT-B-BS1; MPT-B-BS4; MPT-B-BS5; 1833X Duplicate background sample locations include: MPT-B-BS1DUP

ND = not detected in any background samples.

= not reported; analyte detected in each sample; reporting limits are same as range of detected concentrations. = not available.

locations MPT-26-SS/BS01 and MPT-26-SS/BS04, the tan sand graded with depth into a gray to dark gray clayey sand at approximately 1.5 feet bls.

Four VOCs (2-butanone, toluene, xylene, and acetonitrile) were detected in the surface soil samples (Table 2-4). Two SVOCs (di-n-butylphthalate and bis(2-ethylhexyl)phthalate) were detected in the surface soil samples. These same analytes and the VOC chloroform were detected in the subsurface soil samples. Pesticides and PCBs were not detected in the surface or subsurface soil samples.

Inorganic target analytes detected in the surface and subsurface soil samples consisted of arsenic, barium, beryllium, chromium, cobalt, copper, lead, nickel, vanadium, zinc, and cyanide (Table 2-5).

Groundwater Analytical Results. A summary of groundwater quality parameters is provided in Table 2-8 and Tables 2-9 and 2-10 summarize the validated analytical results for semivolatile and inorganic target analytes, respectively, detected in groundwater samples collected at SWMU 26. Complete analytical results are presented in Appendix B. A summary of frequencies of detection, range of detection limits, range of detected concentrations, arithmetic mean, and bench mark comparison values are provided in Table 2-11. The target analytes detected in the environmental samples were compared to background screening values computed from station-wide background groundwater samples (ABB-ES, 1995b), and bench mark values consisting of USEPA Region III RBCs (USEPA, 1995), and Florida groundwater guidance concentrations (FDEP, 1994). The Florida groundwater guidance concentrations consist of promulgated and unpromulgated values. State of Florida promulgated values are equal or more stringent than Federal primary and secondary drinking water regulations (57FR31777, July 17, 1992). Promulgated values that are exceeded will be identified in the text.

Each of the bench mark criteria provided in Table 2-11 are human health based and represent the lower of either a noncarcinogenic hazard index (HI) of 1 or a lifetime excess cancer risk of 10^{-6} . Bench mark values for a noncarcinogenic HI of 1 or less represent a concentration where noncarcinogenic effects are not likely. A bench mark value for a lifetime excess cancer risk of 10^{-6} represents a chance of 1 in 1,000,000 for an adverse carcinogenic effect for a continuous lifetime exposure.

The water quality parameters for the SWMU 26 groundwater monitoring wells were compared to the State of Florida secondary water quality criteria (Florida Administrative Code, Chapter 62-550.320) (Table 2-8). Values determined for color and total dissolved solids exceeded the State of Florida secondary water quality criteria for three of the groundwater samples. The State of Florida secondary water quality criteria for pH was exceeded in the groundwater sample collected from monitoring well MPT-26-MW04S.

Values determined for hardness as $CaCo_3$ suggest that the groundwater would be considered very hard (greater than 180~mg/l; Durfor and Becker, 1964). The values determined for total dissolved solids suggest that the groundwater would be considered brackish to slightly saline. The range for classifying water as brackish is 1,000~to~10,000~mg/l and the range for classifying water as saline is 10,000~to~100,000~for saline (Freeze and Cherry, 1979).

VOCs, pesticides, PCBs, or cyanide (total) were not detected in the groundwater samples collected from the SWMU 26 monitoring wells. Target analytes detected

Table 2-8 Water Quality Parameters for Groundwater at SWMU 26

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

		Maypo	rt, Florida		
Analytical Batch No.:		M7505	M7515	M7492	
Sample Matrix:		Groundwater	Groundwater	Groundwater	
Sample Location:	l	MPT-26-MW01S	MPT-26-MW03	MPT-26-MW04	Secondary
Sample No.:		26MW0001S	26MW003S	26MW004S	Water Quality Criteria
Date Sampled:		08/02/94	08/02/94	08/02/94	
Common Name	Units	Conc.	Conc.	Conc.	Conc.
Alkalinity as CaCO ₃	mg/£	950	780	86 6	-
Ammonia nitrogen	mg/£	6.2	13.7	6.9	-
Chloride	mg/£	3,470	6,740	5,660	250,000
Color	APHA	70	50	50	15
Hardness as CaCO ₃	mg/#	1,530	2,030	1,890	-
Nitrate + nitrite nitrogen	mg/£	0.13	< 0.1	< 1	10,000
Oil and grease	mg/£	< 5	5.8	< 5	-
Phosphorous P, total	mg/ <i>2</i>	2.24	1.73	0.96	-
Sulfate	mg/ <i>t</i>	181	< 1	87.2	250,000
Sulfide	mg/ℓ	3.5	1	18.5	-
Total dissolved solids	mg/£	6,310	10,300	9,810	500
Total Kjeldahl nitrogen	mg/£	9.7	16.3	9.7	•••
Total organic carbon	mg/ℓ	20.6	28.2	20	-
рН	su	6.9	7	10.4	6.5 to 8.5

¹ Secondary water quality criteria, Chapter 62-550.320, Florida Administrative Code.

Notes: Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C.

Conc. = concentration. $CaCO_3$ = calcium carbonate.

 $cacO_3 = calcium carbonate$ $cacO_3 = calcium carbonate$ $cacO_3 = calcium carbonate$

- = analyte not detected.

APHA = American Public Health Association.

SU = standard units.

Table 2-9 Semivolatile Organic Analytes Detected in Groundwater Samples at SWMU 26

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

					<u>, </u>				_		
Analytical Batch N	lo.:	M7:	503	M7	503	M7:	503	M7	513	M7	490
Sample Matrix:		Groun	dwater	Groun	dwater	Groun	dwater	Ground	dwater	Groun	dwater
Sample Location:		MPT-26	-MW01S	MPT-26	-MW01S	MPT-26	-MW02\$	MPT-26	MW03S	MPT-26-	-MW045
Sample No.:		26MV	V00 1S	26MW0	01SDup	26MV	V002S	26MV	v003S	26MV	V004S
Date Sampled:		07/1	2/94	07/1	12/94	07/1	2/94	07/1	3/94	07/1	10/94
Common Name	Units	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.
Di-n-butylph- thalate	µg/₽	-	-	-				2	J	_	
bis(2-ethyl- hexyl)phthalate	µg/₽	_				_		1	J	-	

Notes: Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C.

Suffix Dup = duplicate of environmental sample.

Conc. = concentration.
Qual. = qualifier.
"J" qualifier = value.

 $\mu g/t = micrograms per liter.$

- = analyte not detected.

		Inorg	ganic An	Table 2-10 norganic Analytes Detected in Groundwater Samples at SWMU 26	Table 2-10 ed in Ground	2-10 oundwater Sa	mples at	SWMU 26			
				Group	os Land # RFA SV F U.S. Naval Station Mayport, Florida	Groups I and it RFA SV Report U.S. Naval Station Mayport, Florida					
Analytical Batch No.:	h No.:	M7504		M7504	1	M7504		M7514		M7491	
		Groundwater	- i	Groundwater	ter	Groundwater	iter	Groundwater	ter	Groundwater	ter
Sample Matrix:	6	MPT-26-MW01S	018	MPT-26-MW01S	701S	MPT-26-MW02S	Vozs	26MW003S	8	26MW004S	જ
Sample No.:		26MW001S	S	26MW001SDup	dng	26MW002S	SS	MPT26SS04	94	MPT26BS14	4
Date Sampled:	.,	07/12/94	**	07/12/94	4	07/12/94	4	07/13/94	4	07/10/94	4
Common	Units	Conc.	Qual	Conc.	Qual.	Ćone.	Qual.	Conc.	Qual.	Conc.	Oual.
Antimony	1/6/	:		:		:		5.2		!	
Arsenic	1/6/	1.1	7	i		1		; ;	_	: 0	-
Barinm	1/6/	25.7	7	25.8	7	18.3	- -	.	٠ -	23.0	•
Calcium	1/6/1	246,000		267,000		183,000		113,000	<u>-</u>	224,000	-
Iron	- /g	89.8	ס	324	7	1,320	- ")	487	•		· .
Lead	1/6/	:		6.2		ı		2.2	כ	:: 000 000	
Magnesium	1/6/	186,000		180,000		154,000		355,000	_	330,000	
Manganese	1/6/	163		251	- >	313	-	016	י	2 1	
Selenium	1/6/	:		2.6	- -	1	·	: 000 300		3 240 000	
Sodium	1/6/	1,740,000	7	1,620,000		1,280,000	¬	326,000		2000	
Thallium	1/6/	4.1		1		ı		. 4	- ,	1	
Zinc	1/6ri	:				1	<u> </u>	°	,		
Notes: Labo Suffi	ratory data k Dup = Du	Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C. Suffix Dup = Duplicate of the environmental sample.	Energy ar	nd Environmental sample.	Support A	ctivity (NEESA) La	ට ව				
Contraction Contraction	Conc. = concentration.	ıtration.									
Qual	Qual = qualifier.	ب ا ن									
# 7/6rd	"J" = estimated value. µg/ℓ = micrograms p	f.g. = estimated value. pg/t = micrograms per liter.									
ii l	- = analyte not detected.	detected.									

		Chemicals	Table 2-11 s of Potential Concern (CPCs) in Groundwater at SWMU 26	Table 2-11 ern (CPCs) in G	roundwater a	t SWMU 26			
			Groups La U.S Ma	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	to				
Analyte	Frequency of Detection ¹	Range of Reporting Limits	Range of Detected Concentrations ²	Mean of Detected Concentrations ³	Background Screening Concentration ⁴	Risk Based Screening Concentration ⁵	Florida Guidance Concentration ^a	Analyte CPC? (Yes/No)	Reason ⁷
Volatiles (µg/!)									
No Analytes Detected									
Semivolatiles (µg/t)									
Disp-hutylohthalate	1/4	10 to 10	8	8	QN Q	370	200	2	တ တ
bis(2-Ethylhexyl)phthala	1/4	10 to 10	-	-	6.2	4.8	σ	S	o S
ł.									•
Pesticides/PCBs (µg/1)									
No Analytes Detected									
Inorganica (µg/f)				(2	<u>u</u>	ď	X 63	
Antimony	1/4	2.2 to 22.3	Si	S.	2	<u>.</u>	, <u>i</u>	2	a
Arsenic	1/4	0.45 to 0.9	0.775*	0.78	11.4	°0.038	Ā	€ :	٠ ,
Barium	4/4	AN AN	15 to 25.75*	20.7	10.4	260	2,000	ê :	တ် တ
Calcium	4/4	NR RN	113,000 to 256,500*	194,125	170,450	1,055,398	٩V	£	vo
Iron	4/4	R	44 to 1,320	514	2076	13,267	300	Yes	
Lead	2/4	2.2 to 2.9	2.2 to 4.275*	3.2	4	1015	1015	온	ပ တ
Magnesium	4/4	R.	154,000 to 355,000	255,500	21,234	118,807	Y	Yes	
Wandanese	4/4	Z.	207* to 313	261	185.8	18	20	Yes	
Salenium	1/4	6.6 to 13.2	4.6*	4.6	11.8	18	20	운	æ
Sodium	4/4	R	1,280,000 to 3,260,000 2,365,000	2,365,000	18,624	396,022	A S	Yes	
Thailium	1/4	0.65 to 1.3	1.025*	-	QV	10,29	۵.	Yes	
Zinc	1/4	4.2 to 7.3	S	2	20	1,100	2,000	₽	8
See notes on next page.									

Chemicals of Potential Concern (CPCs) in Groundwater at SWMU 26 (able 2-11 (Continued)

Groups I and II RFA SV Report U.S. Naval Station

	Analyte CPC? (Yes/No)
	sed Florida Analyte ng Guidance CPC? atton ⁵ Concentration ⁶ (Yes/No)
	Risk Based Screening Concentration ⁵
	Background Screening Concentration
Mayport, Florida	Mean of Background Risk Based Florida Analyte CPC? Concentrations Concentration Concentration (Yes/No)
	Range of Detected Concentrations ²
	Range of Reporting Limits
	Frequency of Detection

Analyte

Reason

Value indicated by asterisk is the average of a sample and its duplicate. For nondetected values, 1/2 the contract required quantitation limit or contract required Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values)

The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected, including values qualified as "J"; it does not include those samples where the analyte was not detected ("U," or "UJ" qualifiers) and rejected ("R" qualifier).

For all chemicals except the essential nutrients (calcium, iron, magnesium, potassium, and sodium), U.S. Environmental Protection Agency (USEPA) Region III risk The background screening value is twice the average of detected concentrations for inorganic analytes in background samples.

based concentrations (RBC) for tap water per January 1993 guidance (Selecting Exposure Routes and Contaminants of Concern by Risk-Based Screening, EPA/903/R-93-001) was used for screening. Actual values are taken from RBC Table dated February 9, 1995, and are based on a cancer risk of 10° or an adjusted hazard quotient

of 0.1. For the essential nutrients, screening values were derived based on recommended daily allowances (RDAs). Florida Department of Environmental Protection Groundwater Guidance Concentrations (June 1994).

Analytes were included or excluded from the risk assessment for the following reasons:

C = the analyte is a member of a chemical class that contains other human health chemicals of potential concern (HHCPCs) (i.e., carcinogenic polynuclear S = the maximum detected concentration did not exceed the screening concentration and will not be considered further.

G = the maximum detected concentration did not exceed the Florida cleanup goals and will not be considered further.

B = the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations.

F = the frequency of detection was less than 5 percent and professional judgment was used to exclude analyte from further study.

aromatic hydrocarbons [PAHs]).

P = the maximum detected concentration did not exceed the USEPA proposed soil screening levels (SSLs), 9355.4-14FS, dated December 1994 M = the analyte was detected at less than 5 percent and is a HHCPC in more than one media.

The value is based on arsenic as a carcinogen.

10 Treatment technology action limit for drinking water distribution systems per "National Primary Drinking Water Regulations" 40 CFR 141 as amended in 57 FR 41345,

August 3, 1993.

The values is based on thallium as thallium sulfate.

The average of a sample and its duplicate is used for all table calculations. Notes: Sample locations include: 26MW001S, 26MW002S, 26MW003S, and 26MW004S.

Background sample locations include: 01MW001, 08MW005S, 08MW001S, 0SMW001R, 8MW5S, MPT-1-MW1-1, MPT-S-1-1, and S1. Duplicate sample includes: 26MW001SD.

NA = not available

ND = not detected in any background samples.

PCBs = polychlorinated biphenyls.

 $\mu g/t=m$ icrograms per liter. NR = not reported; analyte detected in each sample; reporting limits are same as range of detected concentrations.

:		Inorgan	iic Analy	Table 2-12 Inorganic Analytes Detected in Groundwater Samples at SWMUs 2 and 3	Table 2-12 in Groundwa	2-12 idwater Samp	les at SV	VMUs 2 and 3			
				Group	os I and II RFA SV F U.S. Naval Station Mayport, Florida	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida					
Analytical Batch No.:	šh No.:	20866		R8229	 -	20877		R2818		R8607	-
Sample Matrix:		Groundwater	ter	Groundwater	ter	Groundwater	iter	Groundwater	iter	Groundwater	ıter
Sample Location:	on:	MPT-2-MW09S	S60	MPT-2-MW09S	S60	MPT-26-MW10S	V10S	MPT-2-MW10S	108	MPT-2-MW13S	138
Sample No.:		MPT2MW9S1)S1	2MW009S	S	MPT2MW101	101	02MW010S	S	2MW013S	S
Date Sampled:		02/09/92	2	06/21/94	4	02/10/92	23	07/13/94	4	08/24/94	4
Common	Units	Cone.	Qual.	Сопс.	Qual.	Cone.	Qual.	Cone.	Qual.	Conc.	Qual.
Antimony	1/6/	;		:		17.4	ſ	:		•	
Arsenic	1/6d	1		:		ιΩ	ר	ł		6.0	7
Barlum	1/6/	8.7	ה	8.5	י	29.1	7	25.2	ت	18.1	7
Calcium	1/6/	096'2		65,900		162,000		121,000		134,000	
lron	1/6#	162		655	7	474		230	->	448	
Lead	1/6/	4.8	7	t		1		!		ı	
Magnesium	1/6/	300,000		207,000		282,000		219,000		110,000	
Manganese	1/6/	101		85.3	7	102		96.5	-,	149	
Selanium	1/6/	ı		1		ı		l		:	
Sodium	1/8/	2,660,000		2,040,000		2,900,000		2,010,000		1,760,000	
Thallium	1/64	1		ı		1		i		:	
Zinc	1/8/1	1		39		4.1	7	1		2.4	-
Notes: Labor	Laboratory data validate Conc. = concentration.	Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C. Conc. = concentration.	Energy an	d Environmental	Support Ac	tivity (NEESA) Le	ပ <u>စ</u>				
Over	Qual. = qualifier	. !									
= f. 1/br/	"J" = estimated value. µg/t = micrograms p	f.g./ t = estimated value. µg/ t = micrograms per liter.									
3 = 1	= analyte not detected	detected.									

in the groundwater samples consist of two SVOCs (di-n-butylphthalate and bis(2-ethylhexyl)phthalate) and 12 inorganic analytes (antimony, arsenic, barium, calcium, iron, lead, magnesium, manganese, selenium, sodium, thallium, and zinc). The inorganic groundwater samples were not filtered and represent total concentrations.

2.4 PRELIMINARY RISK EVALUATION.

<u>Surface Soil</u>. None of the VOCs or SVOCs detected in the surface soil samples exceed the bench mark values (Table 2-6). Two of the inorganic analytes, arsenic and beryllium, were detected in surface soil samples at concentrations that exceed bench mark values, which are based on values for a lifetime excess cancer risk of 10^{-6} .

Each of the four surface soil samples contained arsenic at concentrations that exceed the USEPA Region III RBC (0.37~mg/kg) and the proposed Superfund SSL (0.4~mg/kg). Three of the samples contained arsenic at concentrations that exceed the FDEP cleanup goal (0.7~mg/kg). The different bench mark values are a result of variations in assumptions used in the computations. Arsenic was not detected in background surface soil samples.

Only one of the samples (MPT-26-SS04) contained beryllium at a concentration (0.33~mg/kg) higher than the background screening value (0.16~mg/kg) and the USEPA Region III RBC (0.15~mg/kg). Each of the four surface soil samples contained beryllium at concentrations that exceed the proposed Superfund SSL and Florida cleanup goal of 0.1~mg/kg. The surface soil background screening value for beryllium also exceeds the bench mark values.

Subsurface Soil. None of the VOCs or SVOCs detected in the subsurface soil samples exceed the bench mark values (Table 2-7). Two of the inorganic analytes, arsenic and beryllium, were detected in subsurface soil samples at concentrations that exceed bench mark values. Only one of four subsurface soil samples (MPT-26-SSO4) contained arsenic at a concentration (1.6 mg/kg) that exceeds the background screening value (0.9 mg/kg). Each of the four subsurface soil samples contained arsenic at concentrations that exceed the USEPA Region III RBC (0.37 mg/kg) and the proposed Superfund SSL (0.4 mg/kg). None of the samples contained arsenic at concentrations that exceed the FDEP cleanup goal (3 mg/kg). The background screening value for arsenic also exceeds the USEPA Region III RBC and the proposed Superfund SSL, but not the FDEP cleanup goal.

Only one of the four subsurface soil samples (MPT-26-BS04) contained concentrations of beryllium (0.23 mg/kg) that exceed the background screening value (0.14 mg/kg) and USEPA Region III RBC (0.15 mg/kg). Each of the four subsurface soil samples contained beryllium at concentrations that exceed the proposed Superfund SSL (0.1 mg/kg). Only one sample contained concentrations of beryllium above the FDEP cleanup goal of (0.2 mg/kg). The background screening value for beryllium exceeds the proposed Superfund SSL and FDEP cleanup goal, but not the USEPA Region III RBC.

Groundwater. None of the SVOCs (phthalates) detected in groundwater samples collected from SWMU 26 monitoring wells exceed the bench mark values (Table 2-11). However, five of the inorganic analytes (antimony, magnesium, manganese, sodium, and thallium) exceed bench mark values. Antimony was detected as a

single occurrence at a concentration (5.2 μ g/ ℓ) that exceeds the USEPA Region III RBC (1.5 μ g/ ℓ), but was less than the Florida guidance concentration (6 μ g/ ℓ), which is a Federal and State promulgated standard.

Magnesium was detected in each of the four SWMU 26 groundwater samples and duplicate at concentrations that exceed the USEPA Region III RBC (118,807 $\mu g/l$). Currently, there is not an established Florida guidance concentration for magnesium.

Manganese was detected in each of the four SWMU 26 groundwater samples and duplicate at concentrations that exceed the USEPA Region III RBC (18 $\mu g/l$) and the Florida guidance concentration (50 $\mu g/l$).

Sodium was detected in each of the four SWMU 26 groundwater samples and the duplicate. Three of the groundwater samples and the duplicate contained concentrations of sodium that exceed the USEPA Region III RBC (396,022 $\mu g/\ell$). Currently, there is not an established Florida guidance concentration for sodium.

Thallium was detected as a single occurrence at a concentration (1.4 $\mu g/l$) that exceeds the USEPA Region III RBC (0.29 $\mu g/l$), but did not exceed the Florida guidance concentration (2 $\mu g/l$), which is a Federal and State promulgated standard.

Groundwater samples collected from three monitoring wells (MPT-2-MW09S, MPT-2-MW10S, and MPT-2-MW13S) located hydraulically upgradient from SWMU 26 (Figure 2-2) also contained antimony, magnesium, manganese, and sodium (Table 2-12). Thallium was not detected in the groundwater samples collected from the three upgradient monitoring wells (MPT-2-MW09S, MPT-2-MW10S, and MPT-2-MW13S). concentrations of the four inorganic analytes (antimony, magnesium, manganese, and sodium) in the upgradient wells also exceed the same bench mark values as the SWMU 26 groundwater samples. SWMU 26 does not appear to be the source of antimony, magnesium, manganese, or sodium at the concentrations detected in the It is more likely that these analytes are related to groundwater samples. placing the slurry of dredge materials and sea or brackish water into the eastern dredge spoil basin (SWMU 50) during maintenance dredging of the Mayport Turning Basin or the leaching of metals from landfill SWMUs 2 and 3. The eastern dredge spoil basin (SWMU 50) and landfill SWMUs 2 and 3 are located approximately 600 feet hydraulically upgradient of SWMU 26.

2.5 CONCLUSIONS AND RECOMMENDATIONS.

2.5.1 Conclusions

Surface and Subsurface Soil. Concentrations of VOCs (acetonitrile, chloroform, 2-butanone, toluene, and xylenes), SVOCs (di-n-butylphthalate and bis(2-ethyl-hexyl)phthalate), metals (arsenic, barium, beryllium, chromium, cobalt, copper, lead, nickel, vanadium, and zinc) and cyanide were detected in surface and subsurface soil samples collected at SWMU 26 (Tables 2-4 and 2-5). Pesticides and PCBs were not detected in the surface and subsurface soil samples. The detected concentrations of VOCs and SVOCs do not exceed any of the human health based risk screening values and, therefore, do not warrant further investigation (Tables 2-6 and 2-7). Concentrations of arsenic and beryllium exceed human health based risk bench mark values that represent a lifetime excess cancer risk

of 10^{-6} . Arsenic, though not detected in the background surface soil samples, was detected in the background subsurface soil samples and beryllium was detected in both the surface and subsurface background soil samples. Background screening values for these analytes also exceed one or more of the bench mark values. It should also be noted that beryllium was not detected in the groundwater samples and arsenic was detected as a single occurrence in the groundwater samples and not determined to be a CPC. However, the potential risk associated with concentrations of arsenic and beryllium that were detected is within a range $(10^{-4} \text{ to } 10^{-6})$ that is considered by the USEPA to be protective of human health (40 CFR Part 300) (see Tables C-1 and C-2, Appendix C).

Because the land features at NAVSTA Mayport are a result of the deposition of dredge material from the Mayport Turning Basin, it cannot be determined whether the concentrations of arsenic and beryllium are related to a release at SWMU 26, or are residual concentrations from the dredge material.

Groundwater. VOCs, pesticides, PCBs, or cyanide were not detected in the groundwater samples collected from the SWMU 26 monitoring wells. Target analytes detected in the groundwater samples collected from SWMU 26 consist of two SVOCs (di-n-butylphthalate and bis(2-ethylhexyl)phthalate) and 12 metals (antimony, arsenic, barium, calcium, iron, lead, magnesium, manganese, selenium, sodium, thallium, and zinc) (Tables 2-9 and 2-10). None of the phthalates detected in the SWMU 26 groundwater samples exceed the bench mark values (Table 2-11). However, five of the inorganic analytes (antimony, magnesium, manganese, sodium, and thallium) were detected at concentrations that exceed bench mark values. The State of Florida promulgated water quality standard for manganese also was exceeded. Thallium was detected at a concentration that was less than the FDEP guidance concentration.

Groundwater samples collected from three monitoring wells (MPT-2-MW09S, MPT-2-MW10S, and MPT-2-MW13S) located hydraulically upgradient from SWMU 26 (Figure 2-2) also contained concentrations of antimony, magnesium, manganese, and sodium (Table 2-12). Thallium was not detected in these groundwater samples. The concentrations of the four inorganic analytes (antimony, magnesium, manganese, and sodium) also exceed the same bench mark values as the SWMU 26 groundwater samples. It is likely that these analytes are related to placing the dredge materials into the eastern dredge spoil basin (SWMU 50) during maintenance dredging of the Mayport Turning Basin or the leaching of metals from landfill SWMUs 2 and 3.

- 2.5.2 Recommendations SWMU 26 is recommended for no further investigation at this time based on the following rationale.
- Anecdotal evidence suggests only inert construction materials were disposed at SWMU 26.
- No pesticides or PCBs were detected in the surface or subsurface soil samples at SWMU 26.
- VOCs (acetonitrile, chloroform, 2-butanone, toluene, and xylenes) and SVOCs (di-n-butylphthalate and bis(2-ethylhexyl)phthalate) were detected in surface and subsurface soil samples at concentrations less than the human health based bench mark values.

- Inorganic analytes (arsenic and beryllium) were detected in soil samples at concentrations within a range of potential risk (10⁻⁴ to 10⁻⁶) considered by the USEPA as protective of human health (40 CFR Part 300). Arsenic and beryllium were not determined to be CPCs in the groundwater.
- Inorganic analytes detected in the surface and subsurface soil samples are likely related to the deposition of dredge spoil material, and may not represent disposal of hazardous materials.
- VOCs, pesticides, PCBs, or cyanide were not detected in the groundwater samples collected from the SWMU 26 monitoring wells.
- The two phthalate compounds (di-n-butylphthalate, and bis(2-ethylhexyl)-phthalate) detected in the SWMU 26 groundwater samples do not exceed the human health based bench mark values.
- SWMU 26 does not appear to be the source of the four inorganic analytes (antimony, magnesium, manganese, sodium, and thallium) that were detected at concentrations exceeding some of the human health bench mark values. In addition, groundwater in the vicinity of SWMU 26 is being assessed in the RFI for the Group I SWMUs.

The default assumptions used in estimating risk based bench mark concentrations may not be representative and likely to overstate the specific exposure present at the site (i.e., underestimate the concentration that would result in a lifetime excess cancer risk of 10^{-6}). Because the chemicals were detected in only one of two media (i.e., soil and or groundwater) all of the exposure pathways and assumptions used to estimate the bench mark concentrations are not relevant. Therefore, the concentrations of chemicals may exceed the bench mark values (USEPA, 1994, USEPA, 1995, and FDEP, 1995) but actually result in lower excess cancer risk than 10^{-6} .

3.0 SWMU 49. FLIGHT LINE RETENTION PONDS

3.1 SITE DESCRIPTION AND BACKGROUND. The Flight Line Retention Ponds (SWMU 49) are located approximately 1,000 feet north of the eastern dredge spoil disposal area (SWMU 50) (Figure 1-3). SWMU 49 consists of two ponds located on the north side of the Patrol Road and to the south of an aircraft wash rack (Building The ponds were constructed at the same time that the flight operation facilities were constructed in 1985 (A.T. Kearney, 1989). The land use of the watershed above the Flight Line Retention Pond is highly developed with hangars, flight line aprons, aircraft maintenance facilities, administrative buildings, roadways, and parking lots. Much of this watershed is covered with impervious materials and substantial runoff is likely to be generated during rain events. The retention ponds were constructed to manage runoff and mitigate adverse effects, if any, from runoff received from developed areas in the drainage of the The western retention pond is located within a Flight Line Retention Ponds. fenced area and is not accessible for recreational use. The eastern pond is not fenced and is too small to be viable for recreational fishing.

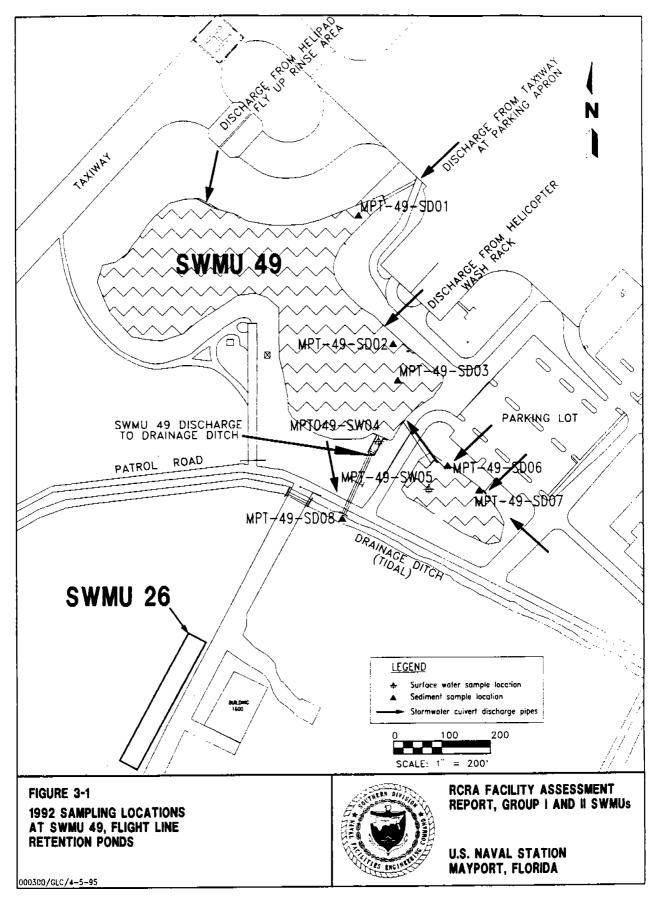
SWMU 49 collects runoff from the flight operations area southeast of the main runway through a conveyance system of underground stormwater collection conduits and associated drains and open ditches. The watershed that drains into the ponds includes the aircraft parking apron, taxiways, wash racks, Building 1552, vehicle roadways, and parking lots (Figure 3-1). Both ponds are excavated from land surface to a depth of approximately 2 feet below mean sea level (msl).

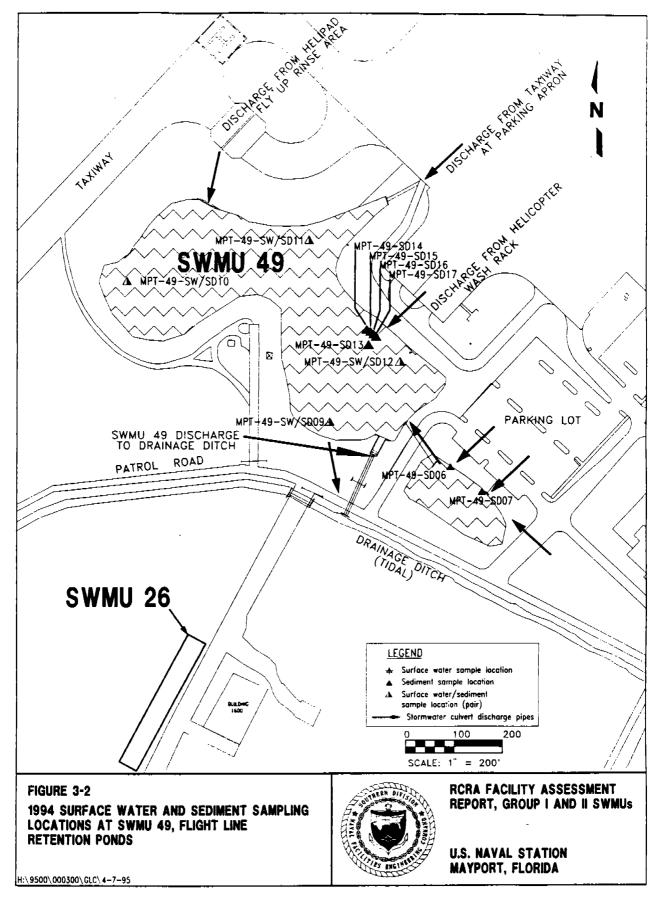
The eastern pond is approximately 9,000 square feet in area. Three stormwater sewer influent points are located at the eastern pond. Two of the stormwater influent points are located on the north side of the pond and serve two adjacent automobile parking lots and adjacent landscaped areas. These two stormwater culverts are 24 and 36 inches in diameter. A third stormwater influent point is located on the southeast side of the pond and serves landscaped areas adjacent to buildings and parking lots. A 36-inch-diameter culvert is located at the northwestern end of the pond and discharges into the adjacent western pond.

The western pond is irregular in shape with an area of approximately 75,000 square feet. Three stormwater influent points are located at the north and northeast sides of the pond. The northernmost influent points consist of two parallel 48-inch-diameter storm sewers serving the helicopter fly-up rinse area adjacent to the western taxiway. Also on the north side of the pond is a storm sewer influent point located in a narrow cove, which receives drainage from the taxiway and aircraft parking apron. The influent consists of two parallel, 42-inch-diameter storm sewers. The third influent point is located near the northeastern corner of the pond. It consists of a single 18-inch diameter culvert that receives drainage from the helicopter wash rack area located next to the pond.

The western pond discharges into the drainage ditch that parallels Patrol Road to the south through a 36-inch diameter, doubled-barrel culvert located under Patrol Road. The drainage ditch is tidally influenced. A weir, located on the upstream side of the 36-inch double-barrel culverts, maintains the water level in the eastern and western ponds and limits the flow from the ponds to the drainage ditch. The flow direction in the drainage ditch at low tide stages is generally to the south where it empties into Sherman Creek and Chicopit Bay.

The RFA identified the Flight Line Retention Ponds as an SWMU because a fire-fighting extinguishing material called aqueous film forming foam (AFFF) had been discharged to the watershed and rinsate from the aircraft wash rack could be discharged to the ponds by a malfunctioning valve. Runoff from the aircraft maintenance area also discharges to the ponds (A.T. Kearney, 1989). There are no engineered controls such as oil-water separators to minimize the impact of drainage from the areas served by these culverts and associated drainage systems.


The RFA recommended a determination as to whether AFFF indeed contains Appendix IX (40 CFR 264) hazardous constituents. Currently, it is not known if AFFF contains Appendix IX constituents. Material Safety Data Sheets (MSDS) on AFFF are provided in Appendix D. AFFF is a fluorocarbon surfactant with excellent foaming characteristics that is moderately to extremely toxic (high chemical oxygen demand [COD]) to most organisms (A.T. Kearney, 1989). The high COD could present a threat to biological organisms in the ponds by reducing the level of oxygen. The RFA also recommended that sediment samples be collected from the ponds and the drainage ditch into which the ponds discharge.


3.2 RFA SV FIELD INVESTIGATIONS. Based on recommendations of the RFA, surface water and sediment sampling was conducted to assess a possible release to the environment at SWMU 49 and to collect surface water and sediment samples to evaluate these media as potential exposure pathways near stormwater discharge points within the ponds.

Two surface water and six sediment samples, with duplicates and quality assurance and quality control (QA/QC) samples, were collected from SWMU 49 in April 1992. These sample locations are presented on Figure 3-1. Sediment samples were collected on the downstream side of inlet structures where offsite contaminants would be expected to accumulate. Surface water samples were collected upstream of exit structures where floating oil and grease or suspended solids might accumulate. Sample locations were chosen to bias the sampling towards areas most likely to be contaminated based on existing site knowledge and observed runoff patterns.

Based on the findings of the April 1992 RFA SV, additional surface water and sediment sampling was conducted at SWMU 49 on August 2 and September 12, 1994. The surface water and sediment samples were collected to assess whether hazardous constituents were present in the surface water and/or sediment and to confirm whether the contaminants in the area of the culvert outfall near sediment sample MPT-49-SD02 are of limited lateral extent. The following describes the sampling locations at the western and eastern ponds of SWMU 49 (Figure 3-2).

Because many field activities are common to all NAVSTA Mayport SWMUs, the sampling procedures for RFI and RFA SV (Confirmatory Sampling) events are described in Section 2.1, Summary of Exploration and Sampling Program, of the NAVSTA Mayport GIR (ABB-ES, 1995b). Site-specific elements and deviations from sampling procedures, if any, particular to SWMU 49 are discussed in subsequent paragraphs, and standard operating procedures are referenced where necessary. Surface water and sediment sampling procedures and associated equipment decontamination procedures were conducted in general conformance with USEPA Region IV standard operating procedures (USEPA, 1991a).

<u>Surface Water and Sediment Sample Collection Procedure</u>. Surface water and sediment sampling was accomplished as described in the NAVSTA Mayport RFI workplan (ABB-ES, 1991) and Subsection 2.1.3, Surface Water, Sediment, and Sludge Sampling, presented in the GIR.

Western Pond. Five sediment samples, without a corresponding surface water sample, were collected near sediment sample MPT-49-SD02, located at the discharge culvert for the helicopter wash rack. Four surface water and sediment sample pairs also were collected, one near the discharge culvert for the helicopter wash rack, one near the entrance to the discharge culvert to the patrol road drainage ditch, one near the cove that leads from the discharge from the taxiway and parking apron, and one at the northwestern part of the west pond in an area away from the discharge culverts.

<u>Eastern Pond</u>. Two sediment samples, without corresponding surface water samples, were collected from the easternmost retention pond in the immediate vicinity of the culvert on the north bank (Figure 3-2).

Laboratory Analysis. Surface water and sediment samples were analyzed for the same target analytes including VOCs, SVOCs, pesticides, PCBs, metals, and cyanide selected from the groundwater monitoring list contained in Appendix IX, 40 CFR 264 and USEPA Contract Laboratory Program target compound list and target analyte list. The analysis was conducted using methods from Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW846) (USEPA, 1986). A list of the target analytes is provided in Appendix A. Analytical results for each sample from the 1992 sampling event were presented in the RFA SV Report, Phase 1 (ABB-ES, 1992c), and results from the 1994 sampling event are provided in Appendix B.

Exceptions. Surface water and sediment samples collected during 1992 were only analyzed for SVOCs, pesticides, PCB, metals, and cyanide. The two sediment samples collected from the eastern pond during the 1994 sampling event were analyzed only for pesticides.

3.3 FINDINGS. The following presents a brief description of the surface water and sediment analytical results from the RFA SV sampling activities at SWMU 49.

Surface Water Samples. Table 3-1 summarizes water quality parameters for samples collected during 1994. No water quality parameter measurements were performed for surface water samples collected in 1992. Table 3-2 summarizes the validated analytical results for inorganic target analytes detected in surface water samples collected during 1992 at SWMU 49. Table 3-3 summarizes the validated analytical results for inorganic target analytes detected in surface water samples collected during 1994 at SWMU 49. A summary of frequencies of detection, range of detection limits, range of detected concentrations, arithmetic mean, and bench mark comparison values are provided in Table 3-4. The target analytes detected in the environmental samples were compared to station wide background surface water samples (ABB-ES, 1995b), and bench mark values from ambient water quality from the Office of Science and Technology, Health and Ecological Criteria Division, Washington D.C., May 1, 1991 (USEPA, 1991b), and Class III marine water quality standards (Chapter 62-302, Florida Administrative Code [FAC], 1995).

			+0010			
_	Water	Water Quality Parameters for SWMU 49 Surface Water Samples	ers for SWMU 49	Surface Water S	amples	
_		Gra	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	Report		
Anatylical Batch No.:		M7646	M7646	M7646	M7646	
Comple Metric		Surface Water	Surface Water	Surface Water	Surface Water	
Sample Location:		MPT-49-SW09	MPT-49-SW10	MPT-49-SW11	MPT-49-SD12	Class III Marine
Sample No.:		49SW009	49SW010	MPT49SW011	49SW012	Surface Water Standards
Date Sampled:		08/02/94	08/02/94	08/02/94	08/02/94	17-302,530 FAC
	. Inite	Conc	Conc.	Conc.	Cone.	Conc.
Common Native	2,000	166	150	150	146	> 20
Alkalinity as Cacco	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	60	< 0.3	< 0.3	< 0.3	1
Ammonia-nitrogen Chloride	1/6m	525	525	512	532	< 10% of Background
2010	APHA	001	02	. 70	0,	ı
Hardness as CaCO.	mg/t	317	288	308	308	:
Nitrate + nitrite nitrogen	1/6m	× 0.1	< 0.1	× 0.1	< 0. 1	1
Phosphorous P. total	a/gm	0.31	0.22	0.25	0.34	l
Sulfate	1/6m	57.7	65.1	55.8	61.8	:
Sulfide	J/Bm	24.7	< 1.0	< 1.0	× 1.0	•
Total Kieldahl nitrogen	mg/£	2.6	3.2	106	2.3	: ,
Ho	S	7.8	8.2	8.5	8.4	6.5 to 8.5
:: ::	lidated at ninistrative then carbonate s per liter. Public He	Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C. FAC = Florida Administrative Code. Conc. = concentration. CaCO ₃ = calcium carbonate. mg/t = milligrams per liter. % = percent. % = percent. APHA = American Public Health Association. SU = standard unit.	vironmental Support	Activity (NEESA) Leve	Ö	

Table 3-2 Inorganic Analytes Detected in Surface Water Samples at SWMU 49, 1992

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

				1, 1101100				
Analytical Bat	tch No.:		215	28	215	28	215	28
Sample Matri	x:		Wat	er	Wa	ter	Wa	ter
Sample Loca	tion:		MPT-49	-SW04	MPT-49	-SW04	MPT-49	-SW05
Sample No.:			MPT49	SW41	MPT49S	W41Dup	MPT49	SW51
Date Sample	d:		04/22	2/92	04/2	2/92	04/2	2/92
CAS RN	Common Name	Units	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.
7440-36-0	Antimony	(μg/t)	-		-		14	J
7440-39-3	Barium	(µg/1)	6.8	J	7.4	J	10.9	J
7440-47-3	Chromium	(μg/1)	-		2.6	J	3.5	J
7440-92-1	Lead	(μg/1)	20.2	J	15.6	J	14.9	J
7440-02-0	Nickel	(µg/1)			_		3.9	J
7440-62-2	Vanadium	(μg/1)	2.4	J	3.4	J	4.8	J

Notes: Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C. Suffix Dup = a duplicate sample of the corresponding environmental sample.

Conc. = concentration.

Qual. = qualifier.

 $\mu g/I = micrograms per liter.$

J = qualifier indicating estimated value.

- = analyte not detected.

Table 3-3
Inorganic Analytes Detected in Surface Water Samples at SWMU 49, 1994

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

Sample Delivery Group No.:	M7645	M7645	M7645	M7645
Sample Matrix:	Surface Water	Surface Water	Surface Water	Surface Water
Sample Location:	MPT-49-SW09	MPT-49-SW010	MPT-49-SW11	MPT-49-\$W12
Sample Number:	49SW009	49\$W010	49SW011	49SW012
Sample Date:	02-AUG-94	02-AUG-94	02-AUG-94	02-AUG-94

Volatile Organic Compounds (µg/£)

None detected

Semivolatile Organic Compounds (µg/ℓ)

None detected

Pesticides and PCBs $(\mu g/t)$

None detected

Inorganics $(\mu g/\ell)$

_	2.4 J	2.6 J	-	
1.7 J	6.8 J	2.9 J	1.4 J	
18.4 J	35.6 J	12 J	15 J	
	0.88 J	-	-	
	6 J	-	-	
2.1 J	14.1 J	-	-	
12.4 J	18.4 J	-	-	
4.1 J	34.2 J	_	-	
	0.23	_		
78. 6 J	17.6 J	-	_	
4.8 J	29 J	3.4 J	3.3 J	
	164	••		
••	0.33 J	-	-	
	1.7 J 18.4 J 2.1 J 12.4 J 4.1 J 78.6 J 4.8 J 38	1.7 J 6.8 J 18.4 J 35.6 J - 0.88 J - 6 J 2.1 J 14.1 J 12.4 J 18.4 J 4.1 J 34.2 J - 0.23 78.6 J 17.6 J 4.8 J 29 J 38 164	1.7 J 6.8 J 2.9 J 18.4 J 35.6 J 12 J - 0.88 J - - 6 J - 2.1 J 14.1 J - 12.4 J 18.4 J - 4.1 J 34.2 J - - 0.23 - 78.6 J 17.6 J - 4.8 J 29 J 3.4 J 38 164	1.7 J 6.8 J 2.9 J 1.4 J 18.4 J 35.6 J 12 J 15 J - 0.88 J - 6 J 2.1 J 14.1 J 12.4 J 18.4 J 4.1 J 34.2 J - 0.23 78.6 J 17.6 J 4.8 J 29 J 3.4 J 3.3 J 38 164

Notes: $\mu g/\ell$ = micrograms per liter.

PCBs = polychlorinated biphenyls.

J = qualifier indicating estimated value.

^{-- =} analyte not detected.

Analyte of Detection of Operation of Detection of Operation of Detection of Operation of Operati										
E (vg/1) ytes Detected latiles (vg/1)	<u> </u>			Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	A SV Report Station orida					
e (ug/ll) lytes Detected					-	Ambient Water Quality Criteria ⁵	ter Quality ia ⁵	Class III	Analyda	
Volatiles (µg/t) No Analytes Detected Semivolatiles (µg/t)	ncy Range of nct- Reporting Limits		Range of Detected Concentrations ²	Mean of Detected Concentrations ³	Background Screening Value⁴	For Protection of Aquatic Life: Acute/Chronic	For Protection of Human Health	Surface Water Standards	CPC? (Yes/No)	Reason?
No Analytes Detected Semivolatiles (µg/f)										
Semivolatiles (µg/f)										
No Analytes Detected										
Pesticides/PCBs (µg/f)										
No Analytes Detected										
Inorganics (µg/f)						,			:	•
Antimony 3/6	2.2 to 10.9	10.9	2,4 to 14	6.3	9.77	1,500/500	45,000	4,300	2	c o
Arsenic 4/6	9,4 to 9,4	9,4	1.4 to 6.8	3.2	6.2	96/69	0.0175	SO SO	Yes	
Barium 6/6	R	~	7.1 to 35.6	15.6	22.6	NA/NA	¥	N A	Yes	
Beryllium 1/6	0.18-0.19	91.19	0.88	0.88	ᄝ	NA/NA	0.0641	0.13	Yes	
Cadmium 1/6	2.9 to 3	0.3	Ð	ဖ	3.2	43/9.3	¥ X	E 6	Š	Σ ď
Chromium 4/6	2 to 2	2	1.8 to 14.1	5,4	ĸ	11,100/50°3,433,000	433,000	 S	2	∑ Í ď
Copper 2/6	4 to 16	16	12.4 to 18.4	15.4	27.4	2.9/NA	N A	2.9	2	©
Lead 4/6	2 to 2	α.	4.1 to 34.2	17.8	5.6	220/8.5	¥.	5.6	Yes	
Mercury 1/6	0.04 to 0.16	0.16	0.23 to 0.23	0.23	2	2.1/0.025	0.146	0.25	Yes	
Nickel 3/6	3.8 to 7.3	7.3	3.9 to 78.6	28.8	5 8	75/8.3	1 0	69 33	Yes	
Vanadium 6/6	R	œ	2.9 to 2.9	6 0	œ	NA/NA	Š	¥ ¥	Yes	
Zinc 2/6	6 to 29.2	29.2	38 to 164	101	4	98/96	Ϋ́	98	Хөз	
Cyanide 1/6	0.32 to 1.8	o 1.8	0.33	0.33	60	1/NA	NA	-	S	6

Chemicals of Potential Concern in Surface Water Samples at SWMU 49 Table 3-4 (Continued)

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

	Reason?	
Analyte	CPC? (Yes/No)	section here
Class III	Surface Water Standards	yalan paipustama
er Guality ia ^s	For Protection of Human Health	
Ambient Water Guality Criteria ⁵	For Protection of Aquatic Life:	(Saulay hatsales exilinated) and the second
	Background Screening Value	
	Mean of Detected Concentrations ³	
	Range of Detected Concentrations ²	
	Range of Reporting Limits	
	Frequency of Detect- ion ¹	
	Analyte	

2 Value indicated by asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetected values, 1/2 the contract required quantitation limit Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected v

0or contract required detection limit (CRDL) is used as a surrogate.

The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected including values qualified as "J"; it does not include those samples where the analyte was not detected ("U," or "UJ" qualitiers) and rejected ("R" qualitier.)

The background screening value is twice the average of detected concentrations for inorganic analytes in background samples. Organic values are one times the mean of

Values are taken from U.S. Environmental Protection Agency (USEPA) Water Quality Criteria Summary, Office of Science and Technology, Health and Ecological Criteria detected concentration. Organic values are included for comparison purposes only.

Division, Washington, D.C., May 1, 1991.

Values are taken from Surface Water Quality Standards, Florida Administrative Code, Chapter 62-302, amended January 1995. Analytes were included or excluded from the risk assessment for the following reasons:

A = the maximum detected concentration did not exceed the Ambient Water Quality Criteria for the Protection of Marine Aquatic organisms and the analyte will not be B = the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations

H = the maximum detected concentration did not exceed the Ambient Water Quality Criteria for the Protection of Human Health from the Ingestion of fish and the analyte

M = the maximum detected concentration did not exceed the Marine Surface Water (Class III) Surface Water Quality Standards and the analyte will not be considered

Proposed criteria.

The value is based on the trivalent form of arsenic.

10 The value is based on chromium trivalent form.

" The value is based on chromium hexavalent form.

Notes: The average of a sample and its duplicate is used for all table calculations.

Sample locations include: 49SW41; 49SW51; 49SW009; 49SW010; 49SW11; and 49SW12.

Background sample locations include: MPT-B-SW1; MPT-B-SW2; MPT-B-SW4; MPT-B-SW5; MPTB-SW6; MPT-b-SW7 and OOSW001. Duplicate background sample locations include: MPT-B-SW3DUP; and MPT-B-SW7DUP, Duplicate sample location includes: 49SW41DUP.

NA = not available. ND = not detected in any background samples. ug/kg = micrograms per kilograms. PCBs = polychlorinated biphenyls.

reporting limits are same as range of detected concentrations. NR = not reported; analyte detected in each sample;

MP-GI&II.RFA ASW.11.95

Because a different set of target analytes was measured in surface water samples collected in 1992 and 1994, the following presents a description of the target analytes that were detected during each sampling event.

Surface Water Sampling Event, 1992. During April 1992 two surface water samples were collected, one each from the west and east ponds. No organic compounds (VOCs, SVOCs, pesticides, or PCBs) were detected in the surface water samples. Six inorganic analytes (antimony, barium, chromium, lead, nickel, and vanadium) were detected in surface water samples collected at SWMU 49 (Table 3-2). Barium, chromium, lead, and nickel were detected in the sample collected from the west pond. Each of the six analytes were detected in the sample collected near the upstream side of the outfall where it discharges from the western pond to the drainage ditch along the south side of Patrol Road.

Surface Water Sampling Event, 1994. The results of water quality measurements for the 1994 samples are provided in Table 3-1. The sample collected near the upstream side of the outfall of the western pond to the drainage ditch along Patrol Road appears to exhibit a slight difference in water quality parameters from the other sample locations. The western and eastern ponds could be classified as Class III, predominantly freshwater bodies, and the drainage ditch into which the ponds discharge could be classified as a Class III, predominantly marine water body.

During August 1994, four surface water samples were collected from the western pond. No organic compounds (VOCs, SVOCs, pesticides, or PCBs) were detected in the surface water samples. Surface water sample MPT-49-SW09, collected near the outfall of the western pond to the drainage ditch along Patrol Road, contained eight metals (arsenic, barium, chromium, copper, lead, nickel, vanadium, and zinc). Surface water sample MPT-49-SW10, collected in the west part of the western pond, contained 12 metals (antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, vanadium, and zinc) and cyanide. Surface water sample MPT-49-SW11, collected at the cove that leads from the drainage culvert from the taxiway and aircraft parking area, contained four metals (antimony, arsenic, barium, and vanadium), and surface water sample MPT-49-SW12 contained three metals (arsenic, barium, and vanadium).

Sediment Samples. Tables 3-5, 3-6, and 3-7 summarize the validated analytical results for SVOCs, pesticides, and inorganic target analytes detected in sediment samples collected during 1992 at SWMU 49. Table 3-8 summarizes the validated analytical results for VOCs, SVOCs, and pesticides and Table 3-9 summarizes inorganic target analytes detected in sediment samples collected during 1994 at A summary of frequencies of detection, range of detection limits, range of detected concentrations, arithmetic mean, and bench mark comparison The target analytes detected in the values are provided in Table 3-10. environmental samples were compared to station wide background sediment samples (ABB-ES, 1995b) and bench mark values from effects range-low (ER-L) and effects range-median (ER-M) values from The Potential for Biological Effects of Sedimentsorbed Contaminants Tested in the National Status and Trends Program, National Oceanic and Atmospheric Administration (NOAA) (Long and others, 1993), and threshold effects level (TEL) and probable effects level (PEL) from Approach to the Assessment of Sediment Quality in Florida Coastal Waters, MacDonald Environmental Sciences, Ltd. (MacDonald, 1994).

	Semivolatile	e Organi	Table 3-5 anic Analytes Detected in Sediment Samples at SWMU 49, 1992	Ta	Table 3-5 cted in Set	diment (Samples	at SWN	IU 49, 19	92		
			Ö	oupstani U.S. N May	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	V Report on la						
ON dated legitudes	ON Hotel		21528		21528	88	21528		21528	. 82	21528	<u> </u>
Sample Matrix:	atrix:		Sediment	ant .	Sediment	neut	Sediment	ent	Sediment	nent	Sediment	ent
Sample Location:	cation:		MPT-49-SD02	3D02	MPT-49-SD07	-SD07	MPT-49-SD06	9008	MPT-49-SD8	-SD8	MPT-49-SD8	-SD8
Sample No.:	:0		MPT49SD21	D21	MPT49SD71	SD71	MPT49SD61	SD61	MPT-49-SD-81	-SD-81	MPT-49-SD-81Dup	-81Dup
·	i		04/22/92	95	04/22/92	2/32	04/22/92	/92	04/22/92	2/92	04/22/92	76/
CAC DN	Special Name	Units	Conc.	Qual.	Cone.	Qual.	Conc.	Qual.	Conc.	Qual.	Cone.	Qual
91-20-3	Naphthalene	μg/kg	16,000				:		1		1	_
91-57-6	2-Methylnaphthalene	µg/kg	1,300	7	1		;		I		1	
206-44-0	Fluoranthene	pg/kg	370	¬	49	-	ı		<u>%</u>	٠	1	
129-00-0	Pyrene	64/6n	320	7	25	7	ı		29	~	1	
85-68-7	Butylbenzylphthalate	ng/kg	510	-,	! 		!	_	1		970	
117-81-7	bis(2-Ethylhexyl)phthalate	µg/kg	26,000	7	420		000	٦			<u>:</u>	
		!	C. Grand (NEESA) 1 Byel	City City	Just Activity	A (NEESA) Level C.					

Notes: Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C. Suffix Dup = a duplicate sample to the corresponding environmental sample.

Conc. = concentration. Qual. = qualifier.

μg/kg = micrograms per kilogram. .. = analyte not detected. ''J' = estimated value.

Table 3-6 Pesticides and Polychlorinated Biphenyls (PCBs) Detected in Sediment Samples at SWMU 49, 1992

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

Analytical B	letch No :		215	528	2152	:8	215	528
Sample Ma				ment	Sedim		Sedi	ment
Sample Loc			MPT-4	9-SD07	MPT-49-	SD08	MPT-4	9-SD08
Sample No	.:		MPT4	9SD71	MPT498	SD81	MPT499	D81Dup
Date Samp	led:		04/2	22/92	04/22	/92	04/2	2/92
CAS RN	Common Name	Units	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.
76-44-8	Heptachior	μg/kg	51	- 	_		-	
72-55-9	4,4'-DDE	µg/kg	-	:	11	J	2.6	J
72-54-8	4,4'-DDD	μg/kg	38	J	8	J	-	
57-74-09	Chlordane	<i>µ</i> g/kg	730			_	-	

Notes: Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C. Suffix Dup = a duplicate sample to the corresponding environmental sample.

Conc. = concentration.

Qual. = qualifier.

 μ g/kg = micrograms per kilogram.

- = analyte not detected.

"J" = estimated value.

		-	organic	Analyte	ss Deter	Ta	Table 3-7 Inorganic Analytes Detected in Sediment Samples at SWMU 49, 1992	Sample	s at SV	VMU 49	1, 1992					
					g	roups I ar U.S. I Mav	Groups I and II RFA SV Report U.S. Naval Station Maybort, Florida	Report n								
			9152B		21528	1	21528	8	21528	 gg	21528		21528		21528	80
Analytical Batch No.:	atch No.:		Cadiment	, ;	Sediment	- tuer	Sediment	ent	Sediment	lent	Sediment	ant	Sediment	ent –	Sediment	<u>_</u> _
Sample Matrix: cample Location:	Irix: ation:		MPT-49-SD01	3001	MPT-49-SD02	-SD02	MPT-49-SD03	SD03	MPT-49-SD06	SD06	MPT-49-SD07	2003	MPT-49-SD08	SD08	MPT-49- SD08	- -
Sample No.:	: 		MPT49SD11		MPT49SD21	SD21	MPT49SD31		MPT49SD61	SD61	MPT49SD71	1,203	MPT49SD81	SD81	MPT49SD81 Dup	SD81
					Š		00/00/00	60/	04/22/92	/92	04/22/92		04/22/92	76/	04/22/92	/92
Date Sampled:	led:		04/22/92	76	04/22/92	76/2	77/20	1			-			3	Con	Oual
CAS BN	Common Name	Units	Conc.	Qual.	Conc.	Qual.	Conc.	Oual.	Conc.	Oual.	Conc.	Oral	Sale:		ن	
		200/00	,		12.7	-	;						ı		1	•
7440-36-0	Antimony	fir/fill	,	-	9.0	_	0.44	_	8.7		-	_	0.85	_	4.0	,
7440-38-2	Arsenic	mg/kg	, i	,	9	, -		_	14.3	7	6.0		4.3	_	5.3	7
7440-39-3	Barium	mg/kg	4.1	¬	 83	7	0,	•	890	-	=		60:0	7	90:0	
7440-41-7	Beryllium	mg/kg	0.4	-	1		1		800	,	;	ì			1	
7440-43-9	Cadmium	mg/kg	;		б		1		1 8		17.6	_	3.9		4.4	
7440-47-3	Chromium	mg/kg	12.2		32.9		· _		3 '		?		7	7	1	
7440-48-4	Cobalt	mg/kg	2.1	7	1.5	7	: •	-		,	, <u>t</u>		3.4	7	5.3	ſ
7440-50-8	Copper	mg/kg	7.6	7	49.7		225	- · -	- 20	_			2.7	7	3.4	7
7440-92-1	Lead	mg/kg	57. 80.	ה	92	7	2.3	٠.	0.00	, -	42.4		6	7	1.9	ר
7440-02-0	Nicket	mg/kg	•	-	14.3	,	2.9	·	?	,	<u>.</u>		1		ı	
7440-49-2	Selenium	mg/kg	0.47	- -	9.0	¬ ·	1		1		. ;		1		!	
7440-22-4	Silver	mg/kg	:		<u>6.</u>	· ·	; ;				4.3	ſ	3.4	-	2.5	~
7440-62-2	Vanadium	mg/kg	12.5	- -	e e e	÷	. ;	,	200		8 90		107		19	
7440-66-6	Zinc	mg/kg	34	.,	97.5		.0.		95.3	_	88	-	6:0		0.33	<u> </u>
5955-70-0	Cyanide	mg/kg	:		1.2	-	<u>.</u>		<u>.</u>		70.05	,				
Notes: La	┨┇┡	ited at Nava ate sample	al Energy ar	nd Envirc ispondin	onmental g environ	Support A mental sa	and Environmental Support Activity (NEESA) Level C rresponding environmental sample.	SA) Level	ല			,				
	Conc. = concentration. Oual. = qualifier.	Ė		1 7	= analyte " = estim	= analyte not detected. "J" = estimated value.	cted.									
Ē	mg/kg = milligrams per kilogram.	oer kilogran	انے													

Organic Anal	ytes Detected in	Table 3-8	nples Collected	Table 3-8 Organic Analytes Detected in Sediment Samples Collected at SWMU 49, 1994	994
	Ō	Groups I and II RFA SV Report U. S. Naval Station Mayport, Florida	sV Report don da		
Analytical Batch No.:	R8730	R8730	R8730	R8730	R8730
Sample Matrix:	Sediment	Sediment	Sediment	Sediment	Sediment
Location No.:	MPT-49-SD014	MPT-49-SD015	MPT-49-SD016	MPT-49-SD017	MPT-49-SD017
Sample No.:	49SD014	49SD015	49SD016	49SD017	49SD017Dup
Date Sampled:	12-SEP-94	12-SEP-94	12-SEP-94	12-SEP-94	12-SEP-94
VOCs (µg/kg)					
Acetone	i	1	ţ	ı	1
Carbon disulfide	i	ı	4 J	13	11.3
2-Butanone	ì	i	;	ı	ı
Acetonitrile	Ī	ì	t	ı	16 J
SVOC (pg/kg)					
bis(2-Ethylhexyl)phthalate	94 J	460 J	ł	440 J	180 J
Pesticides and PCBs (µg/kg)					
4,4-DDE	1.2	!	1.8	1	ı
4,4-DDD	;	1	4.4 U	1	;
See notes at the end of table					

Organic	Table 3-8 (Continued) Organic Analytes Detected in Sediment Samples Collected at SWMU 49, 1994	Table 3-8 (Continued)	inued) nples Collected a	t SWMU 49, 1994	
		Groups I and II RFA SV Report U. S. Naval Station Mavport, Florida	SV Report tion da		
A description of the second	M7645	M7645	M7645	M7645	R873
Analytical Batcii 140	Sediment	Sediment	Sediment	Sediment	Sediment
Sample Manix.	MPT-49-SD009	MPT-49-SD010	MPT-49-SD011	MPT-49-SD012	MPT-49-SD013
Sample Number	49SD009	49SD610	49SD011	49SD012	49SD013
Date Sampled:	02-AUG-94	02-AUG-94	02-AUG-94	02-AUG-94	12-SEP-94
VOCs (ualka)					
Acetone	230 J	240 J	1	510 J	1
Osrbon disultida	30	26	18	58	ı
California discontinuo	- SO 7	33 J	15 J	64 J	ï
Acetonitrile	1	:	1	1	;
SVOCs (µg/kg)					
bis(2-Ethylhexyl)phthalate	1	· ·	;	1	בטרר
Pesticides and PCBs (µg/kg)			_	;	*
4,4-DDE	2.8 J	2.4	8.7	- 5	
4,4-DDD	:	*	-	1	;
aboratory Suffix Dup	data validated at Naval Energy and Environmental Support Activity (NEESA) Level C. a duplicate sample.	d Environmental Suppi sponding environment	ort Activity (NEESA) Le al sample.	vel C.	
SWMU = solid waste management unit.	management unit				
VOCs = volatile organic compounds.	tic compounds. per kilogram.				
= analyte not detected.	ted.				
"J" = estimated value.	aparada di anno				
SVOCs = semivolatile organic compounds.	organic compounds. ed biphenyls.				
DDE = dichlorodiphenyldichloroethene	nydichloroethene.				
DDD = dichlorodiphenyldichloroethane	nyldichloroethane.				

Inorganic An	Table 3-9 Inorganic Analytes Detected in Sediment Samples Collected at SWMU 49, 1994	Table 3-9 Sediment Samples	Collected at SWM	U 49, 1994	
	Grou	Groups I and II RFA SV Report U. S. Naval Station Mayport, Florida	: :		
Analytical Batch No.:	M7645	M7645	M7645	M7645	R873
Sample Matrix:	Sediment	Sediment	Sediment	Sediment	Sediment
Sample location:	MPT-49-SD009	MPT-49-SD010	MPT-49-SD011	MPT-49-SD012	MPT-49-SD013
Sample No.:	49SD009	49SD010	49SD011	49SD012	49SD013
Date Sampled:	02-AUG-94	02-AUG-94	02-AUG-94	02-AUG-94	12-SEP-94
Soils (mg/kg)					
Antimony	2.3 J	1,6 J	٦٥	1.7.J	ì
Arsenic	4.5 վ	6.2 J	10.8	6.9 კ	Ļ Si
Barlum	ال 17	18 J	19.2 J	18.1 J	3.4 J
Beryllium	0.65 J	ր 66:0	1.1 J	0.83 J	:
Cadmium	ì	i	i	:	1
Chromium	23.4	28.3	31.8	24.9	4,4
Cobalt	3.1 J	3.2 J	J 6.9	3.6 J	I
Copper	11.9 J	7.4 J	45.7	11.9 J	ï
Paq	22.9 J	14.2 J	21.9 J	22.9 J	t
Mercury	1	0.83	ı	:	1
Nickel	56	1	70.6	7.8 J	ı
Selenlum	i	1	1	1	;
Silver	ı	ı	2.4 J	:	;
Thalfium	1	t	1	1	;
Tin	8.8 J	9.2 J	10.9 J	to J	3.6 J
Vanadium	23 J	29.6 J	37.9 J	26.6 J	3.1 J
Zinc	94.1	42.4	625	57.5	4.9 J
Cyanide	0.12 J	:	:	:	:
See notes at end of table.					

Analytical Batch No.: Rediment Sample Matrix: Sediment Location No.: MPT-49SD-014 Sample No.: 49SD014 Date Samoled: 12-SEP-94	Mayport, Florida			
	R8730	R8730	R8730	R8730
к т	Sediment	Sediment	Sediment	Sediment
ti	MPT-49-SD015	MPT-49-SD016	MPT-49-SD017	MPT-49-SD017
Ü	49SD015	49SD016	49SD017	49SD017DUP
	12-SEP-94	12-SEP-94	12-SEP-94	12-SEP-94
Soile (mg/kg)		ı	ı	;
Antimony	: :	***	ණ භ	4.2 J
Arsenic 0.69 J	L I.I.	7 - F 0	17.1	14.3 J
Barium	3.6 J		- 1	6
L 60:00	0.11.0	0.4 J	0.74 J	0.89.0
	ı	0.33 ქ	ı	•
Cadmium	9	8.6	31.5	33.3
en	,	0.94 J	·	:
Cobalt		į	1	7.76
Copper	ì	66	10.9	10.3
Tead	t	i i	L 70.0	∪ 70.0
Mercury	ï		, 1	73.2
Nickel	i			0.64 J
Selenium	ï	0.10 0.10	9	1
Silver	1	:	· ;	
Thalling	0.21 J	0.32 J	0.31	l
	ı	ŧ	6.8 J	:
	3.9 J	15.5	38.3	40.3
¥nip.	10.1	6.7	15.9	14.7
	!	ı	0.42 J	:
Cyanide U.Z. J				

				H					ļ		
·•· ,	J	Chemicals of	Potential Con	rable 3-10 Chemicals of Potential Concern (CPCs) in Sediment Samples at SWMU 49, 1994	Sediment S	amples a	t SWMU	49, 199	4		
				Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	FA SV Report Station Iorida						
	Frequency	Range of	Range of	Mean of	Background	Long and Others	Others	MacDonald	onald	Analyte CPC	8 2222
Analyte	of Detection	Reporting Limits	Detected Concentrations ²	Detected Concentrations ³	Screening Value	ER-L°	EH-M°	TEL'	PEL®	(Yes/No)	Hoskar
Volatiles (µg/kg)											
Acetone	3/9	20 to 100	230 to 510	327	Q	Ä	¥	ΑĀ	NA V	Yes	
Acetonitrite	1/9	130 to 450	73	7.3	Q	A A	Ā	Ą	A A	Yes	**
2-Butanone	4/9	13 to 26	15 to 64	33	Q	₹	¥	¥	¥ ¥	Yes	
Carbon disulfide	6/9	6 to 7	4 to 58	29.7	51	X A	∢ Z	A A	A A	Yes	
Semivolatiles (µg/kg)											
Butylbenzylphthalate	2/15	420 to 14,000	510 to 593	532	Q	Ą.	A A	Υ ¥	ď	Yes	
bis(2-Ethylhexyl) phthalate	10/15	890 to 14,000	86- 26,000	2,839	231	V	A A	182	2,647	Yes	_
Fluoranthene	3/15	420 to 14,000	49 to 370	184	Q	900	5,100	21.2	144	Yes	
2-Methylnaphthalene	1/15	420 to 14,000	1,300	1,300	Q	0,	029	20.2	201	Yes	
Naphthalene	1/15	420 to 14,000	16,000	16,000	2	160	2,100	86.7	544	Yes	
Pyrene	3/15	420 to 14,000	52 to 320	168	282	999	2,600	153	1,398	Yes	
Pesticides/PCBs (µg/kg)	.										
Chlordane	1/17	8.4 to 1200	730 to 730	730	ջ	Š	¥ X	2.26	4.79	Yes	
4,4'-DDD	3/17	1.6 to 240	1.4 to 38	16.1	4.2	1.58	46.1	1.22	7.81	Yes	
4,4'-DDE	8/17	0.86 to 240	1.2 to 9.1	6.4	S. S.	2.2	27	2.07	3.74	Yes	
Heptachlor	1/17	0.84 to 120	51	51	Q.	AN	A A	₹	¥.	Yes	
See notes at end of table	ble.										

		Che	Table 3-10 (Continued) Chemicals of Potential Concern (CPCs) in Sediment Samples	Table 3-10 (Continued) ntial Concern (CPCs) in	ontinued) CPCs) in Se	diment S	amples				
				Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	FA SV Report Station Iorida						
		, o o o o o	Rande of	Mean of	Background	Long and Others	1 Others	MacDonald	nald	Analyte CPC	Daggon
Analyte	Frequency of Detec- tion	Reporting Limits	Detected Concentrations	Detected Concentrations ³	Screening Value*	ER-L ⁵	EH-M°	TEL?	PEL®	(Yes/No)	neason
Inorganics (mg/kg)								:	:	,	
Antimony	5/15	1.3 to 3.7	1.6 to 12.7	4.1	2	Υ Y	Ϋ́	¥ Z	₹ Ž	S 0	
Greenic	15/15	Z Z	0.20 to 14.4	4.4	5.4	8.2	20	7.24	41.6	ΥθS	
Bosins	14/15	1.7	2.8 to 29	12.2	14.6	A A	Ϋ́	Ϋ́	¥ Z	Yes	
	12/15	0.05 to 0.08	0.08 to 1.1	0.52	0.54	A A	Ϋ́	Υ Y	ğ	Yes	
Berymuns	2/15	0.25 to 2.4	0.33 to 9	4.7	1.14	1.2	9.6	9.676	4.21	Yes	
Cadmidm	14/15	2 to 2	1.9 to 32.4	17.8	15.2	8	370	52.3	160	<u>8</u>	L M, N, P
Carronnain	5. /r. c	0.78 to 1.6	0.8 to 6.90	2.9	4.8	ğ	Y Y	Ą	Ž	Yes	
Cobait	5 /6 5 /4	1 10 28	2.2 to 49.7	17.2	6.8	34	270	18.7	8 0	Yes	
Copper	51/11	2 to 1 at 0	2.2 to 76	18.3	6.5	46.7	218	30.2	112	Yes	
Lead	E1 /21	50 00 00 00	0 07 to 0 83	0.45	0.98	0.15	0.71	0.13	0.696	2	œ
Mercury	c1/2	0.04 10 0.27	900 P 1000	600	÷	50.9	51.6	15.9	42.8	Yes	
Nicket	10/15	1.5 to 6	8.07.03.8.1	1 O 46	Į Į	ž	¥ Z	Š	Ϋ́	운	æ
Selenium	4/15	0.15 to 1	0.16 to 0.60		: 5	1.0	3.7	0.733	1.77	Yes	
Silver	2/15	0.44 to 1.6	1.3 to 2.4		1 24	¥ Z	Ž	¥	Ž	8	8
Thallium	3/15	0.15 to 1	0.21 to 0.32		97.	4	Ą	Ž	ž	8	65
Tin	6/15	2.1 to 10.6	3.6 to 10.9	s.	0.47		2	2	Ą	Yes	
Vanadium	15/15	ĸ	1.5 to 39.3	15.2	8. 8.	¥ Z	2	<u> </u>	į	>	
Zinc	15/15	뜻	2.8 to 625	76.2	25.8	150	410	124	7	<u> </u>	
Cyanide	5/15	0.11 to 0.36	0.27 to 1.2	0.64	Q.	∢ Z	K	⊈	₹ Z	5 BD	
See notes on next bade.	age.										Ì

Chemicals of Potential Concern (CPCs) in Sediment Samples Table 3-10 (Continued)

Groups I and II RFA SV Report U.S. Naval Station

				Mayport, Florida							
	Frequency	Range of	Range of	Mean of	Background	Long and Others	Others	MacDonald	nald	Analyte CPC Beange	Good
malyte	of Detec-	Reporting Limits	Detected Concentrations ²	Detected Concentrations ³	Screening Value	ER-L®	ER-M°	TEL?	PEL	(Ves/No)	0000
	:										1

Value indicated by asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetected values, 1/2 the contract required quantitation Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values).

The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected including values qualified with a "J"; it does not include limit or contract required detection limit (CRDL) is used as a surrogate.

The background screening value is twice the average of detected concentrations for inorganic analytes in background samples. Organic values are one times the those samples where the analyte was not detected ("U," or "UJ" qualitiers) and rejected ("R" qualifier).

mean of detected concentration. Organic values are included for comparison purposes only.

Effects range-median (ER-M) represents the concentration where effects would occasionally occur. Source: "Incidence of Adverse Biological Effects within Ranges of Effects range-low (ER-L) value represents a concentration intended to estimate conditions in which effects would be rarely observed. Source: "Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments" by Long and others, National Oceanic and Atmospheric Administration, 1993.

Threshold Effects Level (TEL) is a concentration at which no or minimal effects have been observed in any test species or biological community. Source: "Approach to Chemical Concentrations in Marine and Estuarine Sediments" by Long and others, National Oceanic and Atmospheric Administration, 1993.

the Assessment of Sediment Quality in Florida Coastal Waters" MacDonald, November 1994.

Probable Effects Level (PEL) is the lower concentration limits at which adverse effects may first be observed. Source: "Approach to the Assessment of Sediment

B = the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations listed below (for inorganic Analytes were excluded from the risk assessment for the following reasons: Quality in Florida Coastal Waters," MacDonald, November 1994.

L = the maximum detected concentration did not exceed the Effects Range-Low (ER-L).

M = the maximum detected concentration did not exceed the Effects Range- Medium (ER-M).

the maximum detected concentration did not exceed the Threshold Effects Level,

the maximum detected concentration did not exceed the Probable Effects Level (PEL)

The average of a sample and its duplicate is used for all table calculations. Notes:

Sample locations include:

Duplicate background sample locations include: Background sample locations include:

ND = not detected in any background samples. ug/kg = micrograms per kitograms.

NA = not avaitable.

PCBs = polychlorinated biphenyls.

DDD = dichlorodiphenyldichloroethane.

DDE = dichlorodiphenyldichloroethene. mg/kg = milligrams per kilograms.

MP-GI&II.RFA ASW.11.95

The ER-L value represents a concentration at the low end of a range of values in which adverse biological effects have been observed. The ER-M represents a concentration approximately midway in a range of values associated with adverse biological effects (Long and others, 1993). The TEL represents the upper limit of the range of sediment contaminant concentrations dominated by No Effects Data (i.e., The Minimal Effects Range). The PEL represents a concentration in the lower range of values that are usually associated with adverse biological effects (MacDonald, 1994).

Because a different set of target analytes was measured in sediment samples collected in 1992 and 1994, the following presents a description of the target analytes that were detected during each sampling event.

Sediment Sampling Event, 1992. Six sediment samples were collected during April 1992, three from the west pond, two from the east pond, and one from the drainage ditch where the west pond discharges. No SVOCs, pesticides, or PCBs were detected in two of the samples (MPT-49-SD01 and MPT-439-SD03) collected from the west pond. Six SVOCs including four polynuclear aromatic hydrocarbons (naphthalene, 2-methylnaphthalene, fluoranthene, and pyrene) and two phthalates (butylbenzylphthalate and bis(2-ethylhexyl)phthalate) were detected in the sediment sample MPT-49-SD02 (Table 3-5). The highest values for these SVOCs were detected at this sample location, which is located near the northeastern shore of the west pond. This sample location is downstream of a stormwater culvert that receives and discharges runoff from the aircraft wash rack area.

One of the sediment samples (MPT-49-SD07) collected from the east pond contained concentrations of fluoranthene and pyrene. Both of the east pond sediment samples contained concentrations of bis(2-ethylhexyl)phthalate.

Sediment sample MPT-49-SD08 collected from the drainage ditch along Patrol Road contained concentrations of fluoranthene and pyrene, but these compounds were not detected in the corresponding duplicate. The duplicate to sediment sample MPT-49-SD08 contained butylbenzylphthalate, which was not detected in the sample.

Pesticides were not detected in the sediment samples collected from the western pond, but were detected in the one sediment sample collected from the east pond and in the sample and corresponding duplicate collected from the drainage ditch (Table 3-6).

Heptachlor, 4,4-dichlorodiphenyldichloroethane (DDD), and Chlordane were detected in sediment sample MPT-49-SD07 collected from the east pond. The sediment sample (MPT-49-SD08) and its duplicate collected from the drainage ditch contained 4,4'-dichlorodiphenyldichloroethene (DDE) and the sample, but not the duplicate, contained concentrations of 4,4'-DDD.

Fourteen metals (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, silver, vanadium, and zinc) and cyanide were detected in various combinations and concentrations in the sediment samples collected from the west and east ponds and drainage ditch (Table 3-7). The highest detected concentrations of the inorganic target analytes were detected in sediment sample MPT-49-SD02 collected at the western pond.

<u>Sediment Sampling Event, 1994</u>. Sediment samples MPT-49-SD12 through MPT-49-SD17 were collected in the vicinity of sediment sample MPT-49-SD02. Target analytes

detected in these sediment samples consisted of 4 VOCs (acetone, carbon disulfide, 2-butanone, and acetonitrile), 1 SVOC (bis(2-ethylhexyl)phthalate), 2 pesticides (4,4'-DDE and 4,4'-DDD) (Table 3-8), and 16 metals (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury, nickel, selenium, thallium, tin, vanadium, and zinc) and cyanide (Table 3-9).

Sediment sample MPT-49-SD09, collected near the entrance to the culvert that leads to the drainage ditch along Patrol Road, contained 3 VOCs (acetone, carbon disulfide, and 2-butanone), no SVOCs, 1 pesticide (4,4'-DDE), and 12 metals (antimony, arsenic, barium, beryllium, chromium, cobalt, copper, lead, nickel, tin, vanadium, and zinc) and cyanide.

Sediment sample MPT-49-SD10, collected in the west part of the western pond, contained 3 VOCs (acetone, carbon disulfide, and 2-butanone), no SVOCs, 1 pesticide (4,4'-DDE), and 12 metals (antimony, arsenic, barium, beryllium, chromium, cobalt, copper, lead, mercury, tin, vanadium, and zinc).

Sediment sample MPT-49-SD11, collected in the west part of the western pond, contained 2 VOCs (carbon disulfide and 2-butanone), no SVOCs, 1 pesticide (4,4'-DDE), and 13 metals (antimony, arsenic, barium, beryllium, chromium, cobalt, copper, lead, nickel, silver, tin, vanadium, and zinc).

3.4 PRELIMINARY RISK EVALUATION.

Surface Water. VOCs, SVOCs, pesticides, and PCBs were not detected in the surface water samples. Concentrations of eight metals (arsenic, barium, beryllium, lead, mercury, nickel, vanadium, and zinc) exceed either background screening values or the bench mark values (Table 3-4). Arsenic was detected only in the four surface water samples collected in August 1994 and exceeded the background screening value $(6.2~\mu \text{g}/\text{L})$ in one of the samples. Each of the four samples contained arsenic at concentrations that exceeded the ambient water quality criteria (AWQC) for protection of human health for consumption of fish.

Barium was detected in each of the six surface water samples and a duplicate, and exceeded the background screening value (22.6 $\mu g/l$) in one of the samples. Currently, there are no benchmark values established for barium.

Beryllium was detected in one of six surface water samples. Beryllium was not detected in the background surface water samples. The detected concentration of beryllium exceeded the AWQC for protection of human health for consumption of fish $(0.0641~\mu g/l)$ and the Class III marine surface water standard $(0.13~\mu g/l)$.

Lead was detected in the two surface water samples and duplicate collected in April 1992 and two of the samples collected in August 1994 and exceeded the background screening value $(2.6~\mu\text{g}/\text{l})$ in each of the samples. The bench mark values for AWQC protection of aquatic life (chronic) $(8.5~\mu\text{g}/\text{l})$ and Class III marine surface water standard $(5.6~\mu\text{g}/\text{l})$ were exceeded by the concentration of lead in the two surface water samples and duplicate collected in April 1992 and two of the surface water samples collected in August 1994.

Mercury was detected as a single occurrence in one of the surface water samples collected in August 1994. Mercury was not detected in the background surface water samples. The detected concentration of mercury exceeded the bench mark value for AWQC protection of aquatic life (chronic) $(0.025~\mu g/l)$.

Nickel was detected in one of the surface water samples collected in April 1992 and two of the surface water samples collected during August 1994, and exceeded the background screening value (26 $\mu g/l$) in one of the surface water samples collected in August 1994. The two surface water samples collected in August 1994 contained nickel at concentrations that exceeded the AWQC protection of aquatic life (acute, 75 $\mu g/l$, and chronic, 8.3 $\mu g/l$) and Class III marine surface water standard (8.3 $\mu g/l$).

Vanadium was detected in each of the six surface water samples and duplicate. Only one of the samples contained vanadium at a concentration that exceeded the background screening value (8 $\mu g/l$). Currently, there are no bench mark values established for vanadium.

Zinc was detected in two of the surface water samples collected in August 1994 and exceeded the background screening value (4 $\mu g/l$) in both of the samples. One of the surface water samples collected in August 1994 contained zinc at a concentration that exceeded the AWQC protection of aquatic life (acute, 95 $\mu g/l$, and chronic, 86 $\mu g/l$) and Class III marine surface water standard (86 $\mu g/l$).

Because SWMU 49 is a stormwater retention pond and has restricted access (chainlink fence), it is not likely to be used for recreational fishing. However, it is common to see birds foraging at SWMU 49.

Sediment. Four VOCs (acetone, acetonitrile, 2-butanone, and carbon disulfide) were detected in sediment samples collected during August and September 1994. Carbon disulfide was detected in the background samples (background screening value, 51 μ g/kg). VOCs are not eliminated as a compound of potential concern because of detection in background sediment samples. Currently, there are no bench mark values available to assess the VOCs (Table 3-10) and they are considered CPCs.

Six SVOCs (naphthalene, 2-methylnaphthalene, fluoranthene, pyrene, butylbenzylphthalate, and bis(2-ethylhexyl)phthalate) were detected in sediment samples collected during April 1992 and only one SVOC (bis(2-ethylhexyl)phthalate) was detected in the sediment samples collected during August and September 1994. Pyrene (background screening value, 282 μ g/kg) and bis(2-ethylhexyl)phthalate (background screening value, 231 μ g/kg) were detected in background sediment samples. SVOCs are not eliminated as CPCs because of detection in background sediment samples.

Currently, no bench mark value is available to assess butybenzylphthalate; therefore, it is considered a CPC. (Bis(2-ethylhexyl)phthalate was detected in 10 of 15 sediment samples and exceeded the TEL (182 $\mu g/kg$) in four samples. Fluoranthene was detected in 3 of 15 sediment samples at concentrations that exceed the TEL (21.2 $\mu g/kg$) and in one sample at a concentration that exceeded the PEL (144 $\mu g/kg$). 2-Methylnaphthalene was detected as a single occurrence (1,300 $\mu g/kg$) and exceeded the ER-L (70 $\mu g/kg$), ER-M (670 $\mu g/kg$), the TEL (20.2 $\mu g/kg$), and PEL (201 $\mu g/kg$). Naphthalene was detected as a single occurrence (16,000 $\mu g/kg$), and exceeded bench mark values for ER-L (160 $\mu g/kg$), ER-M (2,100 $\mu g/kg$), TEL (86.7 $\mu g/kg$) and PEL 544 $\mu g/kg$). Pyrene was detected in 3 of 15 sediment samples and exceeded the TEL (153 $\mu g/kg$) in one sediment sample.

Four pesticide (chlordane, 4,4'-DDD, 4,4'-DDE, and heptachlor) were detected in sediment samples collected during April 1992. Only 4,4'-DDD and 4,4'-DDE were

detected in the sediment samples collected during August and September 1994. Chlordane was detected as a single occurrence (730 μ g/kg) and exceeded the TEL (2.26 μ g/kg) and PEL (4.79 μ g/kg). 4,4'-DDD was detected in 3 of 17 sediment samples at concentrations that exceed the ER-L (1.58 μ g/kg) and TEL (1.22 μ g/kg) and in 2 samples at concentrations that exceed the PEL (7.81 μ g/kg). 4,4'-DDE was detected in 8 of 17 sediment samples and exceeded the ER-L (2.2 μ g/kg) and TEL (2.07 μ g/kg) in six samples and the PEL (3.74 μ g/kg) in three samples. Currently, no bench mark value is available to assess heptachlor; therefore, it is considered a CPC.

Thirteen inorganic analytes (antimony, arsenic, barium, beryllium, cadmium, cobalt, copper, lead, nickel, silver, vanadium, zinc, and cyanide) were detected in the SWMU 49 sediment samples at concentrations that exceed background or bench mark values. Antimony, silver, and cyanide were not detected in background sediment samples, nor are there bench mark values for ER-L, ER-M, TEL, or PEL. In addition, ER-L, ER-M, TEL, nor PEL values have not been established for barium, beryllium, cobalt, selenium, thallium, tin, vanadium, and cyanide.

Eleven of the metals (arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, vanadium, and zinc) exceeded their respective background screening values.

Seven of the inorganic analytes (arsenic, cadmium, copper, lead, nickel, silver, and zinc) detected in the sediment samples exceeded one or more of the bench mark values. Concentrations of arsenic exceeded the TEL (7.24 mg/kg) and ER-L (8.2 mg/kg) in 3 of 15 sediment samples, but were less than the ER-M (70 mg/kg) and the PEL (41.6 mg/kg). The background screening value for arsenic (5.4 mg/kg) was less than the ER-L, ER-M, TEL, and PEL values.

Concentrations of cadmium exceeded the ER-L (1.2 mg/kg), approach the ER-M (9.6 mg/kg), and exceeded the TEL (0.676 mg/kg) and PEL (4.21 μ g/kg) in 1 of 15 sediment samples. Cadmium was detected in only one other sample at concentrations less than the bench mark values. The background screening value for cadmium (1.14 mg/kg) also exceeds the MacDonald TEL.

Concentrations of copper exceeded the TEL (18.7 mg/kg) and the ER-L (34 mg/kg) in 3 of 15 sediment samples, but were less than the ER-M (270 mg/kg), and the PEL (108 mg/kg). The background screening value for copper (6.8 mg/kg) was less than the ER-L, ER-M, TEL, and PEL values.

Concentrations of lead exceeded the TEL (30.2 mg/kg) and the ER-L (46.7 mg/kg) in 1 of 15 sediment samples. Concentrations of lead were less than the ER-M (218 mg/kg) and the PEL (112 mg/kg). The background screening value for lead (9.2 mg/kg) was less than the ER-L, ER-M, TEL, and PEL values.

Concentrations of nickel exceeded the ER-L (20.9~mg/kg), the ER-M (51.6~mg/kg), the TEL (15.9~mg/kg), and the PEL (42.8~mg/kg) values in 3 of 15 sediment samples. The background screening value for nickel (11.6~mg/kg) was less than the bench mark values.

Concentrations of silver exceeded the ER-L (1.0 mg/kg), the TEL (0.733 mg/kg), and PEL (1.77 mg/kg) values in 2 of 15 sediment samples, but was less than the ER-M (3.7 mg/kg). Silver was not detected in the background sediment samples.

One of the 15 sediment samples contained zinc at a concentration (625 mg/kg) that exceeded the ER-L (150 mg/kg), ER-M (410 mg/kg), TEL (124 mg/kg), and PEL (271 mg/kg). The background screening value for zinc (25.8 mg/kg) was less than the Long and others ER-L and ER-M values and the MacDonald TEL and PEL values.

3.5 CONCLUSIONS AND RECOMMENDATIONS.

3.5.1 Conclusions

<u>Surface Water</u>. The western and eastern ponds could be classified as Class III predominantly freshwater bodies, and discharge to a drainage ditch that could be classified as a Class III, predominantly marine water body. Because SWMU 49 discharges to a Class III marine water body, the surface water samples collected from SWMU 49 were compared to Class III marine standards.

SWMU 49 is a stormwater retention pond with restricted access (chain-link fence) and, therefore, is not likely to be used for recreational fishing. However, it is common to see birds foraging at SWMU 49.

During April 1992 two surface water samples were collected, one each from the west and east ponds. No organic compounds (VOCs, SVOCs, pesticides, or PCBs) were detected in the surface water samples. Six inorganic analytes (antimony, barium, chromium, lead, nickel, and vanadium) were detected in surface water samples collected at SWMU 49 (Table 3-2).

During August 1994, four surface water samples were collected from the western pond. No organic compounds (VOCs, SVOCs, pesticides, or PCBs) were detected in the surface water samples. Twelve metals (antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, vanadium, and zinc) and cyanide were detected in surface water samples from SWMU 49 (Table 3-3).

Six of the metals (arsenic, barium, lead, nickel, vanadium, and zinc) exceeded background screening criteria. Beryllium and mercury were not detected in background surface water samples. The highest detected concentrations of arsenic, barium, lead, nickel, and zinc exceeded their respective background screening values (Table 3-4).

Target analytes detected at concentrations that exceeded the AWQC for protection of aquatic life, acute, were mercury, nickel and zinc. Target analytes detected at concentrations that exceeded the AWQC for protection of aquatic life (chronic) were arsenic. The Class III marine surface water standards were exceeded by barium, mercury, nickel, and zinc. Currently, no bench mark values have been established for vanadium.

Based on comparison of the metals detected in the surface water samples with the background screening criteria and the bench mark values, surface water in the SWMU 49 western and eastern ponds may be adversely impacted by discharge of stormwater from the industrial areas served by the stormwater retention ponds.

<u>Sediment</u>. During April 1992, six sediment samples were collected, three from the western pond, two from the eastern pond, and one from the drainage ditch along the south side of Patrol Road. These samples were not analyzed for VOCs. Target analytes consisting of 6 SVOCs (naphthalene, 2-methylnaphthalene, fluoranthene,

pyrene, butylbenzylphthalate, and bis(2-ethylhexyl)phthalate), 4 pesticides (heptachlor, 4,4'-DDE, 4,4'-DDD, and Chlordane), and 14 metals (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, silver, vanadium, and zinc), and cyanide were detected in various combinations and concentrations in the sediment samples collected from the western and eastern ponds and drainage ditch.

During August and September 1994, 11 sediment samples were collected, 9 from the western pond and 2 from the eastern pond. The samples collected from the eastern pond were analyzed only for pesticides. Target analytes consisting of 4 VOCs (acetone, carbon disulfide, 2-butanone, and acetonitrile), 1 SVOC (bis(2-ethylhexyl)phthalate), 2 pesticides (4,4'-DDE and 4,4'-DDD) and 15 metals (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury, nickel, selenium, silver, vanadium, and zinc) and cyanide were detected in various combinations and concentrations in the sediment samples collected from the western and eastern ponds.

Eleven of the metals (arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, vanadium, and zinc) exceeded background screening criteria. Antimony, silver, and cyanide were not detected in background sediment samples. The highest detected concentrations of arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, vanadium, and zinc exceeded their respective background screening values (Table 3-4). None of the organic compounds detected in sediment samples was eliminated as being of concern because of being detected in background sediment samples.

Currently, no bench mark values are available to assess the VOCs acetone, acetonitrile, 2-butanone, and carbon disulfide, the SVOC butylbenzylphthalate, and the pesticide heptachlor detected in the sediment samples; therefore, these organic compounds are considered CPCs. Bis(2-ethylhexyl)phthalate and pyrene were detected at concentrations that exceed the TEL. Fluoranthene was detected at concentrations the exceed the TEL and PEL. 2-Methylnaphthalene and naphthalene were detected at concentrations that exceed the ER-L, ER-M, TEL and PEL. The pesticides chlordane, 4,4'-DDD, and 4,4'-DDE were detected at concentrations that exceed the TEL and PEL. The inorganics arsenic, cadmium, copper, lead, mercury, nickel, silver, and zinc exceeded ER-L and TEL screening values and concentrations of cadmium, mercury, nickel, silver and zinc exceeded ER-M and PEL screening values.

Comparison of organic compounds and metals detected in the sediment samples to the background screening and bench mark values suggests that sediment in the SWMU 49 western and eastern ponds may be adversely impacted by discharge of stormwater runoff from the industrial areas served by the stormwater retention ponds. This is based on the detection of multiple organic and inorganic target analytes at concentrations where adverse biological effects are beginning to be observed (i.e., at concentrations greater than the ER-M and PEL).

Potential sources of contamination to surface water and sediment in the SWMU 49 stormwater ponds appear to be discharge of storm sewers from the industrial area and associated aircraft parking and taxiways and vehicle parking areas.

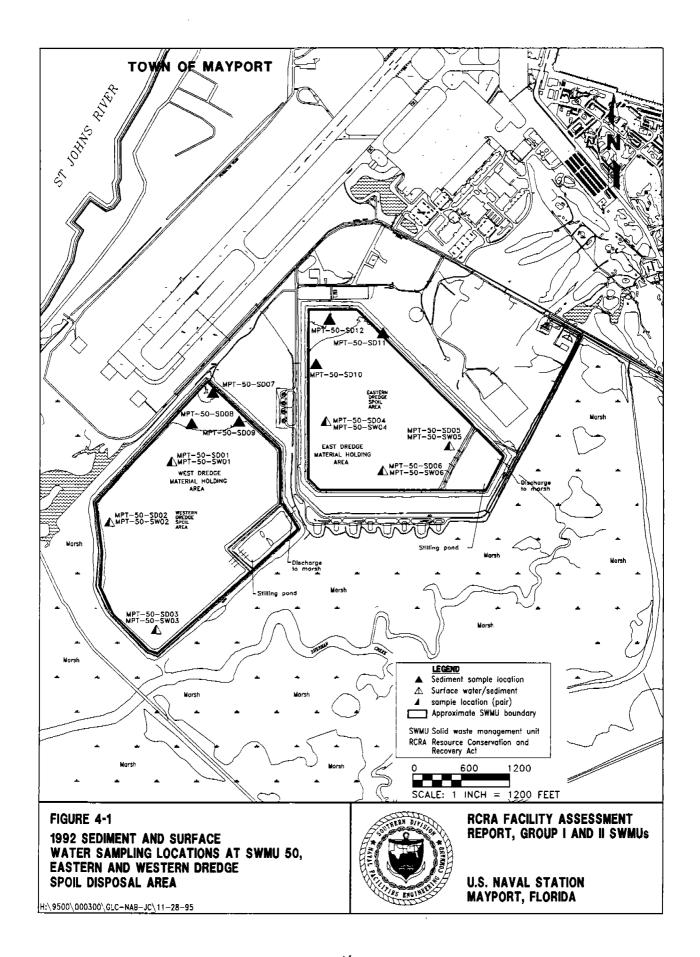
<u>3.5.2 Recommendations</u> An RFI focused toward ecological risk assessment or interim measures to remove the sediment in the basins is recommended for SWMU 49. The focused RFI should include ecological diversity measurements and aquatic and

sediment toxicity testing to assess whether to place SWMU 49 on the no further action list, establish a monitoring program to assess whether continued discharge from the industrial area is adversely affecting the ecology of the two ponds or conduct a corrective measures study based on the following rationale.

- SWMU 49 is a stormwater retention pond with restricted access to the
 western pond (chain-link fence) and is not likely to be used for
 recreational fishing. However, it is common to see birds foraging at SWMU
 49.
- VOCs, SVOCs, pesticides, and PCBs were not detected in the surface water samples.
- Eight of the metals (arsenic, barium, beryllium, lead, mercury, nickel, vanadium, and zinc) exceeded background screening criteria for surface water.
- Concentrations of six metals (arsenic, beryllium, lead, mercury, nickel, and zinc) exceeded the surface water bench mark values.
- VOCs (acetone, acetonitrile, 2-butanone, and carbon disulfide), SVOC (butylbenzylphthalate), and pesticide (heptachlor) were detected in the sediment samples, and currently there are no bench mark values to assess these compounds.
- Bis(2-ethyl(hexyl)phthalate was detected at concentrations that exceed the TEL and fluoranthene was detected at concentrations that exceed the TEL and PEL.
- 2-Methylnaphthalene and naphthalene exceeded bench mark values for ER-L and ER-M, TEL, and PEL.
- Chlordane, 4,4'-DDD and 4,4'-DDE exceeded the TEL and PEL bench mark values.
- Eleven of the metals (arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, vanadium, and zinc) exceeded background screening criteria for sediment.
- Eight metals (arsenic, cadmium, copper, lead, mercury, nickel, silver, and zinc) detected in the sediment samples exceeded bench mark values.
- Concentrations of organic and inorganic target analytes exceeded bench mark values where adverse biological effects are beginning to be observed.
- Potential sources of contamination to surface water and sediment in the SWMU 49 stormwater ponds appear to be from discharge of storm sewers from the industrial area and associated aircraft parking and taxiways and vehicle parking areas.

4.0 SWMU 50, DREDGE SPOIL DISPOSAL AREAS

4.1 SITE DESCRIPTION AND BACKGROUND. SWMU 50 consists of two holding areas located in the southwest part of NAVSTA Mayport (Figure 1-3) that are used to contain materials dredged from the Mayport Turning Basin. The eastern holding area is roughly triangular and covers an area of approximately 1/4 square mile. The western holding area is roughly rectangular and covers an area of approximately 1/3 square mile. Both holding areas were constructed in marshy lowlands and are encircled with earthen dikes approximately 25 feet above the surrounding land surface. The top of the dikes are approximately 15 feet wide.


Surface water in the western and eastern dredge material holding areas is an ephemeral feature that is present during dredging activities and varies depending on the frequency and amount of rainfall. Because the dredge material holding areas do not maintain water for a sufficient duration, use of this area for recreational harvesting of aquatic species is not viable. The dredge material holding areas are viable foraging areas for birds. Least terms utilize dry sand and gravel parts of the holding areas for nesting.

Surface water in the dredge material holding areas is discharged to adjacent marsh areas. Prior to discharge the water flows through a stilling pond, which reduces the introduction of sediment to the marsh (Figure 4-1). The marsh area is a Class III marine environment.

Material dredged from the Mayport Turning Basin is periodically (every 2 to 3 years) placed in the holding areas. The placement of dredge material in the eastern holding area occurred from approximately the early 1940's and was discontinued temporarily from 1987 until 1994. The western basin has been active from 1973 to 1994. Both holding areas have reached their maximum capacity. Future dredging activities may involve offshore disposal of dredged materials unless some of the materials in the holding areas is removed. The Navy plans to remove the dredge material to provide capacity for future maintenance dredging of Mayport Turning Basin. A copy of the correspondence is provided in Appendix E.

The RFA identified the holding areas as an SWMU based on analyses of past sediment samples from the Mayport Turning Basin that suggested sediment placed in the holding areas could contain metals and organic compounds (e.g., oil and grease). Sediment samples were collected from the Mayport Turning Basin in 1971 during preparation for dredging activities scheduled in 1972. The analytical results indicated that heavy metals in the sediment exceeded USEPA standards. The sediment was reportedly dredged and placed at an offshore location (A.T. Kearney, 1989).

A 1978 study of sediment samples collected from the Mayport Turning Basin suggests that concentrations of mercury, zinc, iron, chromium, and vanadium were at higher concentrations in the sediment than concentrations of cadmium, lead, nickel, copper, beryllium, selenium, and arsenic. The study also compared the 1978 results to data from 1971, 1974, and 1976 and noted that compared to earlier analytical results, the concentrations of arsenic, cadmium, chromium, iron, lead, mercury, nickel, and oil and grease showed a decrease and concentration of zinc and COD showed a slight increase (A.T. Kearney, 1989).

A study conducted in 1983 and 1984 included sampling of both the St. Johns River and the Mayport Turning Basin. The study indicates that oil and grease, copper, iron, lead, nickel, and zinc were present in Mayport Turning Basin sediment. The study also suggests that the Mayport Turning Basin sediment contained higher concentrations of the inorganics than the samples collected from the St. Johns River (A.T. Kearney, 1989).

Prior to dredging activities in 1993, two sediment samples were collected from the Mayport Turning Basin (see Figure 1 in Appendix F). The samples were analyzed for toxicity characteristics by the toxicity characteristic leaching procedure (TCLP) and for VOCs, SVOCs, chlorinated pesticides, PCBs, cyanide, and metals listed in the Appendix IX groundwater monitoring list (40 CFR 264) by SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (USEPA, 1986). The extracts from the sediment samples did not contain any of the target analytes at concentrations that would exceed criteria used to characterize waste as hazardous (see Tables 1 through 4 in Appendix F).

The results of the analyses indicate the presence of the following in sediment samples: 4 VOCs (acetone, 2-chloroethylvinylether, isobutyl alcohol, and methylene chloride), 17 SVOCs (acenaphthene, anthracene, benzo(a)pyrene, benzo(g,h,i)perylene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, phenanthrene, pyrene, bis(2-ethylhexyl)phthalate, di-n-butylphthalate, and 1,4-dichlorobenzene), 2 pesticides (beta-BHC and 4,4"-dichlorodiphenyl-dichlorotrichloroethane [DDT]), and 17 inorganics (arsenic, aluminum, barium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, sodium, vanadium, and zinc) (see Tables 5 through 7 in Appendix F).

Maintenance dredging of Mayport Turning Basin was conducted from December 1993 to August 1994 and dredged material was placed into the western and eastern holding areas (SWMU 50). The dredging was performed by the U.S. Army Corps of Engineers in accordance with permit number 199004179 (IR-RP) issued on September 25, 1991, under the authority of Section 10 of the Rivers and Harbors Act, 33 U.S. Code (USC) 403. Because of this recent dredging event, the western and eastern holding areas (SWMU 50) were not accessible for sampling in 1994.

The RFA suggested that sediment samples should be collected at the eastern and western dredge material holding areas at various depths and locations and that the samples be analyzed for SVOCs and metals. The RFA also suggested that groundwater, surface water, and sediment samples be collected from areas adjacent to SWMU 50 (A.T. Kearney, 1989).

4.2 RFA SV FIELD INVESTIGATIONS. In April 1992, surface water and sediment (dredge material) sampling was conducted to assess the possible presence of hazardous constituents at SWMU 50. The objective of the data gathering activities at SWMU 50 was to collect surface water and sediment from various depths within the eastern and western dredge material holding areas. The purpose of the sampling event was to confirm whether contaminants are present at SWMU 50.

Because the sampling event was only to confirm whether contamination was present and the areal extent of the dredge material holding areas, sample locations were widely distributed to collect sediment samples representing various depths within

the eastern and western areas. The samples from each dredge material holding area consisted of three paired surface water and sediment (saturated sediment) samples and three sediment samples from dry parts (unsaturated sediment samples) of the holding areas.

Because many field activities are common to all NAVSTA Mayport SWMUs, the sampling procedures for RFI and RFA SV (confirmatory sampling) events are described in Section 2.1, Summary of Exploration and Sampling Program, of the NAVSTA Mayport GIR (ABB-ES, 1995b). Site-specific elements and deviations from sampling procedures, if any, particular to SWMU 50 are discussed in subsequent paragraphs, and standard operating procedures are referenced where necessary. Surface water and sediment sampling procedures and associated equipment decontamination procedures were conducted in general conformance with USEPA Region IV standard operating procedures (USEPA, 1991a).

<u>Surface Water and Sediment Sample Collection Procedure</u>. Surface water and sediment sampling was accomplished as described in the NAVSTA Mayport RFI workplan (ABB-ES, 1991) and Subsection 2.1.3, Surface Water, Sediment, and Sludge Sampling, located in the GIR.

Laboratory Analysis. Surface water and sediment samples were analyzed for the same target analytes including SVOCs, pesticides, PCBs, metals, and cyanide selected from the groundwater monitoring list contained in Appendix IX, 40 CFR 264, and USEPA Contract Laboratory Program target compound list and target analyte list. VOCs were not analyzed. Analysis of surface water and sediment samples was by methods contained in Test Methods for Evaluating Solid Waste Chemical/Physical Methods (SW 846) (USEPA, 1986). A list of the target analytes is provided in Appendix A. Analytical results for each sample from the 1992 sampling event were presented in the RFA SV Report, Phase 1 (ABB-ES, 1992c), and the results of the 1994 sampling event are provided in Appendix B.

- 4.3 FINDINGS. The following presents the results of analysis of surface water and sediment samples collected within the eastern and western dredge material holding areas (SWMU 50).
- 4.3.1 SWMU 50 Surface Water and Sediment Samples. No water quality parameter measurements were performed for the surface water samples. Table 4-1 summarizes the validated analytical results for inorganic target analytes detected in surface water samples collected during 1992 at SWMU 50. A summary of frequencies of detection, range of detection limits, range of detected concentrations, arithmetic mean, and bench mark comparison values are provided in Table 4-2. The target analytes detected in the environmental samples were compared to background surface water samples collected from Mayport Turning Basin and the St. Johns River (ABB-ES, 1995b), and bench mark values for ambient water quality (USEPA, 1991b) and Class III marine water quality standards (Chapter 62-302, FAC 1995).

Three surface water samples were collected at each of the dredge material holding areas (Figure 4-1). SVOCs, pesticides, and PCBs were not detected in the surface water samples. Twelve inorganic analytes were detected including antimony, arsenic, barium, cadmium, chromium, cobalt, lead, nickel, tin, vanadium, zinc, and cyanide (Table 4-1). Cobalt, lead, and cyanide were detected only in the surface water samples collected from the western holding area, and antimony and zinc were detected only in the surface water samples collected from the eastern holding area.

			Inorg	janic A	nalytes l	Detecte	Table 4-1 Inorganic Analytes Detected in Surface Water Samples at SWMU 50	4-1 face Wa	ter Sam	ples at	SWMU	20				
						Group	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	RA SV Re Station Florida	pod							
Analyte Batch No.	ON -		21528	38	21528	38	21528	- S8	21528	28	21541	<u></u>	21528	88	21528	60
Comple Matrix:	<u>.</u>		Water		Water		Water		Water		Water		Water	ă	Water	<u></u>
Sample Incurs:	tion:		MPT-50-SW01	SW01	MPT-50-SW02	SW02	MPT-50-SW03	SW03	MPT-50-SW03	SW03	MPT-50-SW04	SW04	MPT-50-SW05	SW05	MPT-50-SW06	Swoe
oly alone o			MPT-50-SW-	SW-11	MPT-50-SW-21	SW-21	MPT-50-SW-31	SW-31	MPT-50-SW-31D	3W-31D	MPT-50-SW-41	SW-41	MPT-50-SW-51	SW-51	MPT-50-SW-61	SW-61
Campie 10:	1		CD/ CC/ VU	20/1	04/22/92	76/	04/22/92	7,92	04/22/92	76/	04/23/92	/92	04/23/92	/92	04/23/92	/92
Cas RN	Common	Units	Conc.	Oual.	Conc.	Oual.	Conc.	Qual	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.
	Name	•/ •/					,		,		:		14.2	7	21.3	l f
7440-36-0	Antimony	• / 6r	27.4		9 00	_	47.8	ت	35.9	-7	35.8		909	~	33.8	7
7440-38-2	Arsenic	, /Sd	17.5	, -	12.0	, ¬	0.6		8.8		27.9	7	33.8	٦,	27.4	7
7440-39-3	Darium	, ,	<u>}</u> '	,	:		;		ო	-,	:		5.3	٦,	ı	
7440-47-3	Chromium	1/Bv/	12.2		3.2	ר	ł		:		ì		6.6	J	1	
7440-48-4	Cobalt	7/6vi	4	۰	:		ı		1		1		1		1	
7440-92-1	Lead	1/6/	22.1	7	13.9	٦	41.2	7	17.3	7	ı				1	,
7440-02-0	Nickel	1/8/1	14.1 1.4	7	ī		ı		8.7	7	12.		31.6	¬	8.7	-
7440-31-5	Tin	1/B/	28.7	7	28.4	-	1		ı		:		:		33.5	. د
7440-62-2	Vanadium	1/B/	25.7	7	5		11.4	7	11.4	7	11.2	י	21.5	<u>ب</u>	16.4	ت
7440-66-6	Zinc	1/8/	ı		;		;		:		1		3 5		:	
5955-70-0	Cyanide	1/6/	_		2.4	7	;		6.	٠,	;		;		:	

Suffix "D" on Sample No. Indicates a duplicate sample to the corresponding environmental sample. Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C. Notes:

Conc. = concentration.

Qual. = qualifier. $\mu g/t = \text{micrograms per liter.}$ - = analyte not detected.

"J" = estimated value.

	S	hemicals of l	Potential Cor	Table 4-2 Chemicals of Potential Concern Detected in Surlace Water at SWMU 50, April 1992	Table 4-2 cted in Surfac	e Water	at SWMU 50,	April 1992	O.		
				Groups 1 and II RFA SV Report U.S. Naval Station Mayport, Florida	s tand II RFA SV Rep U.S. Naval Station Mayport, Florida	oort					
			***		Background Screening Value*	ound Value	Ambient Water Quality Criteria ⁵	Vater teria ⁵	Class III	Analyte	
Analyte	Frequency of Detection	Range of Reporting Limits	Detected Concentrations (*)²	Mean of Detected Concentrations ³	Mayport Turning Basin	St. Johns River	For Protection of Aquatic Life: Acute/Chronic	For Protection of Human Health	Surface Water Standards	CPC? (Yes/No)	Reason7
Volatiles (µg/f)											
No analytes detected							•	,			
Semivolatiles (µg/f)											
No analytes detected											
Pesticides/PCBs (µg/f)	€										
No analytes detected											
Inorganics (mg/f)						•	9	900	7 300	Ş	Z Z
Antimony	5/6	10.9 to 10.9	14.2 to 21.4	17.8	2	2	1,500/500	45,000	35°,4	2 5	
Arsenic	9/9	E N	27.4 to 50.6	36.5	2	2	.69/36	0.0175	2 :	2 S	-
Barium	9/9	NR RN	8.9 to 33.8	21.3	12.2	15.2	NA/NA	≨ :	₹ (20 - 1 10 - 1	٥
Cadmium	2/6	2.9 to 2.9	2.2 to 5.3	3.8	11.6	12.2	43/9.3	¥ Ž	50 E	2 4	2
Chromium	3/6	2.1 to 2.1	3.2 to 12.2	7.3	2	2	1,100/50	3,433,000	G :	2 5	ē Č
Cobalt	1/6	3.6 to 3.6	4 to 4	4	2	2	NA/NA	ž :	e e	\$₽	
Lead	3/6	1.4 to 13	13.9 to 29.3	21.8	2	9	220/8.5	¥ Z	20.0	SØL ;	
Nicket	2/6	3.8	5.3 to 31.6	14.4	오	2	75/8.3	5	හ. තේ	Se .	
i i	3/6	26.4 to 26.4	28.4 to 33.5	30.2	17	19.8	NA/NA	NA A	¥.	√8	
Vanadium	9/9	χ Ε	11.2 to 25.7	16.9	Q	3.6	NA/NA	Y Y	₹	Xes	
Zinc	1/6	4.8 to 44.3	94 to 94	94	4.2	99 99	92/86	Ϋ́	98	Se :	ſ
Cyanide	2/6	1.8 to 1.8	1.4 to 2.4	1.9	0.96	2	1/NA	¥	-	٤	
See notes on next page	age.										

Chemicals or Potential Concern Detected in Surface Water Samples at SWMU 50, April 1992 Table 4-2 (Continued)

Groups I and II RFA SV Report U.S. Navał Station

		Reason7
	Analyte	CPC? (Yes/No)
	Class (III	ੱ <i>ਲ</i> ੈ
	Vater iterla ⁵	For Protection of Human Health
	Ambient Water Quality Criterla ⁵	For Protection of Aquatic Life: Acute/Chronic
	Background Screening Value*	St. Johns River
Mayport, Florida	Backg Screenin	Mayport Turning Basin
Maypor		Mean of Detected
	Range of	٦٨
		Hange of Reporting Limits
	-	Frequency of Detection ¹
		Analyte

Value indicated by asterisk is the average of a sampte and its duplicate. For duplicate samples having one nondetected values, 1/2 the contract required quantitation limit Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values).

The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected including values qualified as "J"; it does not include those (CRQL) and contract required detection limit (CRDL) is used as a surrogate.

The background screening value is twice the average of detected concentrations for inorganic analytes in background samples. Organic values are one times the mean of samples where the analyte was not detected ("U," or "UJ"qualitiers) and rejected ("R" qualitier).

Values are taken from USEPA Water Quality Criteria Summary, Office of Science and Technology, Health and Ecological Criteria Division, Washington, D.C., May 1, 1991. detected concentration. Organic values are included for comparison purposes only.

Values are taken from Surface Water Quality Standards, Chapter 62-302, Florida Administrative Code, amended January 1995. Analytes were included or excluded from the risk assessment for the following reasons: •

= the maximum detected concentration did not exceed the Ambient Water Quality Criteria for the Protection of Marine. Aquatic organisms and the analyte will not be = the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations considered further. 8

H = the maximum detected concentration did not exceed the Ambient Water Quality Criteria for the Protection of Human Health from the Ingestion of fish and the analyte will not be considered further.

M = the maximum detected concentration did not exceed the Marine Surface Water (Class III) Surface Water Quality Standards and the analyte will not be considered

Proposed criteria.

The value is based on trivalent form of arsenic

10 The value is based on the total concentration of arsenic.

"The value is based on chromium hexavalent form.

12 The value is based on chromium trivalent form.

The average of a sample and its duplicate is used for all table calculations. Notes:

Sample locations include: 50SW11; 50SW21; 50SW31; 50SW41; 50SW51; 50SW61 Duplicate sample locations include: 50SW31DUP

St. Johns River - MPT-B-SW113; MPT-B-SW14; MPT-B-SW15 Background sample locations include: Turning Basin - MPT-B-SW10; MPT-B-SW11; MPT-B-SW12

NR = not reported; analyte detected in each sample; Duplicate background sample locations include: Turning Basin - MPT-B-SW12DUP CPC = chemicals of potential concern.

reporting limits are same as range of detected concentrations. ND = not detected in any background samples.

not available. ₹ $\mu g/t = \text{micrograms per kilograms.}$ PCBs = polychlorinated biphenyls. milligrams per kilograms.

7/gm

<u>Sediment Samples</u>. Tables 4-3 and 4-4 summarize the validated analytical results for SVOCs and inorganic target analytes detected in sediment samples (saturated) paired with surface water samples collected during 1992 at SWMU 50. Tables 4-5 and 4-6 summarize the validated analytical results for SVOCs and inorganic target analytes detected in sediment samples (unsaturated) collected during 1992 at SWMU 50. Table 4-7 summarizes the validated analytical results for SVOCs, pesticides, and inorganic target analytes detected in sediment samples collected at SWMU 50.

A summary of frequencies of detection, range of detection limits, range of detected concentrations, arithmetic mean, and bench mark comparison values are provided in Table 4-7. The target analytes detected in the environmental samples were compared to background sediment samples collected from Mayport Turning Basin and the St. Johns River (ABB-ES, 1995b), and bench mark values from The Potential for Biological Effects of Sediment-sorbed Contaminants Tested in the National Status and Trends Program, NOAA (Long and others, 1993), and Approach to the Assessment of Sediment Quality in Florida Coastal Waters (MacDonald, 1994). Values are also shown in Table 4-7 for cleanup goals for Military Sites in Florida (FDEP, 1995); however, these values do not represent potential adverse effects to ecological receptors and were not used to determine whether the analyte was a CPC.

Target analytes detected in the sediment samples that were paired with the surface water samples consist of 8 SVOCs (bis(2-ethylhexyl)phthalate, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)-fluoranthene, and benzo(a)pyrene) (Table 4-3) and 14 inorganics (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, vanadium, zinc, and cyanide). Pesticides and PCBs were not detected in these sediment samples (Table 4-4).

Target analytes detected in the sediment samples from dry sections of the western and eastern dredge material holding areas consist of 10 SVOCs (fluoranthene, pyrene, butylbenzylphthalate, benzo(a)anthracene, chrysene, bis(2-ethylhexyl)phthalate, di-n-octylphthalate, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene) (Table 4-5) and 15 inorganics (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, silver, vanadium, zinc, and cyanide) (Table 4-6).

4.4 PRELIMINARY RISK EVALUATION. The following presents a preliminary risk evaluation of surface water and sediment samples collected at SWMU 50.

Surface Water. SVOCs, pesticides, and PCBs were not detected in the surface water samples. Chemicals of potential concern consist of eight inorganic analytes (arsenic, barium, cobalt, lead, nickel, tin, vanadium, and zinc) detected in the surface water samples at concentrations exceeding either background screening values (surface water samples collected from Mayport Turning Basin and the St. Johns River) or bench mark values.

Arsenic was detected in each of the surface water samples and duplicate, but was not detected in the background surface water samples. Arsenic was detected in three surface water samples at concentrations that exceed the AWQC chronic criteria (36 $\mu g/\ell$) for protection of aquatic life and the Class III marine

District	Mayport, Florida 21541 2			Org	Organic Ans	alytes	Table 4-3 salytes Detected in Sediment Samples (Saturated) at SWMU 50 Groups Land II RFA SV Report	d in Sec	Table 4-3 ed in Sediment Samples	3 Sample SV Repo	s (Satui	rated) &	ıt SWM	U 50				
Sediment	Sediment Sediment			:				U.S.	Naval Sta yport, Flor	ation 'ida								ļ
Sediment	Sediment Sediment	Analyte Ba	tch No.:		215	-	215	#	215		2154	=	215	=	215	=	216	.
MPT-50-SD01 MPT-50-SD02 MPT-50-SD02 MPT-50-SD03 MPT-50-SD03 MPT-50-SD04 MPT-50-SD05 MPT-50-SD05 MPT-50-SD04 MPT-50-SD05 MPT-50-SD05 MPT-50-SD05 MPT-50-SD05 MPT-50-SD04 MPT-50-SD05	MPT-50-SD01 MPT-50-SD02 MPT-50-SD02 MPT-50-SD03 MPT-50-SD04	Sample Ma	atrix:		Sedir	ient	Sedin	nent	Sedin	ent	Sedim	ent	Sedin	ent	Sedin	ent _	Sedi	nent
Non-Nexue LEftythexyth Leftythexyth <td> MPT-50-SD-01 MPT-50-SD-02 MPT-50-SD-02 MPT-50-SD-03 MPT-50-SD-04 MPT-</td> <td>Sample Lo</td> <td>cation:</td> <td></td> <td>MPT-50</td> <td>SDOT</td> <td>MPT-50</td> <td>SD02</td> <td>MPT-50</td> <td>SD02</td> <td>MPT-50-</td> <td>SD03</td> <td>MPT-50</td> <td>-SD04</td> <td>MPT-50</td> <td>SDOS</td> <td>MPT-5</td> <td>9.SD08</td>	MPT-50-SD-01 MPT-50-SD-02 MPT-50-SD-02 MPT-50-SD-03 MPT-50-SD-04 MPT-	Sample Lo	cation:		MPT-50	SDOT	MPT-50	SD02	MPT-50	SD02	MPT-50-	SD03	MPT-50	-SD04	MPT-50	SDOS	MPT-5	9.SD08
d: Corrrrow Name Unite Cone. Qual. Cone.	d: Od.123/92 Od.12	Samote No	::		MPT-50-	SD-01	MPT-50-	SD-02	MPT-50-8	3D-02D	MPT-50-	SD-03	MPT-50-	SD-04	MPT-50-	SD-05	MPT-5(-SD-08
mmon Name Unite Conc. Qual.	Qual. Conc. Conc. <th< td=""><td>Date Samo</td><td>oled:</td><td></td><td>04/23</td><td>/92</td><td>04/23</td><td>76/</td><td>04/23</td><td>/92</td><td>04/23</td><td>76/</td><td>04/23</td><td>/92</td><td>04/23</td><td>/92</td><td>04/2</td><td>3/92</td></th<>	Date Samo	oled:		04/23	/92	04/23	76/	04/23	/92	04/23	76/	04/23	/92	04/23	/92	04/2	3/92
bis(2-Ethythexyl) µg/kg 250 J 89 J 250 J phthalate phthalate µg/kg 200 J 530 J 120 J 250 J Fluoranthene µg/kg 400 J 160 J 260 J Benzo[k]fluoranthene µg/kg	J 530 J 89 J J 400 J 160 J 400 J 160 J 85 J	CAS RN	Common Neme	Unite	Cane.	Qual.	Cone.	Quel.	Сопс	Quel	Сопс.	Qual.	Conc.	Quel.	Cono.	Qual.	Corro.	Ouel.
Fluoranthene µg/kg 200 J 530 J 120 J 120 J Pyrene µg/kg 400 J 160 J 260 J Benzo[a]anthracene µg/kg 190 J Benzo[b]fluoranthene µg/kg <t< td=""><td>J 530 J 120 J 400 J 160 J</td><td>117-81-7</td><td>bis{2-Ethythexyl}</td><td>6¥/6π</td><td>:</td><td></td><td>250</td><td>7</td><td>;</td><td></td><td>ı</td><td>_</td><td> 68</td><td>7</td><td>250</td><td>r</td><td>8</td><td>7</td></t<>	J 530 J 120 J 400 J 160 J	117-81-7	bis{2-Ethythexyl}	6¥/6π	:		250	7	;		ı	_	 68	7	250	r	8	7
Pyrene µg/kg 400 J 160 J 260 J Benzo[a]anthracene µg/kg 190 J Chrysene µg/kg 180 J Benzo[b]fluoranthene µg/kg	160 J	206-44-0	Fluoranthene	µ9/kg	200	7	ı		530	<u>ئ</u>	;		120	7	120		1	
Benzo[a]anthracene µg/kg 190 J Chrysene µg/kg 85 J 230 J Benzo[b]fluoranthene µg/kg 140 J Benzo[a]pyrene µg/kg	85 J	129-00-0	Pyrene	, µ9/kg	200	7	;	•	8	۵.	1		991	7	260	~	t	
Chrysene µg/kg 85 J 230 J 13 13 Benzo[b]fluoranthene µg/kg 140 J Benzo[a]pyrene µg/kg 150 J	85	56-55-3	Benzo[a]anthracene	µg/kg	;		;		1		ı		i		190	7	4	ټ
Benzo[b]fluoranthene \(\theta g/kg \) - - 180 J Benzo[k]fluoranthene \(\theta g/kg \) - - 140 J Benzo[a]pyrene \(\theta g/kg \) - - 150 J		218-01-9	Chrysene	µg/kg	ı		;		1		:		8	7	230	7	130	7
Benzo[k]fluoranthene µg/kg 140 J Benzo[a]pyrene µg/kg 150 J	Environmental Support Activity (NEESA) Level C.	205-99-2	Benzo[b]fluoranthene	1/6/kg	:		1		ī	•	;		ı		180	7	:	
Benzolalpyrene 150 J	Environmental Support Activity (NESA) Level C.	207-08-9	Benzo[k]fluoranthene	<i>µ</i> 9/kg	;		ı		ı		1		1		140	7	;	
		50-32-8	Benzolalpyrene	µg/kg	;		ı		1		:		ļ		150	7	,	

Conc, = concentration.

Qual, = qualifier.

µg/kg = milligrams per kilogram.
-- = analyte not detected.
"J" = estirnated value.

			Inorgar	nic Ana	lytes De	tected	Tabl	Table 4-4 Inorganic Analytes Detected in Sediment Samples (Saturated) at SWMU 50	nples (S	aturated) at SWI	MU 50				
		·				Grou	ups Land II U.S. Nav Mavport	Groups I and II RFA SV Report U.S. Naval Station Mavport, Florida	eport							
					21541	=	21541	41	21541	1	21541	_	21541	_	21541	=
Analyte Batch No.:	л No.:		21341		Codiment		Sediment		Sediment	nent	Sediment	ent	Sediment	ent ent	Sediment	ent
Sample Matrix:	<u>.</u> ≌ :		Sediment		MPT-50-SD02	SD02	MPT-50-SD02	-SD02	MPT-50-SD03	-SD03	MPT-50-SD04	SD04	MPT-50-SD05	SDOS	MPT-50-SD06	.SD06
Sample Location	ation		100 00 1 1W1		MOT 50 SD.02	Sp. Co.	MPT-50-SD-02D	SD-02D	MPT-50-SD-03	-SD-03	MPT-50-SD-04	SD-04	MPT-50-SD-05	SD-05	MPT-50-SD-06	90-QS
Sample No.:	ţ		04/23/92	1/95	04/23/92	3/92	04/23/92	3/92	04/23/92	3/92	04/23/92	76/	04/23/92	/92	04/23/92	1/92
Case Sampled	10	Units	Conc.	Oual	Conc.	Qual	Conc.	Qual.	Conc.	Oual	Cone.	Qual.	Conc.	Qual.	Conc.	Qual.
X	Name								,		1		1	•	ŀ	
7440-36-0	Antimony	mg/kg	6.4	- -	1				0.74	_	16.4		15		12.8	
7440-38-2	Arsenic	mg/kg	15.6		16.8		<u>0</u>		5 6	, -	8 90	-	28.8	_	28.3	ה
7440-39-3	Barium	mg/kg	23.4	7	21.9	7	24.7	- -	, K	י	0.02	, -		· -	67	7
7440-41-7	Beryllium	mg/kg	1.3	_	1.3	- -	4.	7	;		4.	,	<u>.</u>		!	
7440-43-9	Cadmium	mg/kg	1.7	٦	i		1		1		: ;		: 4		40.3	
7440-47-3	Chromium	mg/kg	50.8		36.4		47.8		- -	~	6.2.5	-		-	4	
7440-48-4	Cobalt	mg/kg	5.9	٦ 	4.6	7	6.4	-	1		, c	י		>	20.4	,
7440-50-8	Copper	mg/kg	18.8		38.2		26.1	<u>.</u>	<u>.</u>	ر -	5.12		- 6		28.1	
7440-92-1	Lead	mg/kg	18.7		25.5		21.6	_	. .		4.16	-	7 6	-	13.3	
7440-02-0	Nickel	mg/kg	16.3	٦	11.8	ר		-	:	_	1.4.	- -	5.0	· -		
7440-49-2	Selenium	mg/kg	12	_	1		1		:	,	0.72	- -	0 0	·	494	
7440-62-2	Vanadium	mg/kg	47.4		38.5		46.4		=	- -	6.0 6.0		5 G		, e	
7440-66-6	Zinc	mg/kg	74.8		78.3		77.8		6.4		79.9		56 		<u></u> _	
5955-70-0	Cyanide	mg/kg	0.52	7			-		1.2	_			:			
Notes: Lal	Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C. Suffix "D" on the Sample No. indicates a duplicate sample to the corresponding environmental sample.	alidated at Sample No	Naval En	ergy and s a duplic	Environm	ental Supl e to the c	port Activity orrespondi	Environmental Support Activity (NEESA) Level C. ate sample to the corresponding environmental s	Level C. mental sa	mple.						
_																

mg/kg = mitligrams per kilogram. "J" = estimated value.

> Conc. = concentration. Qual. = qualifier. - = analyte not detected.

	Table 4-5 Organic Analytes Detected in Sediment Samples (Unsaturated) at SWMU 50	s Detecte	Ta d in Sedin	Table 4-5 liment Sam	ples (Uns	aturated)	at SWML) 50		, <u> </u>
			Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	s I and II RFA SV F U.S. Naval Station Mayport, Florida	Report					
Analyte Batch No.:	No.:		21541	11	21541	41	21541		21541	=
Sample Matrix:	×		Sail	_	Soil	_	Soil	=	Soli	
Sample Location:	tion:		MPT-50-SD07	SD07	MPT-50-SD07	-SD07	MPT-50-SD08	SD08	MPT-50-SD08	- 800s
Sample No.:			MPT506SS01	18801	MPT50BS01	BS01	MPT50SS02	SS02	MPT50BS02	3802
Date Sampled:	÷		04/23/92	/92	04/23/92	76/1	04/23/92	76/	04/23/92	/92
Sample Depth (ft bls)	h (ft bls)		0 to 0.5	0.5	3 to 4	4	0 to 0.5	0.5	3 to 4	4
CAS RN	Соттол Name	Units	Conc.	Qual.	Conc.	Qual.	Conc.	Oual.	Conc.	Qual.
206-44-0	Fluoranthene	64/6#	:		1		:		ı	
129-00-0	Pyrene	₽9/kg	;		į		1		1	
85-68-7	Butylbenzylphthalate	µg/kg	;		1		1		1	
56-55-3	Benzo[a]anthracene	ра/ка	:		1		:		ì	
218-01-9	Chrysene	ng/kg	:		1		I		ı	
117-81-7	bis(2-Ethylhexyl) phthalate	вя/вл	51	7	:		:		1	
117-84-0	Di-n-Octyl phthalate	₩/kg	ı		:		i		;	
205-99-2	Benzo[b]Fluoranthene	ва/вл	ı		ı		:		ı	
207-08-09	Benzo(k)Fluoranthene	r⁄g/kg	1		ı		ŀ		ı	
50-32-8	Benzo[a]Pyrene	µ9/kg	1		1		t		-	
See notes at end of table.	end of table.					i				

	Table 4-5 (Continued) Organic Analytes Detected in Sediment Samples (Unsaturated) at SWMU 50	. Detected	Table 4-	Table 4-5 (Continued) in Sediment Samples	nued) mples (Ur	saturate	ed) at SWN	AU 50		
	1		Groups I and II RFA SV Report U.S. Navat Station Mavport, Florida	s I and II RFA SV F U.S. Navat Station Maybort, Florida	V Report ion 1a			İ		
			215.41		21541		21541		21541	
Analyte Batch No.:	h No.:	•	<u> </u>		3		S.		Soil	
Sample Matrix:	iķi		Soil		E C		5	9		Ş
Sample Location:	ation:	-	MPT-50-SD11	SD11	MPT-50-SD11	SD11	MPT-50-SD12	2012	MP1-50-SU1Z	Z 108
Sample No.:			MPT50SS05	SS05	MPT50BS05	3505	MPT50SS06	906	MPT-50-BS-06	3S-06
Date Sampled:	·		04/23/92	76/	04/23/92	/92	04/23/92	35	04/23/92	92
	14 (18 b) (19 b)		0 to 0.5	0.5	3 to 4	4	0 to 0.5	.5	3 to 4	•
Sample Deptin (it bis).	tn (n Dis);	- diel	3000	<u> </u>	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.
CAS RN	Соттол Мате		3		130	7	,		ì	
206-44-0	Fluoranthene	6y/g/	:		3	•			•	
129-00-0	Pyrene	μg/kg	ì		130	- -	:		,	
85-68-7	Butylbenzylphthalate	<i>µ</i> 9/kg	;		: 		8,530	¬	ì	
56-55-3	Benzo[a]anthracene	µg/kg			100	-	1		:	
218-01-9	Chrysene	µg/kg	1		120	7	1		25	-
117-81-7	bis(2-Ethylhexyl) phthalate	µg/kg	65	¬	760	- -	15,300		1	
117-84-0	Di-n-octyl phthalate	ид/ка	ł		:	_	06	- 7	1	
205-99-2	Benzo[b]fluoranthene	bg/kg	1		9	7	!	_	 94	- -
207-08-09	Benzo[k]fluoranthene	64/6n	1		83		l 	_	!	
50-32-8	Benzo[a]pyrene	µg/kg	;		7	-	,		:	
Notes: Lat	Notes: Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C.	ll Energy and	1 Environm	ental Supp	ort Activity (NEESA) Le	yel C.			
<u>~</u>	SWMU = solid waste management unit. It bls = feet below land surface. Conc. = concentration.	nt unit.								
<u> </u>	upal quaminor. pg/t = micrograms per liter = analyte not detected. *** = antimated white									
	= estillated varies									

	Table 4-6 Inorganic Analytes Detected in the Sediment Samples (Unsaturated) at SWMU 50	Detected	Ta I in the Se	Table 4-6 Sediment S	amples (L	Jnsaturat	ed) at SW	/MU 50		
			Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	s tand II RFA SV F U.S. Naval Station Mayport, Florida	Report					
Analyte Batch No.:	th No.:		21541	=	21541	11	21541	14	21541	#
Sample Matrix:	:::X:::		Soil		Soil	_	Soil	=	Soil	=
Sample Location:	ation:		MPT-50-SD07	SD07	MPT-50-SD07	-SD07	MPT-50-SD08	-SD08	MPT-50-SD08	-SD08
Sample No.:			MPT50SS01	SS01	MPT50BS01	BS01	MPT50SS02	SS02	MPT50BS02	BS02
Date Sampled:	:pe		04/23/92	/92	04/23/92	/92	04/23/92	76/8	04/23/92	/92
Sample Depth (# bls)	oth (# bls)		0 to 0.5	0.5	3 to 4	4	0 to 0.5	0,5	3 to 4	4
CAS BN	Common Name	Units	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual
7440-36-0	Antimony	mg/kg	;		2.8	ſ	:		3.2	~
7440-38-2	Arsenic	mg/kg	0.7	7	0.85	7	0.73	- -	9.0	ה
7440-39-3	Barjum	mg/kg	2	״	2.6	۵,	2.7	ה	2.5	7
7440-41-7	Beryllium	mg/kg	:		ı		ı		1	
7440-43-9	Cadmium	mg/kg	;		1		:		:	
7440-47-3	Chromium	mg/kg	2	ה	1.8	יי	3.3		2.6	¬
7440-48-4	Cobalt	mg/kg	1		1		4.	۵.	1	
7440-50-8	Соррег	mg/kg	4.2	7)	3.1	7	2.4	٦	1 .9	٦
7440-92-1	Lead	тв/ка	0.58	יכ	4.2		1.4		ю —	
7440-02-0	Nickel	mg/kg	89. 9.09	יי	3.1		8	٦	6.	¬
7440-49-2	Selenium	mg/kg	:		ı		:		1	
7440-22-4	Silver	mg/kg	i		1		t		:	,
7440-62-2	Vanadium	mg/kg	96:0	<u>_</u>	0.83	ن	6.	-	2	- -
7440-66-6	Zinc	mg/kg	7.5		1.7		11.7		7.9	
5955-70-0	Cyanide	mg/kg	1		i		:		;	
Cee notes	See notes at end of table.									
22/21/20										

	Table 4-6 (Continued) Inorganic Analytes Detected in Sediment Samples (Unsaturated) at SWMU 50	tes Detect	Table 4 ed in Sed	Table 4-6 (Continued) I in Sediment Sample	nued) mples (U	Insaturat	ed) at SWI	MU 50		
			Groups Ian U.S. May	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	V Report on a					
Analyte Batch No.	No.		21541	11	21541	11	21541		21541	_
Samole Matrix:	: X		Soil	_	Soil		Soil		Soff	<u>-</u>
Sample Location:	ation:		MPT-50-SD09	SD09	MPT-50-SD09	SD09	MPT-50-SD10	0100	MPT-50-SD10	SD10
Samole No.			MPT50SS03	SS03	MPT50BS03	BS03	MPT50SS04	S04	MPT50BS04	S04
Date Sampled			04/23/92	7)95	04/23/92	76/1	04/23/92	92	04/23/92	92
Samole Depth (ft bls)	oth (ft bls)		0 to 0.5	0.5	3 to 4	4	0 to 0.5	55	3 to 4	4
CAS RN	Common Name	Units	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.
7440-36-0	Antimony	mg/kg	;		i		i		;	
7440-38-2	Arsenic	mg/kg	1.5	っ	2.5		5.7		6.7	
7440-39-3	Barium	mg/kg	2:5	ث.	.e.	r	16.9	٦.	12.4	¬
7440-41-7	Beryllium	mg/kg	;		1		0.82	7	0.59	<u> </u>
7440-43-9	Cadmium	mg/kg	1		1		1		4.6	
7440-47-3	Chromium	mg/kg	8		6.3		25.4		18.6	
7440-48-4	Cobalt	mg/kg	ı		1		3.7	7	2.5	-
7440-50-8	Copper	mg/kg	4.7	~	2.5	7	9.7		1.1	
7440-92-1	Lead	mg/kg	1.7		2.7		13.4		13.5	
7440-02-0	Nickel	mg/kg	26.1	~	3.3	7	5.8 8.	¬	7.1	
7440-49-2	Selenium	mg/kg	;		1		;		!	
7440-22-4	Silver	mg/kg	:		¦ 		:		t	
7440-62-2	Vanadium	mg/kg	1.4	7	4.5	-	28.8		18.1	
7440-66-6	Zinc	mg/kg	11.3		6 0		43.1		44.2	
5955-70-0	Cyanide	mg/kg	;		<u> </u>		ī		:	
See notes	See notes at end of table.									

	Table 4-6 (Continued) Inorganic Analytes Detected in Sediment Samples (Unsaturated) at SWMU 50	es Detect	Table 4- ed in Sedi	Table 4-6 (Continued) I in Sediment Sample:	ned) mples (Un	saturate	d) at SWN	MU 50		
			Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	s I and II RFA SV F U.S. Naval Station Mayport, Florida	' Report in					-
Analyte Batch No.:	th No.:		21541	-	21541	н	21541	=	21541	=
Sample Matrix:	rix:		Soil		Soil		Soll	_	Sol	_
Sample Location:	ation:		MPT-50-SD11	SD11	MPT-50-SD11	SD11	MPT-50-SD12	SD12	MPT-50-SD12	-SD12
Sample No:			MPT50SS05	3805	MPT50BS05	3805	MPT50SS06	9088	MPT50BS06	BS06
Date Sampled:	ēd:		04/23/92	/92	04/23/92	/92	04/23/92	/92	04/23/92	76/
Sample Depth (ft bis):	(ft bls):		0 to 0.5	3.5	3 to 4	4	0 to 0.5	3.5	3 to 4	4
CAS BN	Common Name	Units	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.
7440-36-0	Antimony	mg/kg	;		1		3.2	ŋ	36.2	
7440-38-2	Arsenic	mg/kg	13.8		15.5		6.1	ָּד	2.7	
7440-39-3	Barium	mg/kg	29.5	7	24.1	7	9.5	- -	6.9	٦
7440-41-7	Beryllium	mg/kg	1.5		4,	7	:		ŀ	
7440-49-9	Cadmium	mg/kg	-	٦	1.7		1		;	
7440-47-3	Chromium	mg/kg	43.2		40.4		6.4		Ą	
7440-48-4	Cobalt	mg/kg	6.5	7	6.3	7	1.2	¬	4.	¬
7440-50-8	Copper	mg/kg	23.1		18.7		23		13.4	
7440-92-1	Lead	mg/kg	41.4		49.4		28.3			
7440-02-0	Nickel	mg/kg	13.5		=	7	1.8	ה	3.4	¬
7440-49-2	Selenium	mg/kg	0.77	7	0.7	ר	;		1	
7440-22-4	Silver	mg/kg	0.54	7	;		;		ı	,
7440-62-2	Vanadium	mg/kg	49.2		49.2		3.3	٠	9	¬
7440-66-6	Zinc	mg/kg	84.5		78.6		38.1		23.3	
5955-70-0	Cyanide	mg/kg	ı		1		9.4		4.4	3
Notes: Lat	Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C.	ergy and En	vironmental	Support Act	ivity (NEES/	a) Level C.				
SS # S	SWMU = solid waste management unit. It bis = feet below land surface. Conc. = concentration.	ž <u>i</u>	mg/kg = rr - = analyte "J" = estim	g/kg = milligrams per l = analyte not detected. " = estimated value.	mg/kg = milligrams per kilogram. – = analyte not detected. "J" = estimated value.					
8	Qual, = qualifier.							ŀ		

				Tabl	Table 4-7								
		Chemica	als of Potential	Chemicals of Potential Concern in Sediment Samples Collected at SWMU 50	diment Sa	mples (Collecte	d at SV	/MU 50	_			
				Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	s I and II RFA SV Rep U.S. Naval Station Mayport, Florida	סיד							
	1	3	jo acced	Mean of	Background Screening Value	und Value ⁴	Long and Others	and ers	MacDonald ^e	nald®	Cleanup goals for	Analyte CPC	Reas-
Analyte	Frequency of Detection ¹	Reporting	Detected Concentrations ²	Detected Concentrations ³	Mayport Turning Basin	St. Johns River	ER-L	ER-M°	TEL'	PEL	Military Sties In Florida	(Yes/ No)	on o
Volatiles (µg/kg)													
Not analyzed													
Semivolatiles (µg/kg)			0	Ç	Ş	2	261	1,600	74.8	693	4,900	Yes	
Benzo[a]anthracene	3/18	350 to 1,000	74 to 190	7	2	1	i		6	Ş	Ş	>	
Benzo(a]pyrene	2/18	350 to 1,000	71 to 150	=	2	2	430 0	1,600	χ. 20 20	§ ;	80 .	3	
Benzo[b]fluoranthene	3/18	350 to 1,000	46 to 180	109	8	2	₹	¥	X	₹	006,4	9 1	
Benzo[k]fluoranthene	2/18	350 to	93 to 140	211	8	Š	¥ ¥	¥	¥	₹	47,000	\$ 0	
Butylbenzylphthalate	1/18	350 to 1,000	8,530	8,530	148	2	¥ Ž	Š	¥	∢ Z	300,000,000	468 2	
Chrysene	5/18	350 to 1,000	52 to 230	123	9	2	384	2,800	80	846	490,000	s 6 6	
Di-n-Octyl-phthalate	1/18	350 to 1,000	06	8	<u>8</u>	2	¥	₹	¥ !	¥ ;	32,000,000	n 6 p 6	
bis(2-Ethylhexyl)-	8/18	350 to 890	51 to 15,300	2,123	2		¥	₹	1 82	2,647	000,000	2 5	
Fluoranthene	5/18	350 to 690	120 to 515	217	97	2	009	5,100	21.23	144	44,000,000	\$	
Pyrene	5/18	350 to 690	130 to 450	240	2	2	465	2,600	<u>5</u>	966°.	00,000,78	2	
Pesticides/PCBs (µg/kg)	kg)												
No analytes detected													
See notes at end of table.	able.												

		Š	Chemicals of Pote	Table 4-7 (Continued) Potential Concern Sediment Samples Collected at SWMU 50	Table 4-7 (Continued)	inued)	S Colle	cted at	SWMU	20			
			÷	Groups I: U.S Ma	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	SV Report ion ta					Ì		
ļ	Ĺ	70	o accept	Mean	Background Screening Value ⁴	ound Value*	Long and Others	and	MacDonald ⁸	nald ^e	Cleanup goals for	Analyte	•
Analyte	Prequency of Detection ¹	Reporting Limits	Detected Concentrations	Detected Concentrations ³	Mayport Turning Basin	St. Johns River	ER-L	ER.M°	NOEL?	PEL	Military Sites in Florida	(Zes/ No)	Reason 10
Inorganics (mg/kg)	1/kg)			·									
Antimony	5/18	2.3 to 6.7	2.8 to 36.2	10.4	2	Q	¥	¥	Š	¥ Z	210	Yes	
Arsenic	18/18	R R	0.6 to 16.4	7.2	18	1.22	8.2	5	7,24	41.6	3.0	Š	æ
Barium	18/18	Æ	2 to 29.2	13.7	33.8	6.4	Ϋ́	Ā	Υ Y	¥	74,000	운	6
Beryllium	9/18	0.12 to 0.29	0.59 to 1.6	£.7	5:	0.12	Υ «	Š Š	¥ X	Y Y	0.2	Yes	
Cadmium	4/18	0.62 to 1.8	1 to 1.7	1,5	Q	Ş	1,2	9.6	9.676	4.21	009	Y 68	
Chromium	18/18	χ Ε	1.8 to 46.3	21.4	53	3,4	8	370	52.3	<u>8</u>	220	운	L, M, N, P
Cobalt	12/18	0.75 to 0.92	1.2 to 6.7	4.4	8.6	2	∀	¥ ¥	ž	¥	110,000	2	6
Copper	18/18	χ Υ	1.9 to 32.2	13.2	130.2	2	9 4	270	18.7	180	72,000	2	6 0
Lead	18/18	æ	0.58 to 49.4	17.2	92	2.2	46.7	218	30.2	112	1,000	∀ 88	
Nickel	17/18	0.93 to 0.93	1.3 to 26.1	9.2	44.6	2	20.9	51.6	15.9	42.8	11,000	운	6
Selenium	5/18	0.25 to 0.75	0.7 to 1.2	0.84	9	2	A A	¥ Z	Υ Y	Ř	006'6	Yes	
Silver	1/18	0.36 to 1.1	0.54	0.54	2	2	-	3.7	0.733	1.7	8,000	욷	o. ∑ ∑
Vanadium	18/18	ĸ.	0.83 to 51.3	22.6	56.2	2.2	Ϋ́	ž	Ä	Υ Y	4,800	2	œ
Zinc	18/18	N.	6.4 to 90.1	43	139.2	3.6	150	410	124	27.1	550,000	욷	c
Cyanide	4/18	0.19 to 0.55	0.52 to 9.4	1.6	Ş	5	¥	A A	₹ ¥	ž	40,000	×88	
See notes on next page.	next page.												

Chemicals of Potential Concern Sediment Samples Collected at SWMU 50 Table 4-7 (Continued)

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

Notes from previous pages.

Value indicated by asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetected values, 1/2 the contract required quantitation limit or Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values).

The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected including values qualified with a "J"; it does not include those contract required detection limit (CRDL) is used as a surrogate.

The background screening value is twice the average of detected concentrations for inorganic analytes in background samples. Organic values are one times the mean of samples where the analyte was not detected ("U," or "UJ" qualifiers) and rejected ("R" qualifier)

Effects range-low (ER-L) value represents a concentration intended to estimate conditions in which effects would be rarely observed. Source: "Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments" by Long and others, National Oceanic and Atmospheric Administration, 1993 detected concentration. Organic values are included for comparison purposes only.

Effects range-median (ER-M) represents the concentration where effects would occasionally occur. Source: "Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments" by Long and others, National Oceanic and Atmospheric Administration, 1993.

Threshold Effects Level (TEL) is a concentration at which no effects have been observed in any test species or biological community. Source: "Approach to the Assessment of

Probable Effects Level (PEL) is the lower concentration limits at which adverse effects may first be observed. Source: "Approach to the Assessment of Sediment Quality in Sediment Quality in Florida Coastal Waters," MacDonald, November, 1994.

Values are taken from the Florida Department of Environmental Protection memorandum, Cleanup Goals for Military Sites in Florida, dated April 5, 1995. The values are for the Florida Coastal Waters", MacDonald, November 1994.

Industrial Worker based on a cancer risk and 10° an adjusted hazard quotient of 1.

B = the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations fisted below (for inorganic Analytes were excluded from the risk assessment for the following reasons: Š

M = the maximum detected concentration did not exceed the Effects Range- Medium (ER-M) L = the maximum detected concentration did not exceed the Effects Range-Low (ER-L).

the maximum detected concentration did not exceed the Threshold Effects Level (TEL).

the maximum detected concentration did not exceed the Probable Effects Level (PEL)

The average of a sample and its duplicate is used for all table calculations.

Sample locations include: 50SD01; 50SD02; 50SD03; 50SD04; 50SD06; 50SS01; 50BS01; 50SS02; 50BS03; 50BS03; 50SS04; 50BS04; 50SS05; 50BS05; Notes:

Background sample locations include: Turning Basin - MPT-B-SD10; MPT-B-SD11; MPT-B-SD12. Duplicate sample locations include: 50SD02DUP.

50SS06; and 50BS06

St. Johns River - MPT-B-SD13; MPT-B-SD14; MPT-B-SD15

Duplicate background sample locations include: Turning Basin - MPT-B-SD12DUP

= not detected in any background samples. CPC = chemicals of potential concern. $\mu g/kg = micrograms$ per kilograms. ND = not detected in any backgrour

mg/kg = milligrams per kilograms. PCBs = polychlorinated biphenyls. NA = not available.

surface water standard (50 $\mu g/l$). The AWQC acute criteria (69 $\mu g/l$) for protection of aquatic life was not exceeded.

Barium was detected in each of the surface water samples and duplicate, and was detected in both of the background surface water samples. The highest of the background screening values for barium was detected in the Mayport Turning Basin sample (15.2 $\mu g/l$). Four of the surface water samples contained barium at concentrations that exceeded this background screening value. Currently, there are no AWQC or Class III marine bench mark values established for barium.

Cobalt was detected as a single occurrence, and was not detected in the background samples. Currently, there are no AWQC or Class III marine bench mark values established for cobalt.

Lead was detected in the three samples and duplicate from the western dredge material holding area and not in the eastern dredge material holding area. Lead was not detected in the background sediment samples. Lead was detected in three surface water samples and duplicate at concentrations that exceed the AWQC chronic criteria (8.5 $\mu g/l$) for protection of aquatic life and the Class III marine surface water standard (5.6 $\mu g/l$). The AWQC acute criteria (220 $\mu g/l$) for protection of aquatic life was not exceeded.

Nickel was detected in four of the surface water samples and the duplicate. The corresponding sample to the duplicate did not contain detectable concentrations of nickel. Nickel was not detected in the background samples. Nickel was detected in the surface water samples and duplicate at concentrations that exceed the AWQC chronic criteria (8.3 μ g/ ℓ) for protection of aquatic life and the Class III marine surface water standard (8.3 μ g/ ℓ). The AWQC acute criteria (75 μ g/ ℓ) for protection of aquatic life was not exceeded.

Tin was develues forthieewas dheesmefata wheelfaypupteBurnThe Baghassamplehell9ackggøind6Xscree

The detected concentrations of tin exceeded this background screening value. Currently, there are no AWQC or Class III marine bench mark values established for tin.

Vanadium was detected in each of the surface water samples and in the background samples from Mayport Turning Basin (background screening value 3.6 $\mu g/l$). Each of the samples contained vanadium at concentrations that exceeded the background screening value. Currently, there are no AWQC or Class III marine bench mark values established for vanadium.

Zinc was detected as a single occurrence in a surface water sample collected from the eastern dredge material holding area. The highest of the background screening values for zinc was detected in the Mayport Turning Basin sample (5.8 $\mu g/l$). The detected concentrations of zinc exceeded this background screening value. Zinc was detected in the surface water sample at a concentration that exceeded the AWQC chronic criteria (86 $\mu g/l$) and approached the acute criteria (95 $\mu g/l$) for protection of aquatic life. The detected concentration of zinc (94 $\mu g/l$) also exceeded the Class III Marine surface water standard (86 $\mu g/l$).

<u>Sediment</u>. Pesticides and PCBs were not detected in the sediment samples. Chemicals of potential concern consist of 10 SVOCs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, butylbenzylphthalate, chrysene, dinoctylphthalate, bis(2-ethylhexyl)phthalate, fluoranthene, and pyrene) and six inorganic analytes (antimony, beryllium, cadmium, lead, selenium, and cyanide). The

inorganic analytes were detected in the surface water samples and exceeded either background screening values (surface water samples collected from Mayport Turning Basin and the St. Johns River) or bench mark values.

Because the dredge material holding areas are at capacity and are not likely to be used unless material is removed, a comparison of the CPCs with bench mark values (residential exposure and industrial worker) for FDEP cleanup goals for soil is also made in this section. If an FDEP cleanup goal is not available, the default will be to the proposed Superfund SSL bench mark values. The bench mark values for the residential FDEP cleanup goals and proposed Superfund SSLs are not included in Table 4-7.

Benzo(a) anthracene was detected in three sediment samples and was not detected in the background sediment samples. One of the samples contained benzo(a) anthracene at a concentration (190 μ g/kg) that exceeded the MacDonald TEL (74.8 μ g/kg), but not the PEL (693 μ g/kg). The bench mark values for the ER-L (261 μ g/kg) and ER-M (1,600 μ g/kg) were not exceeded. The detected concentrations of benzo(a) anthracene were below the residential (1,400 μ g/kg) and industrial worker (4,900 μ g/kg) FDEP cleanup goal for soil.

Benzo(a)pyrene was detected in two sediment samples, and was not detected in the background sediment samples. One sample contained benzo(a)pyrene at a concentration (150 $\mu g/kg$) that exceeded the TEL (88.8 $\mu g/kg$) but not the PEL or ER-L and ER-M bench mark values. The detected concentration of benzo(a)pyrene was above the residential (140 $\mu g/kg$) clean up criteria and below the industrial worker criteria (500 $\mu g/kg$).

Benzo(b)fluoranthene was detected in three sediment samples, and was not detected in the background sediment samples. Currently there are no bench mark values established for benzo(b)fluoranthene by Long and others (1993) and MacDonald (1994). The detected concentrations of benzo(b)fluoranthene were below the residential (1,400 μ g/kg) and industrial worker (5,010 μ g/kg) FDEP cleanup goal in soil.

Benzo(k)fluoranthene was detected in two sediment samples, and was not detected in the background sediment samples. Currently there are no bench mark values established for benzo(b)fluoranthene by Long and others (1993) and MacDonald (1994). The detected concentrations of benzo(k)fluoranthene were below the residential (1,400 μ g/kg) and industrial worker (4,900 μ g/kg) FDEP cleanup goal in soil.

Butylbenzylphthalate was detected as a single occurrence (8,530 $\mu g/kg$), and in the background sediment samples from the Mayport Turning Basin. Currently there are no bench mark values established for butylbenzylphthalate by Long and others (1993) or MacDonald (1994). The detected concentrations of butylbenzylphthalate were below the residential (15,000,000 $\mu g/kg$) and industrial worker (300,000,000 $\mu g/kg$) FDEP cleanup goal for soil.

Chrysene was detected in five sediment samples and was not detected in the background sediment samples. One of the samples contained chrysene at a concentration (230 $\mu g/kg$) that exceeded the TEL (108 $\mu g/kg$), but not the PEL (846 $\mu g/kg$). The bench mark values for the ER-L (384 $\mu g/kg$) and ER-M (2,800 $\mu g/kg$) were not exceeded. The detected concentrations of chrysene were below the residential (14,000 $\mu g/kg$) and industrial worker (490,000 $\mu g/kg$) FDEP cleanup goal in soil.

Di-n-octylphthalate was detected as a single occurrence (90 μ g/kg), and was not detected in the background sediment samples. Currently there are no bench mark values established for di-n-octylphthalate by Long and others (1993) and MacDonald (1994).

The detected concentration of di-n-octylpohthalate was less than the residential $(1,500,000~\mu g/kg)$ and industrial worker $(32,000,000~\mu g/kg)$ FDEP cleanup goal in soil.

Bis(2-ethylhexyl)phthalate was detected in eight of the sediment samples and was not detected in the background sample. Four of the 18 sediment samples contained bis(2-ethylhexyl)phthalate at concentrations that exceed the TEL (182 μ g/kg). The detected concentration of bis(2-ethylhexyl)phthalate was less than the residential (45,000 μ g/kg) and industrial worker (100,000 μ g/kg) FDEP cleanup goal in soil.

Fluoranthene was detected in five sediment samples and in the background sediment samples from the Mayport Turning Basin. One of the samples contained fluoranthene at a concentration (530 $\mu g/kg$) that exceeded the TEL (21.23 $\mu g/kg$), and PEL (144 $\mu g/kg$) values. The benchmark values for the ER-L (600 $\mu g/kg$) and ER-M (5,100 $\mu g/kg$) were not exceeded. The detected concentrations of fluoranthene were below the residential (800,000 $\mu g/kg$) and industrial worker (44,000,000 $\mu g/kg$) FDEP cleanup goal in soil.

Pyrene was detected in five sediment samples and not in the background sediment samples. Four out of five samples contained pyrene at a concentration above the TEL (153 $\mu g/kg$) but not the PEL (1,398 $\mu g/kg$). The bench mark values for the ER-L (465 $\mu g/kg$) and ER-M (2,600 $\mu g/kg$) were not exceeded. The detected concentrations of pyrene were below the residential (2,200,000 $\mu g/kg$) and industrial worker (37,000,000 $\mu g/kg$) FDEP cleanup goal in soil.

Antimony was detected in five of the sediment samples and was not detected in the background sediment samples. Currently, there are no bench mark values established for antimony by Long and others (1993) or MacDonald (1994). A single sample contained antimony at a concentration (36.2 mg/kg) that exceeded the residential (26 mg/kg) FDEP cleanup goal but less than the industrial worker (210 mg/kg) cleanup goal in soil.

Beryllium was detected in nine of the sediment samples and in both the St. Johns River and Mayport Turning Basin background samples. The highest of the background screening values (1.5~mg/kg) was detected in the sample from the St. Johns River. One of the samples contained beryllium at the concentration detected in the background sample and one sample contained beryllium at a concentration that exceeded this value (1.6~mg/kg). Currently, there are no bench mark values established for beryllium by Long and others (1993) or MacDonald (1994). Each of the environmental samples contained beryllium at concentrations that exceed residential (0.1~mg/kg) and industrial worker (0.2~mg/kg) cleanup goals in soil.

Cadmium was detected in four of the sediment samples, and was not detected in the background sediment samples. Each of the detected concentrations of cadmium exceeded the TEL (0.676~mg/kg) and three of the samples exceeded the ER-L (1.2~mg/kg). The detected concentrations of cadmium did not exceed the PEL (4.21~mg/kg) or the ER-L (9.6~mg/kg). The detected concentrations of cadmium were below the residential (37~mg/kg) and industrial worker (600~mg/kg) FDEP cleanup goal in soil.

Lead was detected in 18 of the sediment samples and was detected in both of the background sediment samples. The highest of the background screening values (26 mg/kg) was detected in the sample from the St. Johns River. Six of the detected concentrations of lead exceeded the background screening value. Four of the samples contained lead at concentrations that exceeded the TEL (30.2 mg/kg), and one of the samples exceeded the ER-L (46.7 mg/kg). The detected concentrations of lead did not exceed the PEL (112 mg/kg) or the ER-L (218 mg/kg). The detected concentrations of lead were below the residential (500 mg/kg) and industrial worker (1,000 mg/kg) FDEP cleanup goal in soil.

Selenium was detected in five of the sediment samples and was not detected in the background sediment samples. Currently there are no bench mark values established for selenium by Long and others (1993) or MacDonald (1994). Each of the environmental samples contained selenium at concentrations less than residential (390 mg/kg) and industrial worker (8,000 mg/kg) cleanup goals in soil.

Cyanide was detected in four of the sediment samples and was not detected in the background sediment samples. Currently, there are no bench mark values established for cyanide by Long and others (1993) and MacDonald (1994). Each of the environmental samples contained cyanide at concentrations less than residential (1,600 mg/kg) and industrial worker (40,000 mg/kg) cleanup goals in soil.

4.5 CONCLUSIONS AND RECOMMENDATIONS.

4.5.1 Conclusions

<u>Surface Water</u>. SVOCs, pesticides, and PCBs were not detected in the surface water samples. The surface water samples were not analyzed for VOCs. Twelve inorganic analytes were detected including antimony, arsenic, barium, cadmium, chromium, cobalt, lead, nickel, tin, vanadium, zinc, and cyanide (Table 4-1).

Chemicals of potential concern consist of eight inorganic analytes (arsenic, barium, cobalt, lead, nickel, tin, vanadium, and zinc) that were detected in the surface water samples and exceeded either background screening values (surface water samples collected from Mayport Turning Basin and the St. Johns River) or bench mark values (Table 4-2).

The surface water in the western and eastern dredge material holding areas is an ephemeral feature that is present during dredging activities and varies depending on the frequency and amount of rainfall. Target analytes and concentrations present in the surface water are expected to have considerable variation because of variations in the type of water placed in the holding areas (sea water or brackish water and rainwater).

Because the dredge material holding areas do not maintain water for a sufficient duration, use of this area for harvesting of aquatic species is not viable; however, it is a viable area for foraging by birds. Surface water in the dredge material holding areas is discharged to adjacent marsh areas. The marsh areas are a Class III marine environment.

<u>Sediment</u>. Pesticides and PCBs were not detected in the sediment samples. Target analytes detected in the sediment samples consist of 10 SVOCs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, butylbenzylphthalate, chrysene, di-n-octylph-thalate, bis(2-ethylhexyl)phthalate, fluoranthene, and pyrene) and 15 inorganics (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, silver, vanadium, zinc and cyanide) (Tables 4-3 through 4-6).

Chemicals of potential concern consist of the ten SVOCs and six inorganics (antimony, beryllium, cadmium, lead, selenium, and cyanide) (Table 4-7).

Only two of the SVOCs (butylbenzylphthalate and fluoranthene) were detected in background sediment samples. Organic analytes were not eliminated as a chemical of potential concern because of detection in the background samples. Two of the

inorganic target analytes that are chemicals of potential concern (beryllium and lead) were detected at concentrations that exceeded those detected in background sediment samples. The other inorganic analytes (antimony, cadmium, selenium, and cyanide) that are CPCs were not detected in the background sediment samples.

Because bench mark values have not been established by Long and others (1993) and MacDonald (1994) for benzo(k)fluoranthene, butylbenzylphthalate, di-n-octylphthalate, antimony, beryllium, selenium, and cyanide they were considered CPCs. Target analytes that exceeded the TEL were benzo(a)anthracene, benzo(a)pyrene, chrysene, and pyrene. Target analytes that exceeded the ER-L and TEL were fluoranthene, cadmium, and lead. None of the target analytes exceeded values for the ER-M or PEL.

Because the dredge material holding areas are at capacity and are not likely to be used unless material is removed, a comparison was made between the CPCs and bench mark values (residential and industrial worker exposure) for FDEP cleanup goals for soil. Concentrations of benzo(a)pyrene and antimony exceeded FDEP residential soil cleanup goals and concentrations of beryllium exceeded residential and industrial worker soil cleanup goals.

4.5.2 Recommendations Based on the analytical results, ecological diversity measurements and aquatic and sediment toxicity testing appear to be warranted as part of an RFI focused towards conducting an ecological risk assessment. However, before a commitment is made to the focused ecological risk assessment, the SWMU 50 analytical results should be assessed along with the results of the RFI being conducted for the Landfill SWMUs 2, 3, 4, and 5 which are located beneath and adjacent to SWMU 50. Data collected for the RFI was not included in this report because of the more comprehensive analysis performed for the RFI and to avoid redundancy. Both the RFA SV and RFI data will be used to assess additional sampling and analysis required to complete a focused ecological risk assessment for SWMU 50. Recommendations pertaining to the need for a focused ecological risk assessment at SWMU 50 will be made in the RFI report for the Group I SWMUs

The Navy plans to remove some of the dredge material to provide capacity for future maintenance dredging of Mayport Turning Basin. Existing data and data obtained from a focused ecological risk assessment, if required, and corrective measures study, if required, could provide an adequate basis to evaluate use, if any, of the dredge material such as for asphalt or concrete mix for roads.

The possible need for a focused ecological risk assessment is based on the following rationale.

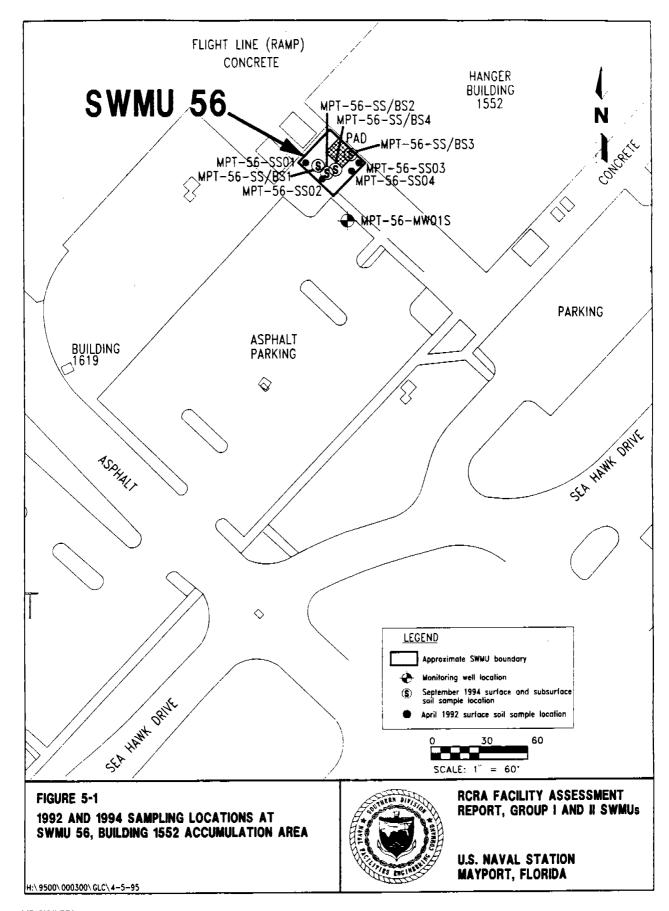
- No pesticides or PCBs were detected in the surface water samples.
- The surface water in the western and eastern dredge material holding areas is an ephemeral feature that is present during dredging activities and varies depending on the frequency and amount of rainfall.
- Target analytes and concentrations present in the surface water are expected to have considerable variation because of the variations in the type of water placed in the holding areas (seawater or brackish water and rainwater).
- Because the dredge material holding areas do not maintain water for a sufficient duration, use of this area for recreation harvesting or aquatic species is not viable. These areas are viable habitat for small mammals, reptiles, and birds.

- Because bench mark values have not been established by Long and others (1993)
 and MacDonald (1994) for benzo(k)fluoranthene, butylbenzylphthalate, di-noctylphthalate, antimony, beryllium, selenium, and cyanide they were considered
 CPCs.
- Target analytes that exceeded the TEL were benzo(a)anthracene, benzo(a)pyrene, chrysene, and pyrene. Target analytes that exceeded the ER-L and TEL were fluoranthene, cadmium, and lead. None of the target analytes exceeded values for the ER-M or PEL.
- Concentrations of benzo(a)pyrene and antimony exceed FDEP residential soil cleanup goals and concentrations of beryllium exceeded residential and industrial worker soil cleanup goals.

5.0 SWMU 56, BUILDING 1552 ACCUMULATION AREA

5.1 SITE DESCRIPTION AND BACKGROUND. SWMU 56 is a hazardous waste accumulation area located south of the squadron helicopter hangar, Building 1552. The site has been in operation since approximately 1985 (Figure 1-3). SWMU 56 consists of a 20-foot by 10-foot concrete pad that is surrounded by a chain-link fence. The site is a 90-day accumulation area (satellite storage area) for steel drums containing wastes such as solvents, paint thinners, used rags, aerosol cans, and waste oils. The Building 1552 Accumulation Area was identified as an SWMU in the RFA because a stained area with sparse vegetation was observed east of the site (A.T. Kearney, 1989). Residual adsorbent material was also observed in the grass along the edge of the concrete pad (A.T. Kearney, 1989). The RFA suggested that soil samples be collected from the stained area and from the edge of the concrete pad on the east side and analyzed for VOCs, SVOCs, and metals (A.T. Kearney, 1989).

5.2 RFA SV FIELD INVESTIGATIONS. Based on the sampling program recommended in the RFA, four surface soil samples were collected in April 1992 from areas of apparent vegetative stress on the eastern side of the concrete pad (ABB-ES, 1992c) (Figure 5-1). Analytical results of these samples suggest a possible release of VOCs and SVOCs to soil and the possibility of an adverse impact to groundwater (ABB-ES, 1993b).


Confirmation sampling of soil and groundwater at SWMU 56 was performed during September 1994 by collecting additional surface and subsurface soil samples, and installing a single monitoring well, and collecting a groundwater sample. Four surface and four subsurface soil samples were collected on September 1, 1994, at the approximate locations of the previous surface soil samples (Figure 5-1). One monitoring well, MPT-56-MWIS, was installed August 3, 1994 (Figure 5-1), and sampled on September 10, 1994.

During the 1992 sampling event, surface soil samples were collected from the land surface to a depth of 6 inches bls. During the 1994 sampling event, surface soil samples were collected from the land surface to 1 foot bls and subsurface soil samples were collected from 3 to 4 feet bls except MPT-56-BS04 which was collected from a sampling interval of 4 to 5 feet bls.

Because many field activities are common to all NAVSTA Mayport SWMUs, the sampling procedures for RFI and RFA SV (confirmatory sampling) events are described in Section 2.1, Summary of Exploration and Sampling Program, of the NAVSTA Mayport GIR, Volume I (ABB-ES, 1995b). Site-specific elements and deviations from sampling procedures, if any, particular to SWMU 56 are discussed in subsequent paragraphs, and standard operating procedures are referenced where necessary. Monitoring well installation, soil and groundwater sampling procedures, and associated equipment decontamination procedures were conducted in general conformance with USEPA Region IV standard operating procedures (USEPA, 1991a).

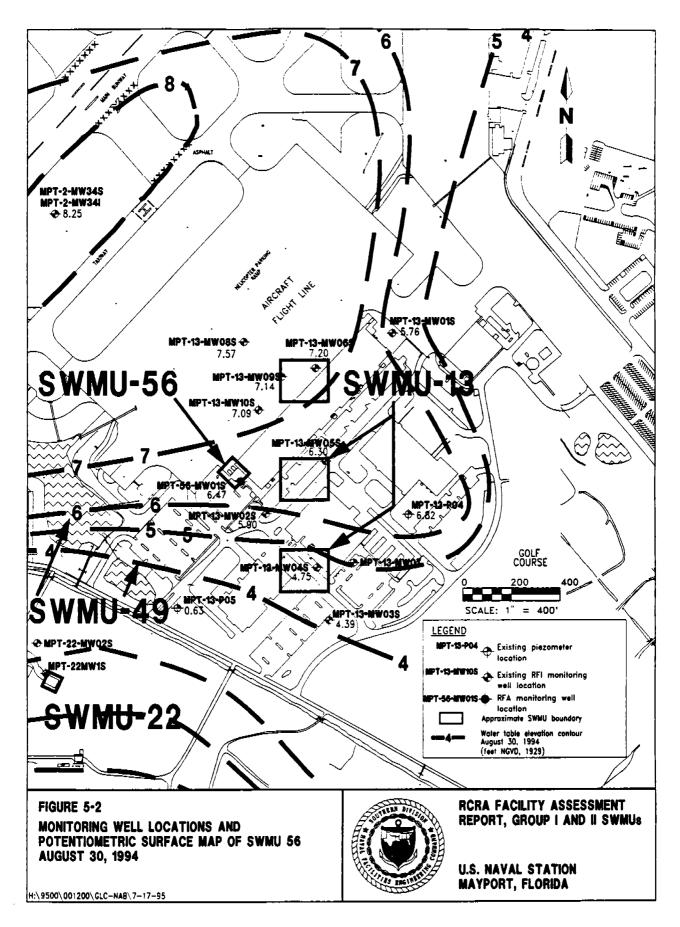
Soil Sample Collection Procedure. Surface and subsurface soil sampling was accomplished as described in the NAVSTA Mayport RFI workplan (ABB-ES, 1991) and Subsection 2.1.1, Soil Sampling, of the GIR (ABB-ES, 1995b).

Monitoring Well Installation Procedure. Drilling and well installation were accomplished as described in the NAVSTA Mayport RFI (ABB-ES, 1991), and Subsection 2.1.1, Monitoring Well and Piezometer Installation, of the GIR (ABB-ES, 1995b).

<u>Groundwater Sample Collection Procedure</u>. Groundwater sampling was accomplished as described in Subsection 2.1.4, *Groundwater Sampling*, of the GIR (ABB-ES, 1995b).

Laboratory Analyses. Soil and groundwater samples were analyzed for the same target analytes including VOCs, SVOCs, pesticides, PCBs, metals, and cyanide selected from the groundwater monitoring list presented in Appendix IX (40 CFR 264) and USEPA Contract Laboratory Program target compound list and target analyte list. The environmental samples were analyzed using methods from Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW 846) (USEPA, 1986). A list of the target analytes is provided in Appendix A. Analytical results for each sample from the 1992 sampling event were presented in the RFA SV report, Phase 1 (ABB-ES, 1992c), and the results of the 1994 sampling event are included in Appendix B.

5.3 FINDINGS. The following presents a brief description of the results of the RFA SV sampling activities at SWMU 56. The findings include site geologic and hydrogeologic conditions and results of the analyses of surface and subsurface soil samples and groundwater samples.


Site Geology. In August 1994, one soil boring was drilled at SWMU 56 for the installation of a shallow monitoring well screened across the water table (Figure 5-1). The boring log for this monitoring well is found in the GIR, Appendix A, Boring Logs (ABB-ES, 1995b). The following is a description of the subsurface soils encountered at the boring location.

Boring MPT-56-MWO1S (located near the southern corner of SWMU 56) encountered a fine sand that graded with depth to a fine silty sand with traces of shell fragments to approximately 10 feet bls, overlying a silty clay with a trace of shell fragments to the explored depth of 12.5 feet bls.

Geologic cross sections provided in the NAVSTA Mayport GIR (see Figures 3-3 and 3-4 ABB-ES. 1995b) depict subsurface geologic conditions in the vicinity of SWMU 56.

Site Hydrogeology. Groundwater levels at the SWMU 56 monitoring well and other RFI and RFA SV sites at NAVSTA Mayport were measured within a 7-hour period on August 30, 1994. The depth to the groundwater level at each location was measured relative to a notch or mark on the north side of each monitoring well surveyed to the NGVD of 1929 (commonly referred to as msl). The depth to groundwater at monitoring well MPT-56-MW01S is approximately 3 feet bls. Because only one monitoring well was installed at the site, a potentiometric surface map was not prepared specifically for SWMU 56; however, a potentiometric surface map (Figure 5-2) was prepared using monitoring wells for SWMU 13. Groundwater level data used to construct this and other potentiometric surface maps are provided in Appendix G. Based on the potentiometric surface shown on Figure 5-2, groundwater in the vicinity of SWMU 56 flows toward the southeast.

An approximation of the horizontal linear velocity of groundwater flow in the water table zone of the surficial aquifer in the vicinity of SWMU 56 is based on the potentiometric surface (hydraulic gradient) of the water table, estimates of radial hydraulic conductivities at monitoring well locations, and an estimate of the porosity (ratio of the volume of voids to total volume of the soil) of the saturated subsurface soil. The horizontal linear velocity was calculated from a modified form of Darcy's equation and represents the ratio of linear travel distance to travel time between two points (Freeze and Cherry, 1979). The horizontal linear velocity is expressed as $\rm V_D/N_e$, where $\rm V_D$ is the Darcy velocity ($\rm V_D$ = KI, where K is the radial hydraulic

conductivity and I is the hydraulic gradient) and N_e is the effective porosity of the saturated geologic stratum. An effective porosity of 0.35 is used in these calculations. (See Section 3.2.3, Physical Characteristics of Soil, in the NAVSTA Mayport GIR, ABB-ES, 1995b).

In-situ radial hydraulic conductivity values for monitoring wells in the vicinity of SWMU 56 are presented in Table 5-1. The range of in-situ radial hydraulic conductivity values in the vicinity of SWMU 56 are approximately 1.3 feet per day (MPT-13-P5) to 18.1 feet per day (MPT-13-P1). The hydraulic gradient appears to be relatively uniform over SWMU 56 (0.006 ft/ft on August 30, 1994) and an approximation of the horizontal linear velocity of the groundwater ranges from approximately 0.03 to 0.31 foot per day.

Table 5-1
Average Groundwater Velocities at SWMU 56

Groups I and II RFA SV Report U. S. Naval Station Mayport, Florida

Location	Estimated Effective Porosity	Hydraulic Conductivity (feet per day)	Estimated Gradient¹ (feet per feet)	Estimated Linear Velocity (feet per day)	Estimated Linear Velocity (feet per year)
MPT-13-P1	0.35	18.1²	0.006	0.31	113
MPT-13-P4	0.35	15.1 ²	0.006	0.25	91
MPT-13-P5	0.35	1.3 ²	0.006	0.03	11

¹ Based on synoptic water table elevations.

Based on the values for horizontal linear velocity and assuming no dilution, dispersion, or retardation, a contaminant in the water table zone of the surficial aquifer may travel at rates of 11 to 113 feet per year (Table 5-1).

Surface and Subsurface Soil Analytical Results. Tables 5-2 and 5-3 summarize the validated analytical results for organic and inorganic target analytes, respectively, detected in soil samples collected at SWMU 56. Complete analytical results are provided in Appendix B. A summary of frequencies of detection, range of detection limits, range of detected concentrations, arithmetic mean, and bench mark comparison values are provided in Tables 5-4 and 5-5 for surface and subsurface soil samples, respectively. The target analytes detected in the environmental samples were compared to background screening values computed from station wide surface and subsurface soil samples (ABB-ES, 1995b) and bench mark values consisting of USEPA soil screening guidance values (USEPA, 1994), USEPA Region III RBC (USEPA, 1995) and the State of Florida cleanup goals (FDEP, 1995). The state of Florida cleanup goals consisted of residential values for surface soil and industrial worker values for subsurface soil.

Each of the bench mark criteria provided in Tables 5-4 and 5-5 is human health based and represents the lower of either a noncarcinogenic HI of 1, where values of less than 1 represent a concentration at which noncarcinogenic effects are not likely or a lifetime excess cancer risk of 10^{-6} , which represents a chance of 1 in 1,000,000 for an adverse carcinogenic effect for a continuous lifetime exposure. The concentrations listed for the USEPA Region III RBCs correspond to an HI of 0.1, whereas the USEPA

² In-situ conductivity measurement during Phase 1 Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI), February 1992.

Superfund SSLs and the State of Florida cleanup goals are based on an HI of 1. The Federal NCP, (40 CFR, Part 300) states that for carcinogens a lifetime excess cancer risk in the range of 10^{-4} (a chance of 1 in 10,000 for an adverse carcinogenic effect for a continuous lifetime exposure) to 10^{-6} represents concentrations that are considered by USEPA to be protective of human health.

Table 5-2 summarizes the validated analytical results for organic target analytes (VOCs, SVOCs, and pesticides) detected in surface and subsurface soil samples collected in 1992 and 1994 at SWMU 56 (Figure 5-1). The following is a discussion of the target analytes detected during the 1992 and 1994 sampling events.

Surface Soil Sampling, 1992. VOCs, SVOCs, metals, and cyanide were detected in various combinations and concentrations in surface soil samples collected during the 1992 sampling event (Table 5-1). Pesticides and PCBs were not detected in the surface soil samples. The VOCs detected included acetonitrile, carbon disulfide, trichlorofluoromethane, chloroform, 2-butanone, 4-methyl-2-pentanone, and toluene. The SVOCs detected include di-n-butylphthalate, butylbenzylphthalate, and bis(2-ethylhexyl)phthalate. Phthalate compounds are common plasticizers that may be introduced by contacting the sample or container with gloves worn by either field or laboratory personnel or tubing or other plastic items. Twelve metals including arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, silver, vanadium, and zinc and cyanide were detected in the surface soil samples collected in 1992 (Table 5-2).

<u>Surface and Subsurface Soil Sampling, 1994</u>. VOCs, metals, and cyanide were detected in various combinations and concentrations in surface and subsurface soil samples collected during the 1994 sampling event (Table 5-1). SVOCs, PCBs, and cyanide were not detected in the surface soil samples.

The VOCs detected in samples collected during the 1992 sampling event were not detected during the 1994 sampling event. Only one VOC, acetone, was detected during the 1994 sampling event. Acetone is a common field and laboratory contaminant that can be introduced through inadequate drying of equipment following decontamination of sampling equipment or as a result of its widespread use as a solvent at the analytical laboratory.

None of the SVOCs detected in samples collected during the 1992 sampling event were detected in samples collected in the 1994 sampling event.

The same suite of metals with the addition of selenium and thallium were detected in the surface soil samples collected in 1994 (Table 5-2). Metals detected in the subsurface soil samples were a subset of those detected in the surface soil samples, including arsenic, barium, lead, vanadium, and zinc.

Groundwater Analytical Results. A summary of groundwater quality parameters is provided in Table 5-6 and Table 5-7 summarizes the validated analytical results for the groundwater sample collected at SWMU 56. Table 5-7 also provides a summary of frequencies of detection, range of detection limits, range of detected concentrations, arithmetic mean, and bench mark comparison values. The results of the analyses of the groundwater sample are provided in Appendix B. The target analytes detected in the groundwater sample were compared to background screening values computed from station wide background groundwater samples (ABB-ES, 1995b), and bench mark values

Organ	Table 5-2 Organic Analytes Detected in Soil Samples at SWMU 56	T S Detect	Table 5-2 ted in Soil	Samples	at SWMU	- 56				<u>-</u>
		Groups tar U.S. May	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	' Report n						
Analytical Batch No.:	20753		R8665	65	R8665	52	20753		R8665	<u></u>
Sample Location:	MPT-56-SS01	.SS01	MPT-56-SS01	-8501	MPT-56-SS01	-SS01	MPT-56-SS02	-5502	MPT-56-SS02	SS02
Sample No.:	MPT56SS01	SS01	56SS001	100	56SS001Dup	1Dup	MPT56SS02	SS02	56SS002	002
Date Sampled:	04/21/92	/92	09/01/94	/94	09/01/94	/94	04/21/92	/92	09/01/94	/94
Sample Depth (ft bis):	0 to 0.5	3.5	0 to 1	.1	0 to 1	1	0 to 0.5	0.5	0 to 1	_
Common Name	Conc.	Qual.	Conc.	Quat.	Conc.	Qual.	Conc.	Qual.	Cone.	Qual.
VOCs, Soil, (µg/kg)			ı <u>.</u>	-						
Acetone	ł		ŀ		80	7	ł		ı	
Acetonitrile	:		1		;		ı		l .	
Carbon disulfide	;		1		ı		ı		:	
Trichlorofluoromethane	:		ı		;	•	7		ı	•
Chloroform	:		t		1		:		1	
2-Butanone	:		ı		ı		;		1	
4-Methyl-2-pentanone	;		;		ı		1		•	
Toluens			I .		ı		1		1	
SVOCe, Soil, (µg/kg)										
Di-n-butyl Phthalate	t		1		;		:		:	
Butyl benzyl Phthalate	370	-	ı		i		96	٠, ٠	: :	
bis(2-Ethylhexyl) Phthalate	1,600	7	ı		ı		1,800	- 	;	
Pesticides, Sod. (µg/kg)										
4,4'-DDE	;		-	_			-			
See notes at end of table.										

Organ	Table 5-2 (Continued) Organic Analytes Detected in Soil Samples at SWMU 56	Table 5- s Detecto	Table 5-2 (Continued) Detected in Soil Sam	ued) Samples	at SWMU	26				
		Groups Iau U.S. May	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	Report						
			20763		R8665	S	21171	1	R8665	ιχ
Analytical Batch No.:	50/52	·	107		MDT F6.9903	8603	MPT-56-SS04	SS04	MPT-56-SS04	SS04
Sample Location:	MPT-56-SS03	SS03	MF1-56-5503	-50503		2000	1001	700	F65.S004	
Sample No.:	MPT56SS03	5803	MPT56SS03Dup	S03Dup	56SS003	<u> </u>	MP1568804	4050 	500	ţ ;
Campio vo: Date Samoled:	04/21/92	/92	04/21/92	/92	09/01/94	/94	04/21/92	76/	09/01/94	/94
	0 to 0.5	3.5	0 to 0.5	0.5	0 to 1	1	0 to 0.5	1.5	0 to 1	
Sample Depth (It bis):	5	O Isi	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Cone.	Qual.
Common Name	2	5								
VOCs, Soil (µg/kg)					•		•		:	
Acetone	:		:		!		1		ŀ	
Acetonitrile	90	7	5	7	1		; (_		
Carbon disulfide	ro	7	t		1		9	,	1	
Trichlorofluoromethane	ı,	-	:		1		:		: :	
Chloroform	;		ഗ	ح 	1		I F	-	1	
2-Butanone	1		ı		ı			,		
4-Methyl-2-pentanone	13	_	က	<u>۔</u>	1		i i		!	
Toluene	8	-	-		!				_	
SVOCs, Soil, (µg/kg)				_			67	7	1	_
Di-n-butyl Phthalate	;		ı		!		} \	· 	;	
Butyl benzyl Phthalate	1		l	-	i		·	-	:	
bis(2-Ethylhexyl) Phthalate	1		- - - - - - - - - - - - - - - - - - -		1		?			
Pesticides, Soil, (µg/kg)					!		1		1.5	
4,4'-DDE	;									
See notes at end of table.										

Table 5-2 (Continued) Organic Analytes Detected in Soil Samples at SWMU 56

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

		Mayp	ort, Florida					
Analytical Batch No.:	R86		R860 MPT-56		R86 MPT-56	I	R866 MPT-56-	
Sample Location:	MPT-56	-BS01	MP1-96-	-6302				
Sample No.:	56BS	001	56BS	002	56B\$	30 3	56BS	004
Date Sampled:	09/0	1/94	09/01	/94	09/01	1/94	09/01	/94
Sample Depth (ft bis):	3 to	4	3 to	4	_3 to	4	4 to	5
Common Name	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.
VOCs, Soil, (µg/kg)								
Acetone	25		8	J	9	J	-	
Acetonitrile	_	}	-		-	ļ	-	
Carbon disulfide			-		_	ļ	-	ł
Trichlorofluoromethane	-		-	İ	-		-	
Chloroform	-	}	-		-		-	Ì
2-Butanone	-		-		-		-]
4-Methyl-2-pentanone	-	ł	-		-		_	
Toluene	-		-				-	
SVOCs, Soil, (µg/kg)			}				ļ	
Di-n-butyl Phthalate	-		-		-	1	-	ļ
Butyl benzyl Phthalate	-		-		-	1	-	}
bis(2-Ethylhexyl) Phthalate	-		-		-	[-	
Pesticides, Soil, (µg/kg)								
4.4'-DDE	1.8		6.3		2.4		2.1	İ

Notes: Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C. Suffix Dup = identifies the duplicate of the corresponding environmental sample.

ft bis = sample collection depth in feet below land surface.

Conc. = concentration.

Qual. = qualifier.

VOCs = volatile organic compounds.

 μ g/kg = micrograms per kilogram.

- = analyte not detected.

"J" = estimated value.

SVOCs = semivolatile organic compounds.

DDE = dichlorodiphenyldichloroethene.

Table 5-3 Inorganic Analytes Detected in Soil Samples at SWMU 56

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

				nayport, ri	0.100			$\overline{}$		
Analytical Batch No.:	21510	,	R866	5	R866	5	21510	5 }	R8665	; I
Sample Location:	MPT-56-9	S01	MPT-56-	SS01	MPT-56-	SS01	MPT-56-9	3802	MPT-56-S	S02
Sample No.:	MPT56S	\$01	56\$\$0	01	56SS00	1Dup	MPT56S	S02	56\$\$00)2
Date Sampled:	04/21/	92	09/01/	/94	09/01	/94	04/21/	/92	09/01/9	94
Sample depth (ft bis):	0 to 0.	.5	0 to	1	0 to	1	0 to 0	1.5	0 to 1	l
Common Name Soil (mg/kg)	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.
Arsenic	0.95	J	0.94	J	0.94	J	1.2	J	0.62	J
Barium	29.8	ارا	7.4	J	12.9	J	183		4.5	J
Beryllium	0.19	J	_		-		0.13	ر ا	-	
Cadmium	4.3		0.39	J	2.1	J	3.1		-	
Chromium	33.7		7.2	J	17.6	J	29.3		3.7	J
Cobalt	2.9	J	-		-		1.6	J	-	
Copper	52.7		6.8	j	25.7	J	12.4		2.4	J
Lead	21.3		7.4	J	20.6	J	91.2	J	2.7	J
Nickel	6.2	J	2.1	J	5.5	J	8.4	J	1.5	J
Selenium	-		0.15	J	-		-		-	
Silver	0.64	J	-		-		0.47	ا ا	-	ŀ
Thallium	_		-		-		-		_	
Vanadium	4.1	J	4.7	J	4.8	J	3.7	J	2.9	J
Zinc	228	J	24	J	88.8	J	133	١	8.4	J
Cyanide	<u> </u>				<u> </u>		<u> </u>	ᆚ.——		<u> </u>

Table 5-3 (Continued) Inorganic Analytes Detected in Soil Samples at SWMU 56

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

			Ma	зуроп, н	orica					
Analytical Batch No.: Sample Location:	21510 MPT-56-S	l	2151 MPT-56-		R866 MPT-56-		21510 MPT-56-9	-	R8669 MPT-56-9	-
Sample No.:	MPT56S		MPT56SS	03Dup	56SS	ж	MPT56S	S04	56SS 0	04
Date Sampled:	04/21/	92	04/21	/92	09/01	/94	04/21/	92	09/01/	94
Sample depth (ft bis):	0 to 0.	5	0 to ().5	0 to	1	0 to 0	.5	0 to	1
Common Name Soil (mg/kg)	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.
Arsenic	0.82	٦	1.5	J	0.71	J	1.1	J	0.73	J
Barium	6.2	J [6.6	J	7.0	J	7.1	J	7.4	J
Beryllium	0.1	J	0.12	J	-		0.13	J]
Cadmium	_		_		0.23	J	-		0.42	J
Chromium	8.7		3.9	Ì	7.2	J	52.3		5.0	J
Cobalt	-		-		0.71	J	0.83	J	-	
Copper	4.1	J	3.5	J	3.9	J	5.1	J	6.3	J
Lead	8	J	4.9	J	7.9	J	4.9	J	7.0	J
Nickel			1.5	J	1.9	J	3.1	J	2.3	J
Selenium	_		-		-	ļ	-	1	0.14	J
Silver		İ			-		-	ľ		
Thallium	-			ł			-	1	0.15	J
Vanadium	3.6	J	3.5	J	4.8	J	3.4	J	4.1	J
Zinc	16.3	J	14.9	J	15.9	J	17.5	J	31.7	J
Cyanide	0.7	ر ا					0.87	J		1

See notes at end of table.

Table 5-3 (Continued) Inorganic Analytes Detected in Soil Samples at SWMU 56

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

		, n	nayport, Florii	<u> </u>				
Analytical Batch No.: Sample Location:	2151 MPT-56-	ì	2151 MPT-56-	l l	2151 MPT-56-	B\$03	21510 MPT-56-I	3\$04
Sample No.:	56BS	001	56BS(002	56BS	3 03	56BS0	
Date Sampled:	09/01	/94	09/01	/94	09/01	/94	09/01,	/94
Sample depth (ft bis):	3 -	4	3 -	4	3-	4	4 - 5	<u> </u>
Common Name Soil (mg/kg)	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.
Arsenic	0.55	J	0.61	J	0.48	J	0.42	J
Barium	3.1	J	2.5	j	-		3.2	J
Beryllium	_		_		-		-	
Cadmium	_		-		-		-	
Chromium	-		-		-	}	-	
Cobalt	-		-		-	}	-	
Copper	-		-		-	1	-	
Lead	1.2	J	0.98	J	0.92	J	0.97	J
Nickel	_		-	1	-	1		
Selenium	-			1		}	-	
Silver	_		-		-		-	
Thallium	-				-		-	
Vanadium	1.8	J	1.9	J	2.0	J	1.4	J
Zinc	-		5.4	J	_		6.7	J
Cyanide	-	·		<u> </u>	<u> </u>			

Notes: Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C. Suffix Dup = identifies the duplicate of the corresponding environmental sample.

ft bis = sample collection depth in feet below land surface.

mg/kg = milligrams per kilogram.

Conc. = concentration.

Qual. = qualifier.

"J" = estimated value.

- = analyte not detected.

			Table 5-4 Chemicals of Potential Concern in Surface Soll at SWMU 56	Table 5-4 otential Concern in	e 5-4 'n in Surfac	e Soil at SWIV	IU 56			
				Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	s I and 11 RFA SV Report U.S. Naval Station Mayport, Florida					
Analyte	Frequency of Detection ¹	Range of Reporting Limits	Range of Detected Concentrations	Mean of Detected Concentrations ³	Background Screening Value ⁴	Risk Based Screening Concentration ⁵	Superfund Proposed Soll Screening Levels ⁶	Cleanup Goals for the Military Sites in Florida ⁷	Analyte CPC? (Yes/No)	Reason
Volatiles (µg/kg) Acetone	1/8	10 to 21	8.6	8.0	Q.	780,000	7,800,000	130,000	Š	S, P, G
Acetonitrile	8/1	100 to 140	50	20	2	47,000	X A	N A	운	တ
2-Butanone	1/8	10 to 14	7	7	2	4,700,000	NA A	2,500,000	욷	o S
Carbon disuffide	4/8	5 to 5	2 to 3	2, 55	ON O	780,000	7,800,000	2,600	₽	S, P, G
Chloroform	1/8	5 to 7	4	4	9	100,000	110,000	300	2	D'd'S
4-Methyl-2- pentanone	1/8	10 to 14	6 0	æ	2	630,000	A	310,000	2	ပ ဖွဲ
Trichlorofluoro- methane	2/8	5 to 7	4 to 7	č.	용	2,300,000	Ā	3,400	8	ა ზ
Toluene	1/8	5 to 7	1.5	. iv	9	1,600,000	16,000,000	270,000	2	S, P, G
Semivolatiles (µg/kg)										
Butyl benzyl phthalate	8/0	360 to 3.000	370 to 790	580	9	1,600,000	16,000,000	15,000,000	ŝ	S, P, G
Di-n-butylphthalate	1/8	690 to 3,000	49	49	Q	780,000	7,800,000	7,500,000	2	S, P, G
bis (2- Ethythexyl)phthalate	4/8	690 to 710	79 to 1,800	1,182	Q	46,000	46,000	45,000	o Z	9 6 8
Peeticides/PCBs (µg/kg) 4-4'-DDE	2/8	0.69 to 220	0.68 to 1.5	=	2.3	1,900	2,000	2,900	S	გ. მ.
See notes at end of table	table.									

			hemicals of Pc	Table 5-4 (Continued) Chemicals of Potential Concern in Surface Soil at SWMU 56	Continued) 'n in Surfac	e Soil at SWM	IU 56			
				Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	s I and II RFA SV Report U.S. Naval Station Mayport, Florida					
Analyte	Frequency of Detection ¹	Range of Reporting Limits	Range of Detected Concentrations ²	Mean of Detected Concentrations ³	Background Screening Value ⁴	Risk Based Screening Concentration ⁵	Superfund Proposed Soit Screening Levets*	Cleanup Goals for the Military Sites in Florida?	Analyte CPC? (Yes/No)	Reason®
Inorganics (mg/kg)									2	
Arsonic	8/8	Z E	0.62 to 1.2	0.93	8	°0.37	9.4	0.7	∀ ⊕3	i
	, 80 / 80	Æ	4.5 to 183	31.9	5.6	550	5,500	5,000	2	လ် ရ.
Becylling	4/8	0.09 to 0.16	0.11 to 0.19	0.14	0.16	0.15	1.0	1.0	∀ 88	
Cadmitte Cadmitte	, 2/8	0.21 to 0.70	.23 to 4.3	1.9	a	9.9	88	37	Yes	
Cadming	, e/c	N EN	3.7 to 52.3	17.4	2.6	1039	06601	10150	Yes	
200 C	4/8	0.64 to 0.84	0.71 to 2.9	15	Q	470	NA	4,700	2	o o
Copair) (i		2.4 to 52.7	12.9	2.2	290	Ą	2,900	운	ซ ซ์
Copper	0/0			ñ	Ş	11400	11,400	1,500	ş	S, P, G
Lead	8/8	Y Z		<u>.</u> 6	9	160	1,600	1,500	2	S, P, G
Nickel	8/8	œ Z	0.98 to 8.4	6.5	<u> </u>	<u> </u>	36	390	o Z	æ
Selenium	2/8	0.12 to 0.32	0.11 to 0.14	5 6	<u> </u>	3 8	36	380	ŝ	S, P, G
Silver	2/8	0.37 to 0.45	0.47 to 0.64	0.56	€	6		460	Ş	0 0
Vanadium	8/8	N R	2.9 to 4.1	3.9	4	52	nee	00 60	2 4	
Zinc	8/8	Æ	8.4 to 228	63.3	2.6	2,300	23,000	23,000	2 :	_ 0
Cyanide	2/8	0.14 to 0.26	0.40 to 0.87	0.64	S	160	1,600	1,600	2	ה ה
See notes on next page.	age.									

Chemicals of Potential Concern in Surface Soil at SWMU 56 Table 5-4 (Continued)

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

Notes from previous pages.

Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values).

Value indicated by asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetected values, 1/2 the contract required quantitation limit or contract required detection limit (CRDL) is used as a surrogate.

The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected including values qualified with a "J"; It does not include those samples where the analyte was not detected ("U" or "UJ" qualitiers) and rejected ("R" qualitier)

The background screening value is twice the average of detected concentrations for inorganic analytes in background samples. Organic values are one times the mean of detected concentration. Organic values are included for comparison purposes only.

concentrations (RBC) for residential surface soil exposure per January 1993 guidance (Selecting Exposure Routes and Contaminants of Concern by Risk-Based Screening. For all chemicals except the essential nutrients (calcium, iron, magnesium, potassium, and sodium), U.S. Environmental Protection Agency (USEPA) Region III risk based EPA/903/R-93-001) was used for screening. Actual values are taken from the USEPA Region III RBC tables dated February 1995, and are based on a cancer risk of 10°

Source: USEPA. December, 1994. Soil Screening Guidance, Review Draft, USEPA, Office of Solid Waste and Emergency Response, Washington, D.C., EPA/540/Rand an adjusted hazard quotient of 0.1. For the essential nutrients, screening values were derived based on recommended daily allowances (RDAs).

Values are taken from the Florida Department of Environmental Protection memorandum, Cleanup Goals for Military Sites In Florida, dated April 5, 1995. The values are for the aggregate resident based on a cancer risk of 10° and the child resident based on a hazard quotient of 1.

Analytes were included or excluded from the risk assessment for the following reasons:

S = the maximum detected concentration did not exceed the screening concentration and will not be considered further.

G = the maximum detected concentration did not exceed the Florida cleanup goals and will not be considered further.

= the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations.

C = the analyte is a member of a chemical class that contains other chemicals of potential concern (CPCs) (i.e., caroinogenic polynuclear aromatic hydrocarbons = the frequency of detection was less than 5 percent and professional judgment was used to exclude analyte from further study.

P = the maximum detected concentration did not exceed the USEPA proposed soil screening levels (SSLs), 9355.4-14FS, dated December 1994. M = the analyte was detected at less than 5 percent and is a CPC in more than one media.

The value is based on arsenic as a carcinogen.

10 The value is based on chromium hexavalent form.

" USEPA Office of Solid Waste and Emergency Response (OSWER) Directive No. 9355.4-12 revised Interim recommended soll cleanup for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites.

The average of a sample and its duplicate is used for all table calculations. Notes:

Sample locations include: 56SS01; 56SS02; 56SS03; 56SS04; 56SS00101; 56SS00201; 56SS301; 56SS401

Duplicate sample locations include: 56SS03D; 56SS00101D

Background sample locations include: MPT-B-SS1; MPT-B-SS2; MPT-B-SS3; MPT-B-SS4; MPT-B-SS5; MPT-B-SS6 Duplicate background sample locations include: MPT-B-SS1DUP

µg/kg = micrograms per kilograms.
NO = not detected in any background samples. CPC = chemicals of potential concern.

NA = not available.

DDE = dichlorodiphenyldichloroethene. mg/kg = milligrams per kilograms. PCBs = polychlorinated biphenyls.

NR = not reported; analyte detected in each sample; reporting limits are same as range of detected concentrations.

94/101.

		ပ	Chemicals of Po	s of Potential Concern in Subsurface Soil at SWMU 56	cern in Subsur	face Soil at S	WMU 56			
				Groups I and U.S. Na Maypo	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	זינ				
Analyte	Frequency of Detection ¹	Range of Reporting Limits	Range of Detected Concentrations ²	Mean of Detected Concentrations ³	Background Screening Value ⁴	Risk Based Concentration ⁵	Superfund Proposed Soil Screening Levets ^e	Cleanup Goals for the Military Sites in Florida?	Analyte CPC (Yes/No)	Reason®
Volatiles (µg/kg) Acetone	3/4	5	8 to 25	4.	2	780,000	7,800,000	890,000	S S	S, P,G
Semivolatiles (µg/kg)										
No Analytes Detected										
Pesticides/PCBs										
4,4'-DDE	4/4	ĸ	1.8 to 6.3	3.2	3.5	1,900	2,000	006'6	2	ල ල
Inorgenics (mg/kg)			,		Ġ	90 37	4.0	-	Š	80
Arsenic	4/4	Œ	0.42 to 0.61	0.32 	2 1		2500	7.400	9	6
Barium	3/4	2.4	2.5 to 3.2	2.9	7	200	10 400	900	2	•
Lead	4/4	Ä	0.92 to 1.2	-	2.8	400	400	000'1	2 4	, α
Vanadium	4/4	. K	1,4 to 2	1.8	3.2	55	550	4,800	ᢓ :	
Zinc	2/4	3.8 to 3.9	5.4 to 6.7	6.1	4.8	2,300	23,000	220,000	2	Ď.

Chemicals of Potential Concern in Subsurface Soil at SWMU 56 Table 5-5 (Continued)

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

Value indicated by asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetected values, 1/2 the contract required quantitation limit or The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected including values qualified with a "J"; it does not include those Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values) contract required detection limit (CRDL) is used as a surrogate.

The background screening value is twice the average of detected concentrations for inorganic analytes in background samples. Organic values are one times the mean of samples where the analyte was not detected ("U" or "UJ" qualifiers) and rejected ("R" qualifier)

EPA/903/R-93-001) was used for screening. Actual values are taken from the USEPA Region III RBC tables dated February 1995 and are based on a cancer risk of 10° and an concentrations (RBC) for residential surface soil exposure per January 1993 guidance (Selecting Exposure Routes and Contaminants of Concern by Risk-Based Screening, For all chemicals except the essential nutrients (calcium, iron, magnesium, potassium, and sodium), U.S. Environmental Protection Agency (USEPA) Region III risk based adjusted hazard quotient of 0.1. For the essential nutrients, screening values were derived based on recommended dally allowances (RDAs). detected concentration. Organic values are included for comparison purposes only.

Source: USEPA. December, 1994. Soil Screening Guidance, Review Draft, USEPA, Office of Solid Waste and Emergency Response, Washington, D.C., EPA/540/R-94/101. Values are taken from the Florida Department of Environmental Protection memorandum, Cleanup Goals for Military Sites in Florida, dated April 5, 1995. The values are for

the industrial worker based on a cancer risk of 10.8 and the general worker based on a hazard quotient of 1. Analytes were included or excluded from the risk assessment for the following reasons:

S = the maximum detected concentration did not exceed the screening concentration and will not be considered further.

G = the maximum detected concentration did not exceed the Florida cleanup goals and will not be considered further.
 B = the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations.

C = the analyte is a member of a chemical class that contains other chemicals of potential concern (CPCs) (i.e., carcinogenic polynuclear aromatic hydrocarbons F = the frequency of detection was less than 5 percent and professional judgment was used to exclude analyte from further study.

P = the maximum detected concentration did not exceed the USEPA proposed soll screening levels (SSLs), 9355.4-14FS, dated December 1994. M = the analyte was detected at less than 5 percent and is a CPC in more than one media.

19 USEPA Office of Solid Waste and Emergency Response (OSWER) Directive No. 9355.4-12 revised Interim recommended soli cleanup for Comprehensive Environmental Response, Compensation, and Lability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites. The value is based on arsenic as a carcinogen. •

The average of a sample and its duplicate is used for all table calculations. Notes:

Background sample locations include: MPT-B-BS1; MPT-AB-BS4; MPT-B-BS5; MPT-B-BS6 Sample locations include: 56BS00104; 56BS00204; 56BS00304; 56BS00405 Duplicate background sample locations include: MPT-B-BS1DUP

= not reported; analyte detected in each sample; reporting μg/kg = micrograms per kilograms. ND = not detected in any background samples. NR = not reported; analyte detected in each sam CPC = chemicals of potential concern.

imits are same as range of detected concentrations.

DDE = dichlorodiphenyldichloroethene. mg/kg = milligrams per kllograms. PCBs = polychlorinated biphenyls. NA = not available.

from USEPA Region III RBCs (USEPA, 1995) and Florida groundwater guidance concentrations (FDEP, 1994). The FDEP guidance concentrations include Federal and State promulgated and unpromulgated values. The State of Florida has promulgated some guidance concentrations at values lower than Federal values.

Each of the bench mark criteria provided in Table 5-7 is human health based and represents the lower of either a noncarcinogenic HI of 1 or a lifetime excess cancer risk of 10^{-6} . Bench mark values for a noncarcinogenic HI of 1 represent a concentration where noncarcinogenic effects are not likely. A bench mark value for a lifetime excess cancer risk of 10^{-6} represents a chance of 1 in 1,000,000 for an adverse carcinogenic effect for a continuous lifetime exposure.

The water quality parameters for the SWMU 56 groundwater monitoring wells were compared to the State of Florida secondary water quality criteria (Table 5-6). The value determined for color exceeded the State of Florida secondary water quality criteria for the groundwater sample. The water quality criteria are used to assess potable water from a water supply system and may not be directly applicable to a groundwater sample collected from a monitoring well.

The value for hardness as $CaCo_3$ (300 mg/ ℓ) suggests that the groundwater would be considered very hard (greater than 180 mg/ ℓ) (Durfor and Becker, 1964). The value for total dissolved solids (426 mg/ ℓ) suggests that the groundwater would be considered fresh. The range for classifying water as fresh is 0 to 1,000 mg/ ℓ total dissolved solids (Freeze and Cherry, 1979).

SVOCs, pesticides, PCBs, and cyanide were not detected in the groundwater sample. One VOC, acetone, was detected in the groundwater sample (Table 5-7). Seven inorganic analytes including barium, calcium, iron, magnesium, manganese, sodium, and vanadium were detected in the groundwater sample.

5.4 PRELIMINARY RISK EVALUATION.

<u>Surface Soil</u>. None of the VOCs, SVOCs, or pesticides detected in the surface soil samples exceeded the bench mark values. Four of the inorganic analytes, arsenic, beryllium, cadmium, and chromium, were detected in surface soil samples at concentrations that exceeded at least one of the bench mark values, which are based on a lifetime excess cancer risk of 10^{-6} .

Each of the eight surface soil samples contained arsenic at concentrations that exceeded the USEPA Region III RBC (0.37~mg/kg) and the proposed Superfund SSL (0.4~mg/kg). Seven of the eight samples contained arsenic at concentrations that exceed the FDEP cleanup goal (0.7~mg/kg). Arsenic was not detected in the background surface soil samples.

One sample contained beryllium at a concentration that exceeded the background screening value (0.16 mg/kg). Only one of eight samples contained beryllium at a concentration that exceeds the USEPA Region III RBC (0.15 mg/kg) and five of eight samples contained beryllium at concentrations that exceed the proposed Superfund SSL and Florida cleanup goal of 0.1 mg/kg. The surface soil background screening value for beryllium also exceed the bench mark values.

Three of eight samples contained cadmium at concentrations that exceeded the background screening value (2~mg/kg). Only one of eight samples contained

Table 5-6 Water Quality Parameters for Groundwater Samples at SWMU 56

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

	Маурог	t, Florida	<u>.</u>
Analytical Batch No.:		M7505	M 7515
Sample Matrix:		Groundwater	Groundwater
Sample Location:		MPT-26-MW01S	Secondary ¹ Water Quality
Sample No.:		26MW0001\$	Criteria
Date Sampled:		08/02/94	
Common Name	Units	Conc.	Conc.
Alkalinity as CaCO ₃	mg/£	283	-
Ammonia-N	mg/£	1.8	_
Chloride	mg/£	44.3	250,000
Color	APHA	120	15
Hardness as CaCO₃	mg/£	300	_
Nitrate/Nitrite-N	mg/£	0.48	10,000
Oil and Grease	mg/£	NA NA	-
Phosphorous-P, Total	mg/£	1.33	-
Sulfate	mg/£	50	250,000
Sulfide	mg/ <i>1</i>	2.4	-
Total Dissolved Solids	mg/£	426	500
Total Kjeldahl Nitrogen	mg/ <i>1</i>	2.2	-
Total Organic Carbon	mg/t	14	_
рН	su	6.71	6.5 to 8.5

¹ Secondary Water Quality Criteria, Chapter 62-550.320, Florida Administrative Code (FAC) Notes: Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C.

SWMU = solid waste management unit.

Conc. = concentration.

CaCO₃ = calcium carbonate.

mg/l = milligrams per liter.

- = analyte not detected.

APHA = American Public Health Association

NA = not analyzed.

SU = standard units.

	Cher	icals of Po	Tabl	Table 5-7 Chemicals of Potential Concern in Groundwater at SWMU 56	ater at SWMU	56		
			Groups I and II U.S. Nav Maypor	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida				
Analyte	Frequency of Detection	Range of Reporting Limits	Range of Detected Concentrations ²	Background Screening Concentrations ³	Risk Based Screening Concentration⁴	Florida Guidance Concentration ⁵	Analyte CPC? (Yes/No)	Reason
Volathes (µg/f)	-	Ę	4	S	370	700	2	ა ტ
Acetone	-	2						
Semivolatiles (µg/l)								
No Analytes Detected								
Pesticides/PCBs (µg/f)								
No Analytes Detected								
Inorgenics (µg/f)					į	COCO	2	œ
Barium	,-	0.4	9.7	10.2	290	000	} ;	
Calcium	-	41.7	97,100	170,450	1,055,398	¥ Ž	2	Ď
	-	9. 1.	477	2,076	13,267	300	2	æ
	-	31.4	36,100	21,234	118,807	Y Y	ž	ဟ
Magnesan	-	0.6	89,4	185.8	18	20	2	œ
Mangallese		14.4	240,000	18,624	396,022	160,000	Yes	
Linibos :	- -		භ	10.6	5 8	49	No.	80
Vanadium	-	2						
See notes on next page.								

Chemicals of Potential Concern in Groundwater at SWMU 56 Table 5-7 (Continued)

Groups 1 and II RFA SV Report U.S. Naval Station Mayport, Florida

			and form	- Lindbert				
Analys	Frequency	Range of Reporting	Range of Detected	Background Screening		Florida Guidance	Analyte CPC?	Reason
	Detection 1	Limits	Concentrations ²	Concentrations Concentrations	Concentration	Concentration	(Yes/No)	
!								

Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected Value indicated by asterisk is the average of a sample and its duplicate. For nondetected values, 1/2 the contract required quantitation Ilmit or contract

~

Based Screening, EPA/903/R-93-001) was used for screening. Actual values are taken from RBC table dated February 1995, and are based on a cancer Region III risk based concentrations (RBC) for tap water per January 1993 guidance (Selecting Exposure Routes and Contaminants of Concern by Risk-For all chemicals except the essential nutrients (calcium, iron, magnesium, potassium, and sodium), U.S. Environmental Protection Agency (USEPA) The background screening value is twice the average of detected concentrations for inorganic analytes in background samples. required detection limit (CRDL) is used as a surrogate. m +

risk of 10° or an adjusted hazard quotient of 0.1. For the essential nutrients, screening values were derived based on recommended daily allowances

Florida Department of Environmental Protection Groundwater Guidance Concentrations (June 1994) Analytes were included or excluded from the risk assessment for the following reasons:

S = the maximum detected concentration did not exceed the screening concentration and will not be considered further. the maximum detected concentration did not exceed the Florida cleanup goals and will not be considered further.

G = the maximum detected concentration did not exceed the Florida cleanup goals and will not be consumered fortises.

B = the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations.

F = the frequency of detection was less than 5 percent, and professional judgment was used to exclude analyte from further study.

F = the frequency of detection was less than 5 percent.

C = the analyte is a member of a chemical class that contains other chemicals of potential concern (CPCs) (i.e., carcinogenic polynuclear

aromatic hydrocarbons [PAHs]).

P = the maximum detected concentration did not exceed the USEPA proposed soil screening levels (SSLs), 9355.4-14FS, dated December 1994. = the analyte was detected at less than 5 percent and is a CPC in more than one media. Σ

The average of a sample and its duplicate is used for all table calculations. Notes:

Background sample locations include: 01MW001, 08MW005S, 08MW001S, 0SMW001R, 8MW5S, MPT-1-MW1-1, MPT-S-1-1, and S1. Sample location includes: 56MW001S.

CPCs = chemicals of potential concern.

ND = not detected in any background samples. ug/t = micrograms per liter.

PCBs = polychlorinated biphenyls.

not available ž

cadmium at a concentration that exceeded the USEPA Region III RBC (3.9~mg/kg). None of the samples contained cadmium at concentrations that exceeded the proposed Superfund SSL (39~mg/kg) or the FDEP cleanup goal (37~mg/kg). The background screening value (2~mg/kg) is less than the bench mark values.

Each of the eight samples contained chromium at concentrations that exceeded the background screening value (2.6 mg/kg). Only one of eight samples contained chromium at a concentration that exceeded the USEPA Region III RBC (39 mg/kg). None of the samples contained concentrations of chromium that exceeded the proposed Superfund SSL (390 mg/kg) or the FDEP cleanup goal (150 mg/kg). The background screening value for chromium (2.6 mg/kg) is less than bench mark values.

<u>Subsurface Soil</u>. The VOC (acetone) and pesticide (4,4'-DDE) detected in subsurface soil did not exceed the bench mark values. The metals (arsenic, barium, lead, and vanadium) detected in the subsurface soil samples exceed the background screening values. Concentrations of zinc exceeded the background screening value but did not exceed any of the bench mark values, and therefore were not considered to be CPCs.

Groundwater. The VOC (acetone) detected in the groundwater sample did not exceed the bench mark values. Two of the inorganic analytes, magnesium and sodium, were detected at concentrations that exceeded their background screening values (21,234 μ g/ ℓ) and 18,624 μ g/ ℓ , respectively). The concentration detected for magnesium (36,100 μ g/ ℓ) was less than the USEPA Region III RBC (118,807 μ g/ ℓ). The concentration detected for sodium (240,000 μ g/ ℓ) was less than the Region III RBC (396,000 μ g/ ℓ), but exceeds the FDEP guidance concentration (160,000 μ g/ ℓ), and was considered to be a CPC.

5.5 CONCLUSIONS AND RECOMMENDATIONS.

5.5.1 Conclusions

Surface Soil Samples. None of the VOCs (acetonitrile, acetone, carbon disulfide, trichlorofluoromethane, chloroform, 2-butanone, 4-methyl-2-butanone, and toluene), SVOCs (di-n-butylphthalate, butylbenzylphthalate, and bis(2-ethylhexyl)phthalate), or pesticide (4,4'-DDE) detected in the surface soil samples exceeded the bench mark values. In addition, the seven VOCs (acetonitrile, carbon disulfide, trichlorofluoromethane, chloroform, 2-butanone, 4-methyl-2-butanone, and toluene) detected in samples collected in 1992 were not detected in surface soil samples collected in 1994. PCBs were not detected in the surface soil samples.

Four of the inorganic analytes, arsenic, beryllium, cadmium, and chromium, were detected in surface soil samples at concentrations that exceeded bench mark values, which are based on a lifetime excess cancer risk of 10^{-6} . However, the potential risk associated with observed concentrations of arsenic and beryllium is within a range (10^{-4} to 10^{-6}) that is considered by USEPA to be protective of human health (40 CFR Part 300) (see Table C-3, Appendix C). Cadmium and chromium were detected at concentrations that were less than the proposed Superfund SSLs and FDEP cleanup goals.

Because the land features at NAVSTA Mayport have been impacted by the deposition of dredge material from the Mayport Turning Basin, it cannot be determined whether the concentrations of arsenic, beryllium, cadmium, and chromium are

related to a release at SWMU 56 or are residual concentrations from the dredge material.

Subsurface Soil Samples. The VOC (acetone) and pesticide (4,4'-DDE) did not exceed the bench mark values. The metals (arsenic, barium, lead, and vanadium) detected in the subsurface soil samples did not exceed the background screening values. Concentrations of zinc exceeded background screening values but not the bench mark values. Therefore, the concentrations of metals detected in the subsurface soil samples are not likely attributable to a release from SWMU 56.

<u>Groundwater Sample</u>. The VOC (acetone) detected in the groundwater sample did not exceed the bench mark values. Acetone is a common sampling or laboratory related contaminant. Magnesium and sodium were detected at concentrations that exceeded their background screening values. The concentration detected for magnesium was less than the USEPA Region III RBC. The concentration detected for sodium was less than the USEPA Region III RBC, but exceeds the FDEP guidance concentration.

The source for sodium may be the incomplete flushing of seawater from the surficial aquifer or from deposition of dredge material from Mayport Turning Basin to construct the land features at NAVSTA Mayport.

5.5.2 Recommendations SWMU 56 is recommended for no further investigation at this time based on the following rationale.

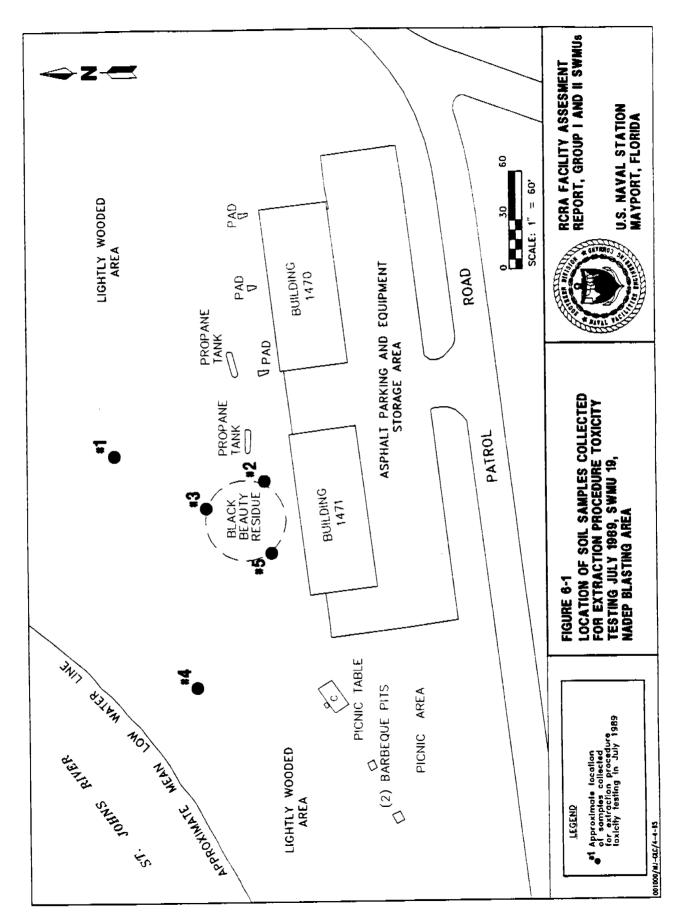
- No PCBs were detected in the surface or subsurface soil samples.
- None of the VOCs (acetonitrile, acetone, carbon disulfide, trichlorofluoromethane, chloroform, 2-butanone, 4-methyl-2-butanone, and toluene), SVOCs (di-n-butylphthalate, butylbenzylphthalate, and bis(2-ethylhexyl)phthalate), or pesticide (4,4'-DDE) detected in the surface soil samples exceeded the bench mark values.
- Concentrations of arsenic, beryllium, cadmium, and chromium detected in surface soil samples exceeded human health based risk bench mark values representing a lifetime excess cancer risk of 10^{-6} . However, the potential risk associated with observed concentrations of arsenic and beryllium is within a range (10^{-4} to 10^{-6}) that is considered by USEPA to be protective of human health (40 CFR 300).
- Cadmium and chromium were detected in surface soil at concentrations that were less than the proposed Superfund SSLs and FDEP cleanup goals.
- The VOC (acetone) and pesticide (4,4'-DDE) detected in subsurface soil samples did not exceed the bench mark values.
- The metals (arsenic, barium, lead, and vanadium) detected in the subsurface soil samples did not exceed the background screening values. Zinc exceeded background screening values but not the bench mark values.
- The VOC (acetone) detected in the groundwater sample did not exceed the bench mark values.
- Magnesium and sodium were detected in groundwater at concentrations that exceeded their background screening values; however, the concentrations detected were less than the USEPA Region III RBCs.

• The concentration detected for sodium was less than the USEPA Region III RBC, but exceeds the FDEP guidance concentration. It is likely that sodium is related to the seawater contained in the dredge materials pumped into the eastern dredge spoil basin (SWMU 50) during maintenance dredging.

The default assumptions used in estimating risk based bench mark concentrations may not be representative and likely overstate the specific exposure present at the site (i.e., underestimate the concentration that would result in a lifetime excess cancer risk of 10^{-6}). Because the chemicals were detected in only one or two media (i.e., soil and or groundwater) all of the exposure pathways and assumptions used to estimate the bench mark concentrations are not relevant. Therefore, the concentrations may exceed the bench mark values (USEPA, 1994, USEPA, 1995, and FDEP, 1995) but actually result in a lower excess cancer risk than 10^{-6} .

6.0 SWMU 19, NAVAL AVIATION DEPOT (NADEP) BLASTING AREA

6.1 SITE DESCRIPTION AND BACKGROUND. The NADEP Blasting Area (SWMU 19) is located north of NADEP Buildings 1470 and 1471, approximately 25 feet from the St. Johns River. The area was used for abrasive blasting of unpainted aircraft carrier parts, including catapult and arresting gear for carrier flight decks. Abrasive blasting was conducted in this area from approximately 1981 until 1989. The area, approximately 75 feet in diameter, is outside and blasting occurred on a blasting rack that is located over bare soil. According to the visual site inspection (VSI) conducted as part of the RFA (A. T. Kearney, 1989), the abrasive used in blasting is Black Beauty, a slag product marketed for sand blasting purposes.


The soils at SWMU 19 are predominately sand, and the area is located along the edge of the St. Johns River. At the time of the VSI in 1989, Black Beauty was piled on the ground around the blasting grate and spread over an area approximately 75 feet in diameter. According to the RFA, facility personnel noted that the Black Beauty abrasive blasting media had not been collected or removed from the area since operations began there in 1981. The RFA recommended that soil samples be collected in visually contaminated areas between the blasting rack and the river, and that sediment samples be collected from St. Johns River sediments in the vicinity of SWMU 19. Due to the nature of the blasting area operation and abrasive blasting media, it was recommended that all samples collected be analyzed for metals (A. T. Kearney, 1989).

To determine the appropriate disposal methods for the blasting media at the site, the RFA recommended that the residual abrasive blasting media be tested for extraction procedure (EP) toxicity.

During July 1989, five surficial soil samples were collected by Enviropact, Inc., from the area where the Black Beauty residual was located (Figure 6-1). The soil samples were analyzed by the extraction procedure for toxicity testing (EP toxicity). A summary of the EP toxicity analytical results is provided in Table 6-1. None of the regulatory criteria for classifying a material as hazardous waste were exceeded (Enviropact, 1989). However, since these samples were collected and the test results obtained, the USEPA has adopted the new analytical methodology, the TCLP, to assess whether a material would be classified as hazardous. Therefore, as part of the RFA SV, three samples of the residual Black Beauty material were collected and analyzed by the TCLP analytical method to assess whether it would be classified as hazardous waste.

6.2 RFA SV FIELD INVESTIGATIONS. RFA SV field investigations at SWMU 19 included collection of surface soil, subsurface soil, and sediment samples. Soil and sediment sampling was conducted on June 30, 1994. The objectives of the data gathering activities at SWMU 19 were to collect soil and sediment samples to confirm whether contamination is present at the site. The RFA SV sampling and analytical objectives did not include characterization of the horizontal and vertical extent of contaminants.

Six surface soil samples, six subsurface soil samples, and three sediment samples were collected at SWMU 19. Site-specific reference samples also were collected,

Table 6-1 Extraction Procedure Toxicity Analytical Results for Soil Samples at SWMU 19, 1989

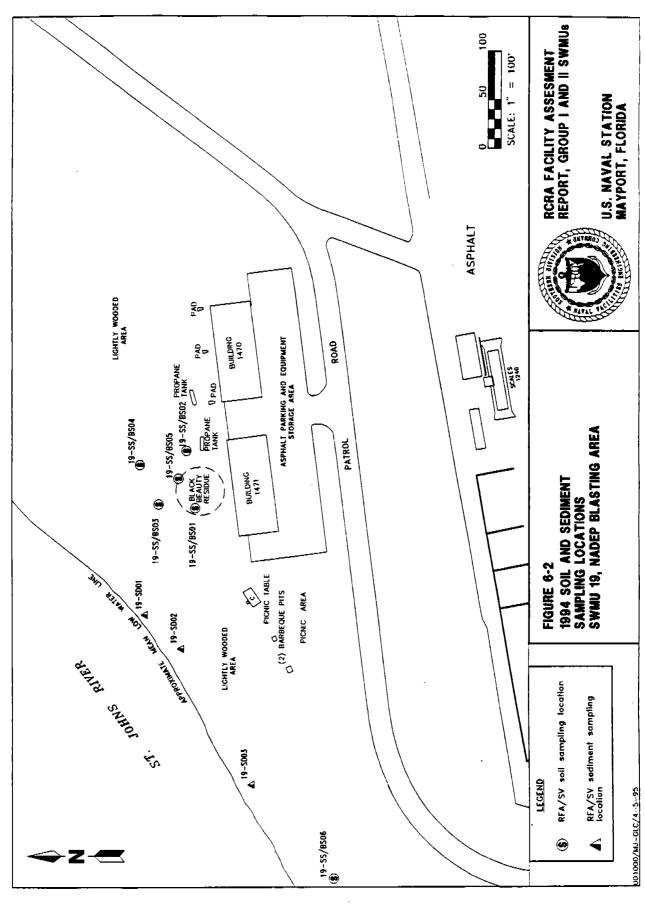
Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

			Sample Numb	per		Extraction Procedure Toxicity
Parameter	1	2	3	4	 5	Regulatory Criteria
Arsenic	<0.05	< 0.05	<0.05	<0.05	<0.05	5.0
Barium	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	100.0
Cadmium	<0.5	< 0.5	< 0.5	<0.5	<0.5	1.0
Chromium	<0.5	<0.5	< 0.5	< 0.5	< 0.5	5.0
Lead	< 0.5	< 0.5	<0.5	<0.5	<0.5	5.0
Mercury	< 0.01	0.03	0.01	< 0.01	0.02	0.2
Selenium	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1.0
Silver	< 0.5	< 0.5	<0.5	< 0.5	<0.5	0.5
Note: Concentrati	ons of extract	in milligrams	per liter So	urce: Enviropac	rt, 1989	·

MPT-19-SS06 for surface soil, MPT-19-BS06 for subsurface soil, and MPT-19-SD01 for sediment (Figure 6-2).

Soil and sediment sample locations were chosen to bias the sampling toward areas most likely to be contaminated based on land surface topography and site conditions at the time of sampling. In addition, three discrete samples, MPT-19-Z-001, MTP-19-Z-002, and MPT-19-Z-003, of the Black Beauty blasting media were collected for analysis by TCLP (USEPA Method 1311).

Surface and subsurface soil sampling was conducted in areas where Black Beauty was observed and sediment sampling was conducted along the shoreline of the St. Johns River in areas topographically downgradient of the blasting area. The surface soil samples were collected from the land surface to a depth of 1 foot bls. The subsurface soil samples were collected from 2 to 3 feet bls except MPT-19-BS02, which was collected from 2.5 to 3 feet bls. A 6-inch-thick piece of concrete was encountered from 2 to 2.5 feet bls at the location of MPT-19-BS02. The sediment samples were collected at a low tide stage from the land surface to a depth of 1 foot bls. No corresponding surface water samples were collected with the sediment samples.


Because many field activities are common to all NAVSTA Mayport SWMUs, the sampling procedures for RFI and RFA SV (confirmatory sampling) events are described in Section 2.1, Summary of Exploration and Sampling Program, of the NAVSTA Mayport GIR (ABB-ES, 1995b). Site-specific elements and deviations from sampling procedures, if any, particular to SWMU 19 are discussed in subsequent paragraphs, and standard operating procedures are referenced where necessary. Surface water and sediment sampling procedures and associated equipment decontamination procedures were conducted in general conformance with USEPA Region IV standard operating procedures (USEPA, 1991a).

Soil Sample Collection Procedure. Surface and subsurface soil sampling was accomplished as described in the NAVSTA Mayport RFI workplan (ABB-ES, 1991), and Subsection 2.1.1, Soil Sampling, of the GIR (ABB-ES, 1995b).

Sediment Sample Collection Procedure. Sediment sampling was accomplished as described in the NAVSTA Mayport RFI workplan (ABB-ES, 1991) and Subsection 2.1.3, Surface Water, Sediment, and Sludge Sampling, located in the GIR (ABB-ES, 1995b).

Laboratory Analyses. Surface and subsurface soil and sediment samples were analyzed for the same target analytes including VOCs, SVOCs, pesticides, PCBs, metals, and cyanide selected from the groundwater monitoring list presented in Appendix IX, 40 CFR 264, and USEPA Contract Laboratory Program target compound list and target analyte list. The environmental samples were analyzed using methods from Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW 846) (USEPA, 1986). A sample of the Black Beauty™ abrasive blasting media was collected for analysis by TCLP (USEPA Method 1311). A list of the target analytes is provided in Appendix A and complete analytical results are provided in Appendix B.

<u>6.3 FINDINGS</u>. The following presents analytical results for surface and subsurface soil samples, sediment samples, and the Black Beauty abrasive blasting media.

Surface and Subsurface Soil Sample Analytical Results. Tables 6-2 and 6-3 summarize the validated analytical results for organic and inorganic target analytes, respectively, detected in surface and subsurface soil samples collected at SWMU 19. A summary of frequencies of detection, range of detection limits, range of detected concentrations, arithmetic mean, and bench mark comparison values are provided in Tables 6-4 and 6-5 for surface and subsurface soil samples, respectively. Bench mark comparison values consist of background screening values computed from station wide surface and subsurface soil samples (ABB-ES, 1995b), the USEPA soil screening guidance values (USEPA, 1994), USEPA Region III RBC (USEPA, 1995), and the State of Florida cleanup goals (FDEP, 1995). The state of Florida cleanup goals consisted of residential values for surface soil and industrial worker values for subsurface soil.

Each of the bench mark criteria provided in Tables 6-4 and 6-5 are human health based and represent the lower of either a noncarcinogenic HI of 1, where values of less than 1 represent a concentration where noncarcinogenic effects are not likely, or a lifetime excess cancer risk of 10^{-6} , which represents a chance of 1 in 1,000,000 for an adverse carcinogenic effect for a continuous lifetime exposure. The concentrations listed for the USEPA Region III RBCs correspond to an HI of 0.1, whereas the USEPA Superfund SSLs and the State of Florida cleanup goals are based on an HI of 1. The NCP (40 CFR, Part 300) states that for carcinogens a lifetime excess cancer risk in the range of 10^{-4} (a chance of 1 in 10,000 for an adverse carcinogenic effect for a continuous lifetime exposure) to 10^{-6} represents concentrations that are considered by USEPA to be protective of human health.

Surface Soil. The surface soil at SWMU 19 typically consists of sands with shell fragments. Target analytes detected in the surface soil samples consist of 2 SVOCs (benzo(b)fluoranthene and bis(2-ethylhexyl)phthalate), 2 pesticides (4,4'-DDT and 4,4'-DDE), and 11 inorganics (arsenic, barium, beryllium, cadmium, chromium, copper, lead, nickel, selenium, vanadium, and zinc) (see Tables 6-2 and 6-3). VOCs and PCBs were not detected in the surface soil samples.

<u>Subsurface Soil</u>. Target analytes detected in the subsurface soil samples consist of 1 VOC (trichloroethene), 3 pesticides (chlorobenzilate, endrin ketone, and 4,4'-DDD), and 10 inorganics (arsenic, barium, beryllium, chromium, copper, lead, selenium, vanadium, zinc, and cyanide) (see Tables 6-2 and 6-3). SVOCs and PCBs were not detected in the subsurface soil samples.

Sediment Sample Analytical Results. Table 6-6 summarizes the validated analytical results for inorganic target analytes detected in sediment samples collected at SWMU 19. A summary of frequencies of detection, range of detection limits, range of detected concentrations, arithmetic mean, and bench mark comparison values are provided in Table 6-7. Bench mark comparison values for the SWMU 19 sediment samples consist of station wide background sediment samples (ABB-ES, 1995b), ER-L and ER-M values from The Potential for Biological Effects of Sediment-sorbed Contaminants Tested in the National Status and Trends Program, NOAA (Long and others, 1993), and TEL and PEL from Approach to the Assessment of Sediment Quality in Florida Coastal Waters, (McDonald, 1994).

Target analytes detected in the sediment samples consist of nine inorganics (arsenic, barium, beryllium, chromium, copper, lead, vanadium, zinc, and

Table 6-2 Organic Analytes Detected in Soil Samples at SWMU 19

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

		waypo	nt, Florida					
Analytical Batch No.:	R82	271	R827	71	R827	71	R827	1
Sample Location:	MPT-19	9-SS01	MPT-19	-SS03	MPT-19-	SS05	MPT-19-	SS06
Sample No.:	19880	01Dup	1988	003	1988	005	19880	006
Date Sampled:	06/3	0/94	06/30	/94	06/30	/94	06/30	/94
Sample depth (ft bis):	0 t	o 1	0 to	1	0 to	1	0 to	1
Common Name	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.
VOCs, Soil (µg/kg)							;	
Trichloroethene	-				_		-	
SVOCs, Soil (µg/kg)								
Benzo(b)fluoranthene			79	J	_	l	i –	
bis(2-Ethylhexyl)phthalate	7 2	J	_		-		-	ļ
Pesticides, Soil (µg/kg)								
Chlorobenzilate	-		-		-		-	ŀ
Endrin ketone	-		-		-		-	
4,4'-DDT	-		-		3.3	J	3.4	J
4.4'-DDE					2.2	J	1.3	J
4,4'-DDD			_			<u> </u>	<u> </u>	

See notes at end of table.

Table 6-2 (Continued) Organic Analytes Detected in Soil Samples at SWMU 19

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

	Maypo	rt, Florida				
Analytical Batch No.:	R82	271		- 1	R82	
Sample Location:	MPT-19	9-BS01	MPT-19-	BS01	MPT-19	-8504
Sample No.:	1989	3001	19BS00	1Dup	19BS	004
Date Sampled:	06/3	0/94	06/30	/94	06/30)/ 94
Sample depth (ft bis):	2 t	o 3	2 to	3	2 to	3
Common Name	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.
VOCs, Soil, (µg/kg)		<u> </u>			1	
Trichloroethene	_		-		2	J
SVOCs, Soil, (µg/kg)		}		ŀ	1	
Benzo(b)fluoranthene	-				-	
bis(2-Ethylhexyl)phthalate			-		_	
Pesticides, Soil, (µg/kg)		1			1	
Chlorobenzilate	-		-		34	J
Endrin ketone	-		16		-	
4,4'-DDT			-		-	
4,4'-DDE	_	1	-		-	
4,4'-DDD	2.5	<u> </u>	7.6	J		

Notes: Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA)
Level C.

Suffix Dup = identifies the duplicate of the corresponding environmental sample.

ft bis = sample collection depth in feet below land surface.

Conc. = concentration.

Qual. = qualifier.

VOCs = volatile organic compounds.

 μ g/kg = milligrams per kilogram.

- = analyte not detected.

SVOCs = semivolatile organic compounds.

"J" = estimated value.

			Inorga	ınic Ana	Table 6-3 rganic Analytes Detected in Soil Samples at SWMU 19	Table 6-3 ected in Sc	F3 Soil Sam	ples at t	SWMU 1	•				- -
					Groups ∪ U. N	s I and II RFA SV F U.S. Naval Station Mayport, Florida	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida							
Analytical Batch No.:	82	R8271	R8271	<u>-</u>	R8271	ļ "	R8271	<u>.</u>	H8271		R8271		R8271	
Sample Location:	MPT-1	MPT-19-SS01	MPT-19-SS01	-SS01	MPT-19-SS02	2088	MPT-19-SS03	SS03	MPT-19-SS04	.SS04	MPT-19-SS05	SS05	MPT-19-SS06	9088
Sample No.:	198	1988001	19SS001Dup	11Dup	1955002	- Z	1955003		1988004	904	19SS005	205	1988006	90
Date Sampled:	2/90	06/30/94	06/30/94	1/94	06/30/94	/94	06/30/94	/94	06/30/94	/94	06/30/94	/94	06/30/94	94
Sample depth (ft bis):	6	0 to 1	0 to 1	-	0 to 1	_	0 to 1	1	0 to 1	_	0 to 1	_	0 to 1	_
Soli (mg/kg)	Conc	Qual.	Conc.	Ouat.	Cone.	Qual.	Сопс.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.
Arsenic	0.58	- ا	0.5	7	0.88	٦	0.56	7	0.5	7	1.2	7	0.39	_
Bartum	23.7	ה	7.8	ſ	4.8	٦	2.5		2.0	7	13.2	7	1.8	7
Beryllium	4.0	ے_	0.09	7	0.08		7.0	7	ı		0.26		:	
Cadmium	0.38	¬	1.0	7	0.22	7	;		ı		ı		0.22	ŋ
Chromium	15.8	ל	5.0	7	9'1		2.5	٦	2.3	7	5.0	7	2.1	7
Copper	9.7	ר	5,3	7	2.9	ה	2.3	7	1.8	¬	2.7	ب	6.1	٦ .
Lead	11.4	<u> </u>	2,2	7	1.1	7	1.6	7	1,2	7	2.7	٦	5.	•
Nickel	4.0	ל	i		1		: -		:		6.1	7	ı	
Selenium	0.14	-	1		1		1		i		1		:	
Vanadium	7.8	¬	3.0	٦	3.8	7	t.	7	4 .	~	7.3	7	1.2	٦.
Zinc	32.6	~	10.8	¬	9. 8.	¬	4.0	~	4.9	¬	8.7	¬	r.c	٠
Cyanide	1		;		;		ı		;		:		1	
See notes at end of table.	Je.													

			Inorga	nic Ana	Table lytes Det	e 6-3 (Co	Table 6-3 (Continued) s Detected in Soil Sam	nples at	Table 6-3 (Continued) anic Analytes Detected in Soil Samples at SWMU 19	G				
					Groups	s I and II RFA SV F U.S. Naval Station Mayport, Florida	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	t						
N description	HA271	[R8271	-	R8271		R8271	-	H8271		R8271	<u>-</u>	R8271	Έ.
Analytical batter 140	MPT-19-BS01	-BS01	MPT-19-BS01	.BS01	MPT-19-BS02	-BS02	MPT-19-BS03	BS03	MPT-19-BS04	BS04	MPT-19-BS05	BS05	MPT-19-BS06	.BS06
Sample Locaron	19BS001	3001	19BS001Dup	110up	19BS002	700	19BS003	203	19BS004	90	19BS005	305	1985006	900
Date Sampled:	E/90	06/30/94	06/30/94	/94	06/30/94	/94	06/30/94	/94	06/30/94	/94	06/30/94	/94	06/30/94	1/94
Sample denth (ft bis):	- 5 - 5	2 to 3	2 to	to 3	2 to 3	9	2 to 3	9	2 to 3	6	2 to 3	8	2 to 3	<u>د</u>
Soil (mg/kg)	Conc.	Qual.	Canc.	Qual.	Canc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.
Common Natrie	0.64	_	0.72	7	1.6	7	1.0	7	1.3	7	0.72	٦	0.65	-
A sellic Baring	5.0	ت	1.6	ה	5.6		2.0	2	2.1	~	2.5		5.3	-
Beryllium	0.7	7	0.7	ל-	!		1		1		0.7	-	0.12 21	¬
Cadmium	1		:		!		ı		ı		1		ı ¦	
Chromium	2.3		2.0	<u> </u>	2.3		8:-	7	2.5		2.9		5.7	
Copper	1:0		0.83	¬	1.3	-	<u>-</u> -	ئ	6:0	-	9.0	¬ 	0.77	·
Lead	7		0.92		3.5	z	0.75		0.84	z 	0.			
Nickel	1		;		ı		1		1		1		ŀ	
Selenium	ı		1		0.13	<u>-</u>	;		:	_	1		; ;	_
Vanadium	1.7	7	<u>,</u>	¬	F.	<u>-</u>	1	<u>-</u>	2.1	-	6.	<u> </u>		· —
Zinc	1		1		8.4		t -		7.9		1			
Cyanide	0.21	7	1		_				,		<u>:</u>			
							Cleve Living	ر ج						

Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C. Suffix Dup = identifies the duplicate of the corresponding environmental sample. Notes:

It bis = sample collection depth in feet below land surface.

mg/kg = milligrams per kilogram.

Conc. = concentration.

Qual. = qualifier.

"J" = estimated value.

= analyte not detected.

MP-GI&II.RFA ASW.11.95

		Chem	icals of Poten	Table 6-4 Chemicals of Potential Concern in Surface Soils at SWMU 19	-4 n Surface S	oils at SWMU	19			
			Ü	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	4 SV Report tation orida	,		!		
Analyte	Frequency of Detection	Range of Reporting Limits	Range of Detected Concentrations (*) ²	Mean of Detected Concentrations ³	Background Screening Value	Risk Based Screening Concentration ⁵	Superfund Proposed Soil Screening Levets	Cleanup Goals for the Military Sites In Florida7	Analyte CPC? (Yes/No)	Reason
Volatiles (µg/kg)										
No Analytes Detected										
Semivolatiles (µg/kg)										
Benzo(b)fluoranthene	1/5	680 to 690	62	79	Q	880	006	1,400	2	S, P, G
bis (2-Ethy/hexyl) phthalate	1/5	340 to 690	206*	206	Q	46,000	46,000	45,000	8	S, P, G
Peeticides/PCBs (µg/kg)										
4,4'-DDE	1/5	0.69 to 0.7	3.3	3.3	2.3	1,900	2,000	2,900	2	S, P, G
4,4'-DDT	1/5	1.3 to 1.4	2.2	2.2	9	1,900	2,000	3,100	<u>8</u>	S, P, G
inorganica (mg/kg)										
Arsenic	5/2	E Z	0.5 to 1.2	0.74	Q	°0.37	0.4	°0.7	Yes	
Barium	5/2	R	2 to 15.75*	7.7	S.	550	5,500	5,000	Š	S, P, G
Beryllium	4/5	0.06 to 0.06	0.07 to 0.26	0.16	0.16	0.15	0,1	0.1	Yes	-
Cadmium	2/5	0.21 to 0.21	0.22 to 0.69*	0.45	8	3.9	38	37	S	e c
Chromium	5/2	Ë	1.6 to 10.4*	4.4	2.6	6601	06E ₀₁	150	2	S, P, G
Copper	5/2	R R	1.8 to 7.5*	е. 4	2.2	290	A A	2,900	S _O	S S
Lead	2/2	R	1.1 to 7.8*	2.9	2	1,400	1,400	1,500	S N	R. P.
Nickel	2/5	0.6 to 1.2	1.9 to 2.3*	2.1	2	160	1,600	1,500	8	R P D
Selenium	1/5	0.06 to 0.13	0.1*	0.1	1.36	33	390	330	2	8
Vanadium	2/5	ĸ.	1.4 to 7.3	3.9	4	22	920	480	운	S, P, G
Zinc	5/2	N.	3.8 to 21.7*	2.6	2.6	2,300	23,000	23,000	2	S, P.G
See notes on next page.										

Chemicals of Potential Concern in Surface Soils at SWMU19 Table 6-4 (Continued)

Groups I and # RFA SV Report U.S. Naval Station Mayport, Florida

Value indicated by asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetected values, 1/2 the contract required quantitation limit or Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values) contract required detection limit (CRDL) is used as a surrogate.

The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected including values qualified with a "J"; it does not include those samples where the analyte was not detected ("U" or "UJ" qualifiers) and rejected ("R" qualifier)

The background screening value is twice the average of detected concentrations for inorganic analytes in background samples. Organic values are one times the mean of detected concentration. Organic values are included for comparison purposes only.

EPA/903/R-93-001) was used for screening. Actual values are taken from the USEPA Region III RBC tables dated February 1995, and are based on a cancer risk of 10° and an concentrations (RBC) for residential surface soil exposure per January 1993 guidance (Selecting Exposure Routes and Contaminants of Concern by Risk-Based Screening. For all chemicals except the essential nutrients (calcium, iron, magneslum, potassium, and sodium), U.S. Environmental Protection Agency (USEPA) Region III risk based

Values are taken from the Florida Department of Environmental Protection memorandum, Cleanup Goals for Military Sites in Florida, dated April 5, 1995. The values are for the Source: USEPA. December, 1994. Soil Screening Guidance, Review Draft, USEPA, Office of Solid Waste and Emergency Response, Washington, D.C., EPA/540/R-94/101. adjusted hazard quotient of 0.1. For the essential nutrients, screening values were derived based on recommended daily allowances (RDAs).

aggregate resident based on a cancer risk of 10° and the child resident based on a hazard quotient of 1.

Analytes were included or excluded from the risk assessment for the following reasons:

S = the maximum detected concentration did not exceed the screening concentration and will not be considered further.

C = the analyte is a member of a chemical class that contains other chemicals of potential concern (CPCs) (i.e., carcinogenic polynuclear aromatic hydrocarbons [PAHs]).

M = the analyte was detected at less than 5 percent and is a CPC in more than one media.

P = the maskimum detected concentration did not exceed the USEPA proposed soil screening levels (SSLs), 9355.4-14FS, dated December 1994. G = the maximum detected concentration did not exceed the Florida cleanup goals and will not be considered further.
B = the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations.
F = the frequency of detection was less than 5 percent and professional judgment was used to exclude analyte from further study.

= the maximum detected concentration did not exceed the USEPA proposed soil screening levels (SSLs), 9355.4-14FS, dated December 1994.

The value is based on arsenic as a carcinogen. ₽

USEPA Office of Solid Waste and Emergency Response (OSWER) Directive No. 9355.4-12 revised interim recommended soil cleanup for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites. Ξ

The average of a sample and its duplicate is used for all table calculations. Notes: Sample locations include: 19SS01, 19SS02, 19SS03, 19SS04, and 19SS05.

Background sample locations include: MPT-B-SS1; MPT-B-SS2; MPT-B-SS3; MPT-B-SS4; MPT-B-SS5; and MPT-B-SS6. Sample duplicates: 19SS01D.

Duplicate background sample locations include: MPT-B-SS1DUP

DDE = dichlorodiphenyldichloroethene. DDT = dichlorodiphenyltrichloroethane. PCBs = polychlorinated biphenyls. SWMU = solid waste management unit. CPC = chemicals of potential concern.

NA = not reported; analyte detected in each sample; reporting limits are same as range of detected concentrations. mg/kg = milligrams per kilograms. µg/kg = micrograms per kilograms.
 ND = not detected in any background samples.
 NA = not available.

				Tab	Table 6-5					
ü		ξ	emicats of Po	Chemicals of Potential Concern in Subsurface Soil at SWMU 19	n in Subsur	face Soil at S'	WMU 19			
				Groups Land U.S. Na Maypo	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	τ.				
Analyte	Frequency of Detection	Range of Reporting Limits	Range of Detected Concentrations	Mean of Detected Concentrations ³	Background Screening Value [‡]	Risk Based Screening Concentration ⁵	Superfund Proposed Soil Screening Levels ⁸	Cleanup Goals for the Military Sites in Florida?	Analyte CPC? (Yes/No)	Reason
Volatiles (µg/kg)										
Trichloroethene	1/5	5 to 6	2	2	2	28,000	58,000	4,800	Š	S. P. G.
Semivolatiles (µg/kg)	6									
Chlorobenzilate	1/5	21 to 24	34	34	2	2,400	N A	Ā	Š	တ
Pesticides/PCBs (µg/kg)	g/kg)									
4,4'-000	1/5	1.4 to 1.6	5.05*	5.1	Q	2,700	3,000	17,000	2	လ ရ ပ
Endrin ketone	1/5	0.7 to 1.6	8.35*	8.4	Q	N A	Y Y	A	£	ιL
Inorganics (mg/kg)										
Arsenic	2/2	E Z	0.68* to 1.6	1.1	6:0	0.37	0.4	m	ž	_©
Barium	5/2	R.	1.8* to 2.6	2.2	7.2	550	5,500	74,000	ž	8
Beryllium	2/5	0.06 to 0.08	0.07*	0.07	0.14	0.15	0.1	0.2	ž	m
Chromium	2/2	æ	1.8 to 2.9	2.3	3.4	6£ ₀₁	10390	10220	Š	6 0
Copper	5/2	NA R	0.8 to 1.3	-	3.6	290	NA A	72,000	ž	₾
Lead	3/5	0.6 to 0.6	0.75 to 1.01*	0.92	2.8	11400	11400	1,000	욷	89
Selenium	1/5	0.13 to 0.15	0.13	0.13	9	33	390	006'6	Š	S, P, G
Vanadium	5/2	¥	1,45* to 3.1	2.1	3.2	22	250	4,800	2	œ
Zinc	5/2	4.35 to 6.4	7.9 to 8.4	9.2	6 .4	2,300	23,000	920,000	2	S, P, G
Cyanide	1/5	0.075 to 0.17	0.1425*	0.14	0.66	160	1,600	40,000	Ş	8
See notes on next page.	раде.									

Chemicals of Potential Concern in Subsurface Soil at SWMU 19 Table 6-5 (Continued)

Groups I and II RFA SV U.S. Naval Station Mayport, Florida

Value indicated by asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetected values, 1/2 the contract required quantitation Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values).

limit or contract required detection limit (CRDL) is used as a surrogate.

The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected including values qualified with a "J"; It does not Include those samples where the analyte was not detected ("U" or "UJ" qualifiers) and rejected ("R" qualifier)

The background screening value is twice the average of detected concentrations for inorganic analytes in background samples. Organic values are one times the mean

For all chemicals except the essential nutrients (calcium, iron, magnesium, potassium, and sodium), U.S. Environmental Protection Agency (USEPA) Region III risk based Screening, EPA/903/R-93-001) was used for screening. Actual values are taken from the USEPA Region III RBC tables dated February 1995, and are based on a cancer Source: USEPA. December, 1994. Soil Screening Guidance, Review Draft, USEPA, Office of Solid Waste and Emergency Response, Washington, D.C., EPA/540/Rrisk of 10° and an adjusted hazard quotient of 0.1. For the essential nutrients, screening values were derived based on recommended daily allowances (RDAs). concentrations (RBC) for residential surface soil exposure per January 1993 guidance (Selecting Exposure Routes and Contaminants of Concern by Risk-Based of detected concentration. Organic values are included for comparison purposes only.

Values are taken from the Florida Department of Environmental Protection memorandum, Cleanup Goals for Military Sites in Florida, dated April 5, 1995. The values are for the industrial worker based on a cancer risk of 10° and the child resident based on a hazard quotient of 1.

Analytes were included or excluded from the risk assessment for the following reasons:

G = the maximum detected concentration did not exceed the Florida cleanup goals and will not be considered further.

B = the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations. S = the maximum detected concentration did not exceed the screening concentration and will not be considered further.

F = the frequency of detection was less than 5 percent and professional judgment was used to exclude analyte from further study.

C = the analyte is a member of a chemical class that contains other chemicals of potential concern (CPCs) (i.e., carcinogenic polynuclear aromatic hydrocarbons

= the maximum detected concentration did not exceed the USEPA proposed soil screening levels (SSLs), 9355.4-14FS, dated December 1994 M = the analyte was detected at less than 5 percent and is a CPC in more than one media.

The value is based on arsenic as a carcinogen.

2

USEPA Office of Solid Waste and Emergency Response (OSWER) Directive No. 9355.4-12 revised interIm recommended soli cleanup for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites.

Notes: The average of a sample and its duplicate is used for all table calculations.

Sample locations include: 19BS001, 19BS002, 19BS003, 19BS004, and 19BS005.

Background sample locations include: MPT-B-BS1; MPT-B-BS4; MPT-B-BS5; and MPT-B-BS6. Duplicate sample: 19BS001D.

Duplicate background sample tocations include: MPT-B-BS1DUP,

PCBs = polychlorinated biphenyls. SWMU = solid waste management unit. CPC = chemicals of potential concern. µg/kg = micrograms per kilograms.

not available

NR = not reported; analyte detected in each sample; DDD = dichlorodiphenyldichloroethene. mg/kg = milligrams per kilograms.

eporting limits are same as range of detected concentrations. ND = not detected in any background samples.

cyanide). VOCs, SVOCs, pesticides, and PCBs were not detected in the sediment samples (Table 6-6).

Black Beauty Blasting Media. Samples of the Black Beauty abrasive blasting media were collected to assess whether the material could be characterized as hazardous using the TCLP analysis (Table 6-8). Concentrations of barium, cadmium, and chromium were detected in the extracts. The results indicate that the Black Beauty does not meet the definition of a RCRA-characteristic hazardous waste.

6.4 PRELIMINARY RISK EVALUATION. The following presents an assessment of the surface soil, subsurface soil, and sediment samples collected at SWMU 19 with station wide background samples and bench mark values.

<u>Surface Soil Samples</u>. None of the SVOCs or pesticides detected in the surface soil samples exceeded the bench mark values. Two of the inorganic analytes, arsenic and beryllium, were detected in surface soil samples at concentrations that exceed bench mark values, which are based on a lifetime excess cancer risk of 10^{-6} (Table 6-4).

Arsenic was not detected in the background surface soil samples. The five surface soil samples and the duplicate collected at SWMU 19 and the reference sample (MPT-19-SS06) contained arsenic at concentrations that exceeded the USEPA Region III RBC (0.37 mg/kg) (Figure 6-2). The five soil samples and duplicate collected at SWMU 19 also contained arsenic at concentrations that exceeded the proposed Superfund SSL (0.4 mg/kg). The concentration of arsenic in the reference sample was less than this bench mark. Two samples contained arsenic at concentrations that exceed the FDEP cleanup goal (0.7 mg/kg).

Three samples contained beryllium at a concentration that exceeded the background screening value (0.16 mg/kg). Beryllium was not detected in the reference sample (MPT-19-SS06). Three samples contained beryllium at concentrations that exceed the USEPA Region III RBC (0.15 mg/kg) and the proposed Superfund SSL and the Florida cleanup goal of 0.1 mg/kg. The surface soil background screening value for beryllium also exceeds the bench mark values.

<u>Subsurface Soil Samples</u>. None of the VOCs, SVOCs, pesticides, or inorganics detected in the subsurface soil samples exceeded the bench mark values.

<u>Sediment Samples</u>. None of the eight inorganic analytes (arsenic, barium, beryllium, chromium, copper, lead, vanadium, and zinc) detected in the two sediment samples collected near SWMU 19 exceeded background screening values. The reference sample (MPT-19-SD03) contained concentrations of cyanide in addition to these analytes and did not contain beryllium.

Table 6-6 Inorganic Analytes Detected in Sediment Samples at SWMU 19

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

			Mayport, Flori	08				
Analytical Batch No.: Sample Location:	R827	\$ D 01	R827 MPT-19- 19SD00	SD01	R821 MPT-19 19SD	-SD02	R827 MPT-19-1	SD03
Sample No.:	19SD	001	ļ				00/00	(D.4
Date Sampled:	06/30	/94	06/30	/94	06/30)/ 94	06/30	/ 94
Sediment (mg/kg)	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.	Conc.	Qual.
Common Name			 					
Arsenic	1.4	J	1.1	. J	1.4	J	1.5	J
Barium	6.0	J	5.8	J	4.4	J	2.6	J
Beryllium	0.11	J	0.1	J	-		-	
Chromium	1.3	J	1.2	J	-		1.8	J
Copper	0.6	J	0.95	J	0.42	J	0.6	J
Lead	1.0		0.76	Ì	0.52	J	0.78	
Vanadium	2.8	J	2.3	J	1.8	J	1.6	J
	9.2	J	_	1	5.3	J	6.8	J
Żinc	3.2		_		_	1	0.18	J
Cyanide		<u> </u>		1		<u> </u>		

Notes: Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C. Suffix Dup = identifies the duplicate of the corresponding environmental sample.

Conc. = concentration.

Qual. = qualifier.

mg/kg = milligrams per kilogram.

"J" = estimated value.

-- = analyte not detected.

		Cher	Table 6-7 Chemicals of Potential Concern in Sediment Sample at SWMU 19	Table 6-7 al Concern in Se	Sediment Sa	mple at S	WMU 19				
				Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	A SV Report Station orida						
	Frequency	Range of	Project Co.	Mean of	Background	Long and Others	Others	MacDonald	nald	Analyte CPC	
Analyte	of Detection	Reporting Limits	Concentrations(*) ²	Detected Concentrations ³	Screening Value*	ER-L ⁵	ER-M°	TEL,	PEL	(YES/NO)	невзоп
Voletiles (µg/kg)											
No Analytes Detected											
Semivolatiles (µg/kg)											
No Analytes Detected											
Pesticides/PCBs (µg/kg)	=										
No Analytes Detected											
inorganics (mg/kg)											1
Arsenic	2/2	Æ	1,25* to 1,4	1.3	5,4	8.2	20	7.24	41.6	Ş	6
Barium	2/2	R	4.4 to 5.9*	5.2	14.6	A A	¥	¥	ž	2	m
Beryllium	1/2	0.07 to 0.07	0.105*	0.11	0.54	₹	¥ Z	₹	ž	8	6 0
Chromium	1/2	0.61 to 0.61	1.3*	1.3	15.2	5	370	52.3	160	Š	Ð
Copper	2/2	E Z	0.42 to 0.775*	9.0	6.8	8	270	18.7	6 0	2	œ
Lead	2/2	S E	0.52 to 0.88*	2.0	9,2	46.7	218	30.2	112	8	
Vanadium	2/2	Z E	1.8 to 2.55*	2.5	14.8	¥ Z	Ą	¥ ¥	ž	8	
Zinc	2/2	2.95 to 2.95	5.3 to 6.075*	5,7	25.8	150	410	124	27.1	Š	5
See notes on next page.	6										

Chemicals of Potential Concern in Sediment Sample at SWMU 19 Table 6-7 (Continued)

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

Hange of Mean of Background Long and Others MacDonald Analyte CPC Reason Petected Screening ER-L ⁵ ER-M ⁶ TEL ⁷ PEL ⁸ (YES/NO)												
ER-L ⁵ ER-M ⁶ TEL ⁷ PEL ⁸	Bande of Bande of	Banga of Range of	Range of		Mean of	Background		Others	MacDona		nalyte CPC	Pageon "
בט-ר בייניון	of Reporting Detected	Reporting Detected	Detected	-	Detected	Screening		9Mg	TE17) JEF	YES/NO)	
	Detection Limits Concentration	Limits Concentration	Concentrati	ons	Concentrations	Value.	ı		1		1	

Value indicated by asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetected values, 1/2 the contract required quantitation Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values).

limit or contract required detection limit (CRDL) is used as a surrogate.

The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected including values qualified with a "J"; It does not include those samples where the analyte was not detected ("U" or "UJ" qualitiers) and rejected ("R" qualifier)

The background screening value is twice the average of detected concentrations for inorganic analytes in background samples. Organic values are one times the mean

Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments" by Long and other, National Oceanic and Atmospheric Administration, Effects range-low (ER-L) value represents a concentration intended to estimate conditions in which effects would be rarely observed. Source: "Incidence of Adverse of detected concentration. Organic values are included for comparison purposes only.

Effects range-median (ER-M) represents the concentration where effects would occasionally occur. Source: "Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments" by Long and other, National Oceanic and Atmospheric Administration, 1993

Threshold Effects Level (TEL) is a concentration at which no effects have been observed in any test species or biological community. Source: "Approach to the

Probable Effects Level (PEL) is the lower concentration limits at which adverse effects may first be observed. Source: "Approach to the Assessment of Sediment Quality Assessment of Sediment Quality in Florida Coastal Waters" MacDonald, November 1994.

Analytes were excluded from the risk assessment for the following reasons: in Florida Coastal Waters" MacDonald, November 1994.

s = the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations listed below (for inorganic compounds only).

L = the maximum detected concentration did not exceed the effects range-low (ER-L).

M = the maximum detected concentration did not exceed the effects range-median (ER-M).

 $N=the\ maximum\ detected\ concentration\ did\ not\ exceed\ the\ Threshold\ Effects\ Level\ (TEL)$. $P=the\ maximum\ detected\ concentration\ did\ not\ exceed\ the\ Probable\ Effects\ Level\ (PEL)$. the maximum detected concentration did not exceed the Probable Effects Level (PEL).

Notes: The average of a sample and its duplicate is used for all table calculations.

Sample locations include: 19SD001, 19SD002

Background sample locations include: MPT-B-SD1, MPT-B-SD2, MPT-B-SD3 MPT-B-SD4, MPT-B-SD5, MPT-B-SD6, MPT-B-SD7, and 00SD001

Duplicate background sample focations include: MPT-B-SD-3D, MPTBSD7D

SWMU = solid waste management unit.

CPC = chemicals of potential concern. μg/kg = micrograms per kilograms.

PCBs = polychlorinated biphenyls.

mg/kg = milligrams per kilograms.

NN = not reported; analyte detected in each sample; reporting limits are same as range of detected concentrations.

NA = not available.

Table 6-8 Toxicity Characteristic Leaching Procedure Testing of Black Beauty™ at SWMU 19

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

					-
Sample Identification: Date Sampled:	MPT-19-Z001 6/30/94	MPT-19-Z002 6/30/94	MPT-19-Z003 6/30/94	Toxicity Characteristic Limits (40 CFR 261.24)	Analytical Reporting Limit
Arsenic	< 0.015	< 0.015	< 0.015	5.0	0.015
Barium	0.68	0.76	0.65	100.0	0.001
Cadmium	0.0077	0.013	0.0021	1.0	0.001
Chromium	0.027	0.011	0.0072	5.0	0.003
Lead	< 0.025	< 0.025	< 0.025	5.0	0.025
Mercury	< 0.0002	< 0.0002	< 0.0002	0.20	0.0002
Selenium	< 0.035	< 0.035	< 0.035	1.00	0.035
Silver	< 0.002	<0.002	< 0.002	5.0	0.002

Notes: Result is milligrams per liter (mg/z) in extract. CFR = Code of Federal Regulations.

6.5 CONCLUSIONS AND RECOMMENDATIONS.

6.5.1 _ Conclusions

<u>Surface Soil Samples</u>. Target analytes detected in the surface soil samples consist of 2 SVOCs, 2 pesticides, and 11 inorganics (see Tables 6-2 and 6-3). VOCs and PCBs were not detected in the surface soil samples.

None of the SVOCs or pesticides detected in the surface soil samples exceeded the bench mark values. Two of the inorganic analytes, arsenic and beryllium, were detected in surface soil samples at concentrations that exceed bench mark values, which are based on a lifetime excess cancer risk of 10^{-6} (Table 6-4).

Concentrations of arsenic and beryllium exceeded human health based risk bench mark values which represent a lifetime excess cancer risk of 10^{-6} . However, the potential risk associated with observed concentrations of arsenic and beryllium is within a range (10^{-4} to 10^{-6}) that is considered by USEPA to be protective of human health (40 CFR Part 300) (see Table C-4, Appendix C).

<u>Subsurface Soil</u>. Target analytes detected in the subsurface soil samples consist of 1 VOC, 3 pesticides, and 10 inorganics (see Tables 6-2 and 6-3). SVOCs and PCBs were not detected in the subsurface soil samples.

None of the VOCs, pesticides or inorganics detected in the subsurface soil samples exceeded the bench mark values.

Black Beauty™ Blasting Media. The TCLP results indicate that the Black Beauty™ does not meet the definition of an RCRA-characteristic hazardous waste (40 CFR 261.24).

<u>Sediment</u>. None of the eight inorganic analytes detected in the two sediment samples collected near SWMU 19 exceeded background screening values. The results of the reference sample are comparable to the two sediment samples collected near SWMU 19. These analytical results suggest that the presence of the Black Beauty near the shoreline has not contributed to the inorganic constituents detected in these samples.

 $\underline{6.5.2}$ Recommendations SWMU 19 is recommended for no further investigation at this time based on the following rationale.

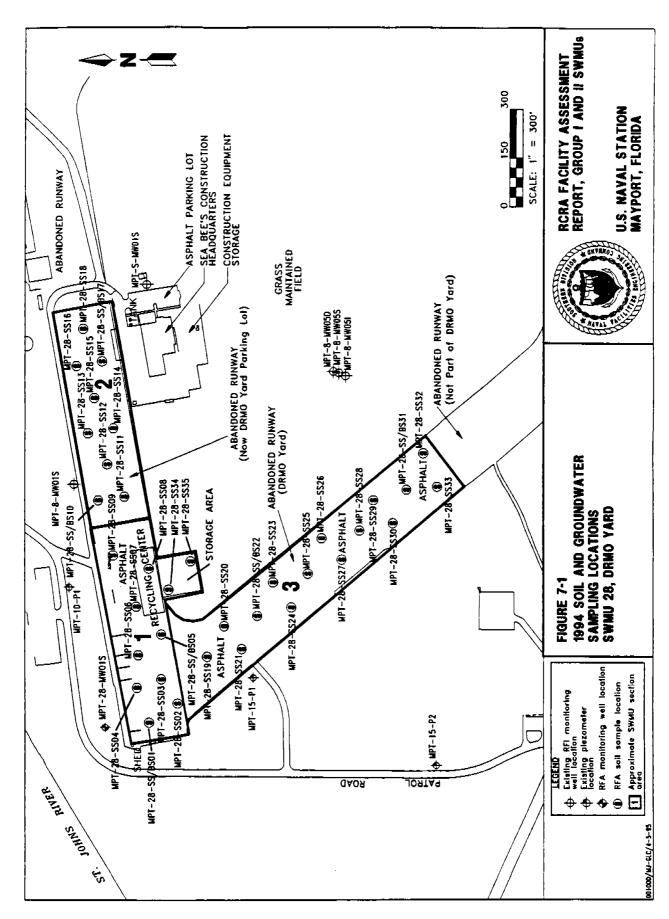
- No VOCs or PCBs were detected in the surface soil samples.
- None of the SVOCs (benzo(b)fluoranthene and bis(2-ethylhexyl)phthalate) or pesticides (4,4'-DDT and 4,4'-DDE) detected in the surface soil samples exceeded the bench mark values.
- Concentration of arsenic and beryllium detected in surface soil samples exceeded human health based risk bench mark values, which represent a lifetime excess cancer risk of 10^{-6} . However, the potential risk associated with observed concentrations of arsenic and beryllium is within a range (10^4 to 10^{-6}) that is considered by USEPA to be protective of human health (40 CFR Part 300).
- SVOCs and PCBs were not detected in the subsurface soil samples.

- None of the VOCs, pesticides or inorganics detected in the subsurface soil samples exceeded the bench mark values.
- Analytical results indicate that the Black Beauty[™] does not meet the definition of an RCRA-characteristic hazardous waste.
- None of the eight inorganic analytes (arsenic, barium, beryllium, chromium, copper, lead, vanadium, and zinc) detected in the two sediment samples collected near SWMU 19 exceeded background screening values.
- A non-time-critical removal action is planned in 1995 or 1996 to excavate and remove the Black Beauty $^{\text{\tiny M}}$.
- The default assumptions used in estimating risk based bench mark concentrations may not be representative and likely overstate the specific exposure present at the site (i.e., underestimate the concentration that would result in a lifetime excess cancer risk of 10⁻⁶). Because the chemicals were detected in only one or two media (i.e., soil and or groundwater) all of the exposure pathways and assumptions used to estimate the bench mark concentrations are not relevant. Therefore, the concentrations may exceed the bench mark values (USEPA, 1994, USEPA, 1995, and FDEP, 1995) but actually result in a lower excess cancer risk than 10⁻⁶.

7.0 SWMU 28, DEFENSE REUTILIZATION AND MARKETING OFFICE (DRMO) YARD

7.1 SITE DESCRIPTION AND BACKGROUND. The DRMO Storage Area (SWMU 28) is located in the northern part of NAVSTA Mayport on an abandoned asphalt runway, south of the former Oily Waste Pit (SWMU 6) and the Oily Waste Treatment Plant (OWTP) sludge drying beds (SWMU 7). The storage area is located on an abandoned runway approximately 1,300 feet long and 150 feet wide, oriented west to east parallel to the St. Johns River, and an area of runway that extends to the south approximately 800 feet from the west end of the SWMU. The entire DRMO area is fenced.

The DRMO Yard covers a large area (315,000 square feet); therefore, it was divided into three separate sections for descriptive purposes. The first two sections are located along the east-west runway, which is 1,300 feet long and 150 feet wide (195,000 square feet). Section 1 of SWMU 28 is 650 feet long and 150 feet wide and consists of the western half (97,500 square feet) of the abandoned east-west runway. Section 1 also contains a storage yard. SWMU 19 is located to the north of this section (Figure 7-1). Section 2 is 650 feet long and 150 feet wide and consists of the eastern half of the abandoned east-west runway and is also 97,500 square feet. SWMUs 6 and 7 are located to the north of this section (Figure 1-4). Section 3 of SWMU 28 is the rectangular area that extends at an angle to the southeast, 800 feet from the west end of the runway. The total area of Section 3 is 120,000 square feet. Formerly, Sections 1, 2, and 3 were used to store scrap metal and other items. Currently, Sections 1 and 3 are in the DRMO Yard and Section 2 is a parking area.


SWMU 28 is used for staging scrap metal and other items turned in to the DRMO for salvage. The area has been in use since 1967 and items stored there that may have leaked or spilled include transformers (oils and PCBs), paints (lead), and solvents (chlorinated and non-chlorinated). At the time of the VSI, vegetation was noted to be growing through the asphalt (A. T. Kearney, 1989).

SWMU 28 was identified as NIRP Site 10 in the IAS, in which it was estimated that less than 200 gallons of liquid had been spilled in the area (ESE, 1986). The RFA (A. T. Kearney, 1989) recommended that soil samples be collected in the vicinity of the runway pad, based on the inventory of materials stored at and possibly spilled in the area.

7.2 RFA SV FIELD INVESTIGATIONS. RFA SV field investigations at SWMU 28 included collection of surface soil, subsurface soil, and groundwater samples. Soil sampling was conducted from August 5 through August 10, 1994. Groundwater sampling occurred in June and August 1994.

Soil and groundwater sampling was conducted in the vicinity of the abandoned runway pad to assess the release of hazardous constituents at the site. The objectives of the data gathering activities at SWMU 28 were to obtain surface soil, subsurface soil, and groundwater samples to evaluate these media as potential exposure pathways.

The soil sampling program at SWMU 28 included collection of surface and subsurface soil samples within the DRMO Yard (Figure 7-1). Nine surface soil samples were collected at both Section 1 (MPT-28-SSO1 through MPT-28-SSO9) and

Section 2 (MPT-28-SS10 through MPT-28-18). Fifteen surface soil samples were collected in Section 3 (MPT-28-SS19 through MPT-28-SS33). Two surface soil samples were collected in the storage area behind the recycling center on the south side of Section 1 (MPT-28-SS34 and MPT-28-SS35).

The surface soil samples were located in a staggered triangular pattern to achieve the most effective coverage of the DRMO Yard. Surface soil sample locations were chosen to bias the sampling toward areas most likely to be contaminated based on existing site knowledge. Some sample locations were adjusted within a radius of approximately 30 feet from the proposed location to areas evidenced by staining or asphalt cracking noted at the time of sampling.

Two subsurface soil samples were collected from each of the three sections in the DRMO yard. Subsurface samples were collected from the following locations:

- Section 1, samples MPT-28-BS01 and MPT-28-BS05;
- Section 2, samples MPT-28-BS10 and MPT-28-BS17; and
- Section 3, samples MPT-28-BS22 and MPT-28-BS31 (Figure 7-1).

The locations of the subsurface soil samples were selected based on two criteria. One subsurface soil sample location was selected based on screening each surface soil sample with an organic vapor analyzer (OVA). Within each section, the location of the surface soil sample with the highest OVA measurement was selected for collecting the subsurface soil sample. The other subsurface soil sample location was selected in the area with the most surface soil staining. If either of these conditions were not met, one sample was collected from the center of the sampling area and one sample was collected from an area that exhibited pavement deterioration or cracking.

At each of the subsurface soil sample locations, a boring was augered by hand from the land surface to the water table and samples were collected at discrete 2-foot intervals. An OVA was used to screen each subsurface soil sample. The sample with the highest OVA measurement was selected for laboratory analyses. When organic vapors were not detected, the sample was collected from 3 to 4 feet bls with the exception of sample 28BSO0106, which was collected from 5 to 6 feet bls because the groundwater table was deeper at this location than at the other locations.

Groundwater samples were collected from three monitoring wells and two piezometers located near SWMU 28 (Figure 7-1). Piezometers are installed and constructed the same as shallow monitoring wells. These wells included monitoring wells MPT-8-MW01S, MPT-8-MW05S, and MPT-28-MW01S, and piezometers MPT-10-P01 and MPT-15-P01. Monitoring well MPT-8-MW01S is located adjacent to SWMU 7, the OWTP Sludge Drying Beds, and was sampled previously during the RFI activities for SWMUs 6 and 7 (January 1993). Monitoring well MPT-8-MW05S is located in the maintained field between two of the runway sections, and is one of the station wide background monitoring wells. Monitoring well MPT-8-MW05S has been previously sampled (January 1993). Monitoring well MPT-28-MW01S and piezometers MPT-10-P01 and MPT-15-P01 were sampled for the first time during the 1994 RFA SV investigations.

Because many field activities are similar for all NAVSTA Mayport SWMUs, the sampling procedures for RFI and RFA SV (confirmatory sampling) events are described in Section 2.1, Summary of Exploration and Sampling Program, of the

NAVSTA Mayport GIR (ABB-ES, 1995b). Site-specific elements and deviations from sampling procedures, if any, particular to SWMU 28 are discussed in subsequent paragraphs, and standard operating procedures are referenced where necessary. Monitoring well installation, soil and groundwater sampling procedures, and associated equipment decontamination procedures were conducted in general conformance with USEPA Region IV standard operating procedures (USEPA, 1991a).

<u>Soil Sample Collection Procedure</u>. Surface and subsurface soil sampling was accomplished as described in the NAVSTA Mayport RFI workplan (ABB-ES, 1991), and Subsection 2.1.1, Soil Sampling, of the GIR (ABB-ES, 1995b).

Monitoring Well Installation Procedure. Drilling and well installation were accomplished as described in the NAVSTA Mayport RFI (ABB-ES, 1991), and Subsection 2.1.1, Monitoring Well and Piezometer Installation, of the GIR (ABB-ES, 1995b).

Groundwater Sample Collection Procedure. Groundwater sampling was accomplished as described in Subsection 2.1.4, Groundwater Sampling, of the GIR (ABB-ES, 1995b).

Laboratory Analyses. Soil and groundwater samples were analyzed for the same target analytes including VOCs, SVOCs, pesticides, PCBs, metals, and cyanide selected from the groundwater monitoring list contained in Appendix IX, 40 CFR 264, and USEPA Contract Laboratory Program target compound list and target analyte list. The environmental samples were analyzed using methods from Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW 846) (USEPA, 1986). A list of the target analytes is provided in Appendix A and analytical results are provided in Appendix B.

7.3 FINDINGS. The following presents a brief description of the results of the RFA SV sampling activities at SWMU 28. The findings include site geologic and hydrogeologic conditions and results of the analyses of surface and subsurface soil samples and groundwater samples.

Site Geology Lithologic information in the vicinity of SWMU 28 is obtained from one soil boring drilled in June 1994 at SWMU 28 for the installation of a shallow monitoring well (monitoring well with screen placed across the water table) and four monitoring wells (MPT-8-MWO1S, MPT-8-MWO5S, MPT-10-PO1, and MPT-15-PO1) located near SWMU 28 (Figure 2-1). Boring logs are found in the GIR, Appendix A, Boring Logs (ABB-ES, 1995b).

Subsurface soils encountered during installation of other monitoring wells near SWMU 28 had minimal variation over the lateral distance between each location. The following is a description of the subsurface soils encountered at each of the five locations.

- Boring MPT-8-MW05S (located on the southeastern side of SWMU 28) encountered a sand from the land surface to the explored depth of approximately 15.0 feet. A 3-inch thick seam of organic rich sand was encountered at a depth of approximately 10.0 feet bls.
- Boring MPT-8-MW01S (northeastern side of SWMU 28) encountered sand from the land surface to an explored depth of approximately 17.0 feet.

- Boring MPT-10-P01 (north central side of SWMU 28) encountered sand from the land surface to an explored depth of approximately 15.0 feet.
- Boring MPT-15-P01 (western central side of SWMU 28) encountered sand from the land surface to an explored depth of approximately 15.0 feet.
- Boring MPT-28-MW01S (located near the northwestern corner of SWMU 28) encountered a silty sand to the explored depth of 18.5 feet bls. A 2-footthick layer of clayey sand was encountered at a depth of approximately 4.0 feet bls.

Geologic cross sections provided in the NAVSTA Mayport GIR (see Figures 3-5 and 3-6, ABB-ES, 1995b) depict subsurface geologic conditions in the vicinity of SWMU 28.

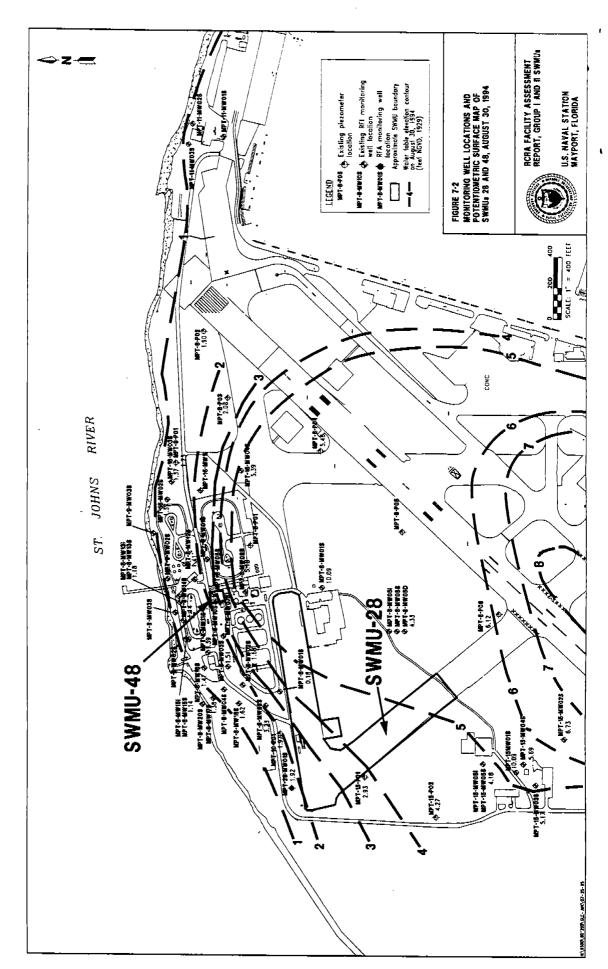
Site Hydrogeology. The groundwater levels at the SWMU 28 monitoring well and for other RFI and RFA SV sites at NAVSTA Mayport were measured within a 7-hour period on August 30, 1994. The depth to the groundwater level at each monitoring well location was measured relative to a notch or mark on the north side of each monitoring well surveyed to the NGVD of 1929 (commonly referred to as msl). The depths to groundwater measured at each monitoring well adjacent to SWMU 28 are provided in Table 7-1 and Appendix G has groundwater data for other monitoring wells in the vicinity of the site. Also shown on the table are values for the water level measurements relative to the NGVD datum. The elevation data were used to prepare a map of the potentiometric surface (lines that represent altitudes of equal height above the reference datum) of the water table zone of the surficial aquifer. The potentiometric surface map of the water table is used to infer that groundwater flow is from higher to lower altitudes in a direction perpendicular to the equipotential lines. Based on the equipotential lines shown on Figure 7-2, the groundwater flow direction at SWMU 28 is generally toward the northwest.

Table 7-1
Summary of SWMU 28 Water Level Data

Groups I and II RFA SV Report
U. S. Naval Station
Mayport, Florida

	Elev.		ter Level 3/30/94	
Well/Piezometer	(msl)	Time (EST)	Depth (TOC)	Elev. (msl)
MPT-8-MW01S	10.19	12:03 p.m.	10.01	0.18
MPT-8-MW05S	13.00	10:07 a.m. ¹	8.67	4.33
MPT-10-P01	10.68	17:10 p.m.	8.71	1.97
MPT-15-P01	13.28	17:10 p.m.	9.45	3.83
MPT-28-MW01S	11.85	17:15 p.m.	9.93	1.92

Water level recorded by a programmable electronic monitor.


Notes: SWMU = solid waste management unit.

Elev. = elevation, National Geodetic Vertical Datum, 1929.

msi = mean sea level.

EST = Eastern Standard Time.

TOC = top of casing as datum.

7-6

The hydraulic position of the monitoring wells relative to SWMU 28 also is based on the equipotential lines shown on Figure 7-2. Monitoring well MPT-8-MW05S is located hydraulically upgradient of SWMU 28 (Table 7-2). Piezometer MPT-15-P01 is along a similar hydraulic equipotential line as the western part of SWMU 28. Monitoring wells MPT-8-MW01S, MPT-10-P01S, and MPT-28-MW01S are located on a hydraulic downgradient side of SWMU 28.

An approximation of the horizontal linear velocity of groundwater flow in the water table zone of the surficial aquifer in the vicinity of SWMU 28 is based on the potentiometric surface (hydraulic gradient) of the water table, estimates of radial hydraulic conductivities at monitoring well locations, and an estimate of the porosity (ratio of the volume of voids to total volume of the soil) of the saturated subsurface soil. The horizontal linear velocity was calculated from a modified form of Darcy's equation and represents the ratio of linear travel distance to travel time between two points (Freeze and Cherry, 1979). The horizontal linear velocity is expressed as $V_{\rm D}/N_{\rm e}$, where $V_{\rm D}$ is the Darcy velocity ($V_{\rm D}={\rm KI}$, where K is radial hydraulic conductivity and I is hydraulic gradient) and $N_{\rm e}$ is the effective porosity of the saturated geologic stratum. An effective porosity of 0.35 is used in calculations. (See Section 3.2.3, Physical Characteristics of Soil, in the NAVSTA Mayport GIR, ABB-ES, 1995b).

In-situ radial hydraulic conductivity values for monitoring wells in the vicinity of SWMU 28 are presented in Table 7-3. The range of in-situ radial hydraulic conductivity values in the vicinity of SWMU 28 are approximately 1.2 feet per day (MPT-8-MW05S) to 5.5 feet per day (MPT-15-P02). The hydraulic gradient is not uniform over SWMU 28 and a value of 0.006 ft/ft near the central part of SWMU 28 was used in the computation of the horizontal linear velocity. An approximation of the horizontal linear velocity of the groundwater ranges from approximately 0.02 to 0.09 foot per day.

Based on the values for horizontal linear velocity and assuming no dilution, dispersion, or retardation, a contaminant in the water table zone of the surficial aquifer may travel at rates of 7 to 34 feet per year (Table 7-3).

Surface and Subsurface Soil Analytical Results. Tables 7-4 and 7-5 summarize the validated analytical results for organic and inorganic target analytes, respectively, detected in surface soil samples collected at SWMU 28. Tables 7-6 and 7-7 summarize the validated analytical results for organic and inorganic target analytes detected in subsurface soil samples collected at SWMU 28. A summary of frequencies of detection, range of detection limits, range of detected concentrations, arithmetic mean, and bench mark comparison values are provided in Tables 7-8 and 7-9 for surface and subsurface soil samples, respectively. Bench mark comparison values consist of background screening values computed from station-wide surface and subsurface soil samples (ABB-ES, 1995b), the USEPA soil screening guidance values (USEPA, 1994), USEPA Region III RBC (USEPA, 1995) and the State of Florida cleanup goals (FDEP, 1995). The State of Florida cleanup goals consist of residential values for surface soil and industrial worker values for subsurface soil.

Each of the bench mark criteria provided in Tables 7-8 and 7-9 are human health based and represent the lower of either a noncarcinogenic HI where values of less than 1 represent a concentration where noncarcinogenic effects are not likely or a lifetime excess cancer risk of 10^{-6} , which represents a chance of 1 in

Table 7-2 Summary of Monitoring Well Installations Near SWMU 28

Groups I and II RFA SV Report U. S. Naval Station Mayport, Florida

SWMU Number	Monitoring Well No.	Hydraulic Position	Diameter (inches)	Total Depth (feet)	Screened Interva (ft bis)
8	MPT-8-MW01S	D Q	2	10	6 to 16
8	MPT-8-MW05S	U	2	10	5 to 15
10	MPT-10-P01	D	2	15	10 to 15
15	MPT-15-P01	s	2	15	10 to 15
28	MPT-28-MW01S	D	2	12.5	8 to 18

Notes: SWMU = solid waste management unit.

ft bis = feet below land surface.

D = Hydraulically downgradient from SWMU 28.

U = Hydraulically upgradient from SWMU 28.

S = Along a similar hydraulic gradient.

Table 7-3
Average Groundwater Velocities at SWMU 28

Groups I and II RFA SV Report U. S. Naval Station Mayport, Florida

Location	Estimated Effective Porosity	Radial Hydraulic Conductivity ² (feet per day)	Hydraulic Gradient¹ (feet per feet)	Estimated Linear Velocity (feet per day)	Estimated Linear Velocity (feet per year)
MPT-8-MW05S	0.35	1.22	0.006	0.02	7
MPT-8-MW06S	0.35	1.82	0.006	0.03	11
MPT-15-P02S	0.35	5.52	0.006	0.09	34

¹ Based on estimated synoptic water table elevations on August 30, 1994

² Estimated from in-situ conductivity measurements conducted during February 1993.

			lable 7-4	7-4		00 11977		
	Organic Ar	nalytes Detect	Organic Analytes Detected in Surface Soli Samples Collected at SWIND 26	off Samples (JONECTED AL S	W W W		
			Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	FA SV Report Station Jorida				
Analyte Batch No	M7675	M7675	M7675	M7675	M7675	M7675	M7675	M767
Cample Matrix:	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil
Sample Location	MPT-28-SS01	MPT-28-SS02	MPT-28-SS02	MPT-28-SS03	MPT-28-SS04	MPT-28-SS05	MPT-28-SS06	MPT-28-SS07
Sample County:	28SS00101	285500201	28SS00201Dup	285500301	28SS00401	28SS00501	285500601	28SS00701
Samole Date:	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94
Sample Depth (ft bis):	0 to 1	0 to t	0 to 1	0 to 1	0 to 1	0 to 1	0 to 1	0 to 1
VOCs (µg/kg)								
Methylene chloride	1	ı	;	1	i	;	ţ	ŀ
Acetone	ı	!	ı	;	1	ï	1	Į
Xylenes (total)	;	ŀ	1	:	i	9	1	ŀ
SVOCe (µg/kg)								
4-Chloro-3-methylphenol	ŧ	ı	ı	1	ŧ	1	1	ŀ
Diethylphthalate	ï	1	43 J	:	:	ı	:	: 1
D⊱n-Butytphthalate	;	ı	41 J	1	ı	ı	;	70
Huoranthene	:	i	1	:	ı	ł	:	ı
Pyrene	ı	i	37 J	;	1	i	l	t
D. t. Jhonnydrhthalate	ŧ	ı	·	ı	ı	i	:	1
Data particular de la companya de la	1		ı	1	ı	ı	;	1
Senzo(a) ammacene	. 1	ı	ı	:	ı	l	i	1
	1	ı	:	1	i	i	:	1
		:	1	:	ı	1	1	1
Di-n-octylphthalate	ł	;	ı	ı	ŀ	1	1	;
Benzo(b)fluoranthene	:	ł			ı	:	;	i
Benzo(k)fluoranthene	:	;	ı	ŀ		i	1	ı
Benzo(a)pyrene	ŀ	ı	ì	1	1		;	į
Indeno(1,2,3-cd)pyrene	1	ı	;	:	ı		:	:
Dibenz(a,h)anthracene	i	I	ł	:	ŀ	ł	i	;
Benzo(g,h,i)perylene	1	1	:	1	:	ł	;	1
2-Chlorophenol	1	1		•	:	1		
See notes at end of table.								

Analyte Batch No.: Sample Matrix:								
Analyte Batch No.: Sample Matrix:			Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	s I and II RFA SV Heport U.S. Naval Station Mayport, Florida				
Sample Matrix:	M7684	M7684	M7684	M7684	M7684	M7684	M7684	M7684
Saftifule Manny.	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil
Topographic Control of Control	MPT-28-SS08	MPT-28-SS09	MPT-28-SS10	MPT-28-SS11	MPT-28-SS12	MPT-28-SS13	MPT-28-SS14	MPT-28-SS14
Sample Lucation.	285500801	285500901	28SS01001	28SS01101	28SS01201	285501301	28SS01401	28SS01401Dup
Sample Notinger.	10-AUG-94	05-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94
Sample Depth (ft bis):	0 to 1	0 to 1	0 to 1	0 to 1	0 to 1	0 to 1	0 to 1	0.0
VOCs (µg/kg)							;	١
Methylene chloride	i	1	i	:	1	ŧ	ł	;
Acetone	!	6 76	ì	:	ŧ	١ ;	:	, ;
Xylenes (total)	ı	1.J	1	1,1	;	٦,	:	I
SVOCs (µg/kg)							;	1
4-Chloro-3-methylphenol	1	ł	1	:	:	ı	l	
Diethylohthalate	1	i	;	ı	1	I	ı	ł
Disp. But dobt halate	1	;	;	:	ı	:	;	ł
	1	1	1	49 J	:	i	ł	:
	:	:	t	39 J	ŀ	ı	ı	ł
r yrono n. s. de ann dalasko jako	1	1	86 J	100 J	83 J	ŀ	:	:
Butylbenzylphinalate	!	1	;	46 J	1	t	1	ŧ
Benzo(a)antinacene	;	1	1	42 J	ŀ	ı	ı	;
Chrysene **: 49 7:1: The companies for the	:	1	;	95 J	4 ا	ı	:	ì
DIS(Z-Ethylitexyi)primare	1	;	i	40 J	ŧ	1	;	:
Di-n-octylphthalate	ŀ	;	I	50 J	ı	1	1	:
Benzo(b)#luorantrene	! !	ì	1	48 J	ı	ı	ì	;
Benzo(k)iluoranmene	ł		ŀ	50 J	ţ	ŀ	;	ŀ
Benzo(a)pyrene	ł	ı	;	48.3	;	ı	ţ	į
Indeno(1,2,3-cd)pyrene	;	:	I	. <u>-</u> .	ı	1	;	;
Dibenz(a,h)anthracene	:	ĭ	I		ŀ	t	1	1
Benzo(g,h,i)perylene	;	1	:	3	;	ŀ	:	1
2-Chlorophenol	;	;	1	 				

	Organic Ana	lytes Detecte	Table 7-4 (Continued) d in Surface Soil Sam	Table 7-4 (Continued) Organic Analytes Detected in Surface Soil Samples Collected at SWMU 28	Collected at	SWMU 28		•
			Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	RA SV Report Station Florida				,
	M7694	M7684	M7684	M7684	M7684	M7684	M7675	M7675
Analyte Batch No.:	Curface Coil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil
Sample Matrix:	MPT-28-SS15	MPT-28-SS16	MPT-28-SS17	MPT-28-SS18	MPT-28-SS19	MPT-28-SS20	MPT-28-SS21	MPT-28-SS21
Sample Location:	28.5501501	285501601	28SS01701	285501801	28SS01901	28SS02001	285502101	28SS02101Dup
Sample Nulliber.	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	05-AUG-94	05-AUG-94
Sample Depth (ft bls):	0 to 1	0 to 1	0 to 1	0 to 1	0 to 1	0 to 1	0 to 1	0 10 1
VOCe (µg/kg)							;	;
Methylene chloride	;	;	ı	;	ŀ	ı	1 :	:
Acetone	:	i	:	;	ı	ŀ	I	
Xylenes (total)	:	:	2 J	1	:	ï	ı	ı
SVOC (µg/kg)							;	ŀ
4-Chloro-3-methylphenol	1	1	ł	1	:	i		<u> </u>
Diethylphthalate	ı	•	t	ı	ı	i	1	1.03
Di-n-Butylphthalate	92 J	160 ل	1	i	ŀ	1	ı :) 1
Fluoranthene	1	;	i	1	:	;	; ;	:
Pyrene	;	:	ŀ	:	i	:	; ;	:
, Butylbenzylphthalate	;	ì	i	:	ı	1	!	:
Benzo(a)anthracene	i	ţ	ŀ	:	ı	ı	! !	:
Chrysene	1	1	1	t	1	1		44.1
bis (2-Ethylhexyl) phthalate	37 J	i	ı	:	ŀ	: 1) ; t
Di-n-octy/phthalate	;	1	:	1	t	ı	i	1
Benzo(b)fluoranthene	1	1	ı	ŀ	1	1 :	;	i
Benzo(k)fluoranthene	;	:	ı	1	t	: ;	ŀ	;
Benzo(a)pyrene	1	i	1	I	1	:	;	:
Indeno(1,2,3-cd)pyrene	1	:	1	i	!	1	;	1
Dibenz (a,h)anthracene	1	ı	1	ŀ	!!	ı	;	;
Benzo(g,h,l)perylene	i	:	ì	!		ı	:	ı
2-Chlorophenol	;	:	1	 - - -				
See notes at end of table.								

Analyte Batch No.:								
			Groups Land # U.S. Nav. Mayport	Groups I and # RFA SV Report U.S. Naval Station Mayport, Florida			·	
	M7675	M7675	M7675	M7675	M7675	M7675	M7675	M7675
	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil
	MPT-28-SS22	MPT-28-SS23	MPT-28-SS24	MPT-28-SS25	MPT-28-SS26	MPT-28-SS27	MPT-28-SS28	MPT-28-SS29
	285502201	285502301	28SS02401	285502501	28SS02601	28SS02701	28SS02801	28SS02901
	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94
(# bls)	0 to 1	0 to 1	0 to 1	0 to 1	0 to 1	0 to 1	0 to 1	0 to 1
VOCs (µg/kg)								
Methylene chloride	:	1	ı	ì	;	1	;	1
Acetone	ı	1	;	ŀ	110 J	;	1	t
Xylenes (total)	t	ï	1	:	t	:	ı	:
SVOCs (µg/kg)								-
4-Chloro-3-methylpheno!	;	1	ı	!	;	1	:	5
Diethylphthalate	ŧ	1	I	1	1	;	1	Į
Di-n-Butyiphthalate	;	I	i	ı	1	i	;	:
Fluoranthene	;	1	;	1	:	1	:	- : (
Pyrene	ı	1	1	i	:	:	1	62 J
Sutvibenzyjphthalate	ı	1	ı	ì	1	ŧ	ı	:
Benzo(a)anthracene	1	ı	i	ı	ŀ	:	ţ	1
Chrysene	ı	1	ţ	ı	1	1	1	:
bis(2-Ethylhexyl)phthalate	1	1	1	ı	1	•	ŀ	ŀ
Di-n-octylphthalate	ŀ	ì	1	t	ı	t	t	:
Benzo(b)fluoranthene	:	ŀ	1	1	•	ŀ	ŧ	1
Benzo(k)fluoranthene	;	ŀ	1	I	1	ï	ŀ	ţ
Benzo(a)pyrene	t	1	ì	ì	;	ŀ		:
Indeno(1,2,3-cd)pyrene	t	i		ι	ı	ı	:	
Dibenz(a,h)anthracene	;	1	1	ŧ	l	ţ	ŀ	ł
Banzo(g,h,i)perylene	1	1	ŀ	ı	1	:	:	: g
2-Chlorophenol	1	:	:	:	1	•	;	8

Analyte Batch No.: M7675 Sample Matrix: Surface Soil Sample Location: MPT-28-SS30 Sample Number: 28SS33001 Sample Date: 05-AUG-94 Sample Depth (ft bls) 0 to 1	M7675 Surface So MPT-28-SS 28SS030010 05-AUG-9	Groups I and II RFA SV Report U.S. Naval Station	Report			
ols)		Mayport, Florida				
(s)		M7683	M7683	M7683	M7698	M7698
(S)		Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soll
bis)		MPT-28-SS31	MPT-28-SS32	MPT-28-SS33	MPT-28-SS34	MP1-28-5535
(\$)		28SS03101	28SS03201	285503301	28SS03401	285503501
(s)		06-AUG-94	06-AUG-94	06-AUG-94	10-AUG-94	10-AUG-94
VOCs (µg/kg)		0 to 1	0 to 1	0 to 1	010	1 01 0
abjected and analysiste					-	
Methyrerie chloride	•	;	i	1	4	:
Acetone	į	:	1	ŧ	:	ŀ
Xylenes (total)	ì	:	ı	1	;	ī
SVOCs (µg/kg)						
4-Chloro-3-methylphenol	1	ŀ	1	ì	:	ł
Diethylphthalate	1	:	i	ŧ	;	ŀ
Di-n-Butylphthalate	;	:	1	:	;	ŀ
Fluoranthene	:	:	ī	1	;	ł
Pyrene	;	;	į	1	:	!
Butylbenzylphthalate	1	ţ	:	ĭ	:	i
Benzo(a)anthracene	1	:	:	:	:	ŀ
Chrysene	i	ì	;	:	ı	}
bis(2-Ethylhexyt)phthalate	:	;	:	ı	i	:
Di-n-octylphthalate	:	1	:	I	:	!
Benzo(b)fluoranthene	t	ı	ī	:	ı	1
Benzo(k)fluoranthene	ı	•	1	1	:	; ;
Benzo(a)pyrene	1	:	ı	ŀ	ŀ	: :
Indeno(1,2,3-cd)pyrene	1	:	•	1	ŧ	;
Dibenz(a,h)anthracene	ľ	1	:	1	:	: 1
' Benzo(g,h,i)perylene	ı	1	ı	τ	! :	
2-Chlorophenol	1	-	:	:		
Notes: Suffix Dup = a duplicate sample to the corresponding environmental sample. SWMU = solid waste management system. ## bis = feet below land surface.	e to the corresponding en ent system.	ivironmental sample. - = analyte not detected. SVOCs = semivolatile org	nmental sample. - = analyte not detected. SVOCs = semivolatile organic compounds.	smpounds.		
VOCs = volatile organic compounds.	runds.	"J" = estimated value.	i varue.			

	Inorganic Analytes Detected in Surface Soil Samples Collected at SWMU 28	nalytes Detec		Son sampica				
_			Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	A SV Report Station Iorida				
	MZGZE	M7675	M7675	M7675	M7675	M7675	M7675	M7675
Analyte Batcii ivo	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil
Sample Marrix:	MPT-28-SS01	MPT-28-SS02	MPT-28-SS02	MPT-28-SS03	MPT-28-SS04	MPT-28-SS05	MPT-28-SS06	MPT-28-SS07
Sample Location	28SS00101	28SS00201	28SS00201DUP	285500301	28SS00401	28SS00501	28SS00601	28SS00701
Sample Mulliber.	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94
Sample Depth (ft bls):	0 to 1.0	0 to 1.0	0 to 1.0	0 to 1.0	0.to 1.0	0 to 1.0	0 to 1.0	0 to 1.0
Inorganics (mg/kg)								
Antimony	1	ı	1	1	:	ï	1	:
Arsenic	0.74 J	0.85 J	1.6 J	1.2 J	0.61 با	1.6 J	0.79 J	1.5 J
	, S	4.1 J	6.2 J	7.1 J	4 J	7,4 J	4.3 J	17.4 J
Bandii.m	;	0.06 J	0.28 J	ს 80:0	ი.09 კ	0.13 J	0.05 J	0.14 J
Beryman	1.6	2 }	2.4	3.6	20	3.5	1.8 J	3.6
Circinatin	; :	:	ı	:	ī	:	:	0.59 J
Cobalt	I	;	ï	1.2 J	,	1.5 J	1	J. 5.4
Copper	1	! '	: 6) !	:	ł	1	:
Lead	5.1	¢,	7. 19.	ť	I		1	:
Mercury	i	0.12	;	ı	ı	i	:	
Nickel	:	;	;	•	:	·	i	I
Selenium	ı	ì	1	:		1	1	: :
Silver	ţ	i	ŀ	0.54 J	ì	ŧ	1	C 90:0
Ī	2.5 J	2.4 J	2.1 J	3.4 J	3.8 J	2.3 J	2.4 J	2.8 J
Vanadium	L.7.1	1.8.1	1.9 J	3.9 J	ر د	4.1 ل	1.7.1	3.2 J
Zinc	2.5 J	J.4.J	2.2 J	ı	i	1	·	i
Cyanide	;	;	1	,	:	:	;	:
See notes at end of table.								

	Inoroanic /	Table 7-5 (Continued) Inorganic Analytes Detected in Surface Soil Samples Collected at SWMU 28	Table 7-5 (Continued) ted in Surface Soil Sam	Continued)	s Collected at	SWMU 28		
	1		Groups I and II RFA SV Report U.S. Naval Station Maybort, Florida	RFA SV Report I Station Florida			,	
Applicate Description .	M7684	M7684	M7684	M7684	M7684	M7684	M7684	M7684
Analyte Dater No.:	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil
Semple Location	MPT-28-SS08	MPT-28-SS09	MPT-28-SS10	MPT-28-SS11	MPT-28-SS12	MPT-28-SS13	MPT-28-SS14	MPT-28-SS14
Samole Number	285500801	28SS00901	285501001	28SS01101	28SS01201	28SS01301	28SS01401	28SS01401DUP
Cample Date:	10-AUG-94	05-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94
Sample Depth (ft bis):	0 to 1.0	0 to 1.0	0 to 1.0	0 to 1.0	0 to 1.0	0 to 1.0	0 to 1.0	0 to 1.0
Inorganics (mg/kg)								
on the second	ſ	ì	1	;	:	;	1	;
Action 19	1,11	J. 65.0	0.71 J	1.1 J	0. 66 J	0.74 J	0.59 J	0.71 J
A Section 1	7 1 7	2.7.3	3.2 J	6.2 J	3.7 J	2.2 J	2.2 J	2.5 J
Callett	- 500	1, 90,0	1	0.08 J	U.07	0.06 J	0.04 J	0.06 J
Beryllium	5 F	- 0 -	1.61	6.	23	1.6 վ	1.6 J	1.2 J
Chromium	? <u>r</u>	- 22.0		ı	:	ı	:	ı
Cobalt	:	2 -	!	1.000	1	1.3 J	i	;
Copper	ı	- -	;	5			;	:
Lead	1.3	0.45 J	ŀ	1	:	1	;	:
Mercury	:		ı	ı	:	1	I	1
Nickel	1	1	1	ı	ŀ	:	!	· ·
Selenium	0.47 J	ł	1	;	;	:	ŀ	
Silver	ï	;	:	ı	•	:	:	: !
Tin	;	3.7 J	ì	3.2 J	2.2 J	1	3.6 J	2.3 J
Winiposo).	1.5.1	1.6 J	1.1 J	2.3 J	L 7.1	1.3 J	0.97 J	0.88 J
Valiacium	<u></u>	1	1.1 J	9.6	1.7.J	3.7 J	1.7 J	1.2 J
Cyanide	t	1	-	ı		1	;	1
See notes at end of table.								

No.:								
			Groups I and # RFA SV Report U.S. Navat Station Mayport, Florida	FA SV Report Station Florida	'			
	M7504	M7684	M7684	M7684	M7684	M7684	M7675	M7675
	Pourface Coil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil
	MPT.28.SS15	MPT-28-5516	MPT-28-SS17	MPT-28-SS18	MPT-28-SS19	MPT-28-SS20	MPT-28-SS21	MPT-28-SS21
	285501501	28SS01601	28SS01701	28SS01801	28SS01901	28SS02001	285502101	28SS02101DU P
	06.A11G-94	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	05-AUG-94	05-AUG-94
Sample Date:	0 to 1.0 ft	0 to 1.0 ft	0 to 1.0 ft	0 to 1.0 ft	0 to 1.0 ft	0 to 1.0 ft	0 to 1.0 ft	0 to 1.0 ft
Inordanics (mg/kg)								
	;	1	L 68.	ł	ı	;	:	ı
Á	1. 50 0	+ 1.1	1.3 J	1.2 J	0.93 J	1.5 J	0.46 J	0.52 J
	. 9. E.	4.3 J	9.5 J	ب 9	4.3 J	6.4 J	2.9 J	5.4 J
	1.800	0.1 ر	0.13 J	0.12 J	ı	0.5 J	0.12 J	0.13 J
Geryllium	2.1 J	2 J	2.6	2.4	1.3 J	2.3	5.6	2.7
	•	1	i	1	1	ı	0.67 J	1
Cobait	: 1	1. 1.	1.2 J	:	1.5 J	ı	1	;
Copper	9	1	:	1	2.1	1	J E	1.2 J
Lead	2	ŧ	1	:	1	ı	1	;
Mercury	ı	1	;	ŧ	t	:	ı	1
Nickel	ł	!	!		D.29 J	ì	1	1
Selenium	ï	1	!	•		I	1	;
Silver	ı	1	1	- P	- -	1.40	50 10 10 10 10 10 10 10 10 10 10 10 10 10	₽. 4
Tin	4.4 J	2.6 √	2.4 J	2.7.3	7 ·	o -		1.76
Vanadium	1.8.1	t.7 J	2.5 J	2:2 J	1.3	2.2		ì
Znc	3.9 J	2)	2.3 J	2:2 J	2.9	E .	i.	ł
Ovanide	;	;	0.05 J	•		•	!	!

			Table 7-5 (Continued)	Continued)				
	Inorganic An	Inorganic Analytes Detected in Surface Soil Samples Collected at SWMU 28	ed in Surface	Soil Sample	s Collected	at SWMU 28		
			Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	s I and II RFA SV Report U.S. Naval Station Mayport, Florida				
A doctor	M7675	M7675	M7675	M7675	M7675	M7675	M7675	M7675
Sample Matrix:	Surface Soil	Surface Soil	Surface Soil	Surface Soll	Surface Soil	Surface Soll	Surface Soll	Surface Soil
Sample Location:	MPT-28-SS22	MPT-28-SS23	MPT-28-SS24	MPT-28-SS25	MPT-28-SS26	MPT-28-SS27	MPT-28-SS28	MPT-28- SS29
Comple Number	28SS02201	28SS02301	28SS02401	28SS02501	28SS02601	285502701	285502801	285502901
Sample Date:	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94	05-AUG-94
Sample Depth (ft bis)	0 to 1.0	0 to 1.0	0 to 1.0	0 to 1.0	0 to 1.0	0 to 1.0	0 to 1.0	0 to 1.0
Inorganics (mg/kg)								
		;	t	:	:	ŀ	i	1
Administry	1, 88.0	0.82 J	1.1 J	0.53 J	0.49	0.56 J	Ր 29'0	0.75 J
Notice B	4))	4.6 J	7.1 J	6.5 J	3.5 J	4.8 J	5.8	4.2 J
Becellin	0.13	0.13 J	0.13 J	0.16 J	0.1 J	0.11 J	0.1 J	0.12 J
Chromium	3.1	1.9 J	3.9	2.1 J	2.4	2.6	3.1	2)
Cobalt	ţ	ŀ	0.95 J	0.59 J	1	0.58 J	0.61 J	:
Copper	;	1.2 J	2.2 J	0.87 J	ï		4.1 J	:
peal	U.87 J	;	0.83 J	0.51 J	0.92 J	1.5 J	ი.9 ე	<u>-</u> ئ
Mercury	i	ı	1	1	:		ı	1
Nickel	• ;	ı	t	:	:	1	i	;
Selenium	ŀ	ı	1	ı	1	:	;	ſ
Silver	ı	!	ŧ	0.48 J	:	t	0.61 ل	I
Ë	2.3 J	3.3 J	3.5 J	1,7,2	3.8 J	4.5 ل	3.3 J	-F
Vanadium	2.2 J	L 6.1	3.8 J	1.5 J	1.6.1	2.1 J	2.1 J	.5. J. 5.
Zinc	ı	1	ı	1	:	1	3.4 J	;
Cyanide	:	:	ı	1	:	:	;	
See notes at end of table.								

Inor	Table 7-5 (Continued) Inorganic Analytes Detected in Surface Soil Samples Collected at SWMU 28	Table Detected in S	Table 7-5 (Continued) d in Surface Soil Sam	led) samples Colle	ected at SWN	10 28	•
	·	Groups U	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	Report			
Applyte Ratch No	M7675	M7675	M7683	M7683	M7683	M7698	M7698
Analyte Dateir No	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil
Sample Postion	MPT-28-SS30	MPT-28-SS30	MPT-28-SS31	MPT-28-SS32	MPT-28-SS33	MPT-28-SS34	MPT-28-SS35
Sample Number	285503001	28SS03001DUP	285503101	285503201	285503301	28SS03401	285503501
Sample Date:	05-AUG-94	05-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	10-AUG-94	10-AUG-94
Sample Depth (ft bis)	0 to 1.0	0 to 1.0	0 to 1.0	0 to 1.0	0 to 1.0	0 to 1.0	0 to 1.0
Inorganics (mg/kg)						·	
Antimony	;	ı	1	:	1	:	, I
Arsenic	0.77 J	0.6 J	0.55 J	3.2 J	Ր 6′0	1.2 J	1.2 J
Barium	5,4 J	6.2 J	L 6.7	5.3 J	8.9 J	6.6 J	7.5 J
Berullium	0.1 J	0.15 J	i	·	;	0.8 J	0.2 J
Chromium	2.4	٦ 9	2.7	2.2	2.5	3,5	LC?
Cobalt	1	1	ï	1	ı	1	Ţ
Conner	1.8 J	2.6 J	•	ŀ	ı	8.9	1
- ad - ad	1	1	1.7 J	2.4 J	5.6 J	.	3.2
Mercina	ł	L L	1	ŀ	1	;	
Nickel	;	:	ı	1	t	,	1.6 J
Selenium	i	1	1	:		i	•
Silver	1	1	0.48 J	ı	0.78	:	1
Ę	3.5 J	3.2 J	27.5 J	4.3 J	3 J	:	ı
Vanadium	1.8 J	J. 8.1	2.1 J	1.6 J	2.2 J	6.9	J.
Zinc	1	ı	17.2	:	1	16.7	₹C
Cyanide	:	1	1	1	ī	;	
Notes: SWMU = solid waste management unit. It bis = feet below land surface.	te management uni land surface.	¦ . ∥	analyte not detected = estimated value.				

	Organic Analytes Detected in Subsurface Soil Samples Collected at SWMU 28	es Detected In 3	Juna di lacci coli	dallipres colle			
	•	Gro	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	Report			
l aboratory Batch No.:	M7684	M7684	M7684	M7684	M7684	M7683	M7683
Sample Location:	MPT-28-BS01	MPT-28-BS05	MPT-28-BS10	MPT-28-BS17	MPT-28-BS22	MPT-28-BS031	MPT-28-BS031
Sample No.:	28BS00106	28BS00504	28BS01004	28BS01704	28BS02204	28BS03104D	28BS03104D
Sample Date:	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94
Sample Deoth (ft bis)	5 - 6	4 - 5	3 - 4	3 - 4	3 - 4	3.4	3-4
VOCs (8240) (µg/kg)							
Acetone	1	200 J	ი 88	29 J	1	!	•
Carbon disuffide	;	24	2 J	1	3 J	I	i
2-Butanone	:	21 J	ı	•	:	•	1
Xvlenes (total)	ı	i	7-	2)	í	•	i
SVOCe (8270) (µg/kg)							
Di-n-Butylphthalate	:	:	1	50 J	:	1	•
- Fluoranthene	;	ł	1	ı	280 ∫	1	
Pyrene	;	1	ı	1	280 J	1	
Butylbenzylphthalate	1	1	1	1	230 J	1	•
Benzo(a)anthracene	ı	:	1	•	210 J	ì	1
Chrysene	•	1	ı	1	270 J		1
Renzofbifuoranthene	1	i	;	•	310 J	i	;
Indeno(1,2,3-cd)pyrene	ı	i	ı	1	290 J	ī	1
Dibenz (a h)anthracene	ı	Ί		1	180 기	1	1
Benzo(g.h.i)perylene	1	1	1	!	200 J	,	:
Notes: SWMU = solid waste management unit. It bis = feet below land surface. VOCs = volatile organic compounds. µg/kg = micrograms per kilogram.	lanagement unit. I surface. compounds. er kilogram.	= analyte not detected. SVOCs = semivolatile org "ا" = estimated value.	= analyte not detected. SVOCs = semivolatile organic compounds. "J" = estimated value.	npounds.			

	morganic Analy						
		Gro	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	Report			
Laboratory Batch No.:	M7684 MPT-28-BS01	M7684 MPT-28-BS05	M7684 MPT-28-BS10	M7684 MPT-28-BS17	M7684 MPT-28-BS22	M7683 MPT-28-BS31	M7683 MPT-28-BS031
Sample No :	28BS00106	28BS00504	28BS01004	28BS01704	28BS02204	28BS03104	28BS03104D
Sample Date:	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94	06-AUG-94
Sample Depth (ft bis)	ა- ი	3 - 4	3.4	3-4	3-4	3.4	3-4
Inorganics (mg/kg)				;			;
Antimony	:	:	;	J 29.	;		- 67
Arsenic	J. 95.	B.3 J	1.6 J	L 68.	L 4	0.46. 	7 . I
Barium	2.1 J	26.9 J	3.9 J	5.9 J	8.4 J	D 6:60	5.2.0
Bervlium	ı	1.3 J	լ 51.	L 11.	.2 8 J	ŧ	1 ;
Cadmium	;	ı	;	1	;	1	<u> </u>
Chromium	1.3	38.7	4	2.3 J		 	
Cobalt	ţ	7.4 J	Ն 78.	1	1.3 J	ı	•
Connec	:	7.1 J	1.3 J	l	2)	ı	1
lead	;	11.3	1.7	1	6.4	ر <i>د</i>	1.3 J
Mercito	:	-	ï	1	.32	1	;
Nickel	I	10.6 J	1	:	2.2 J	1	1
Salanium	:	ı	.36 J	.39 ს	1	:	1
Tie	3.8 J	4.3 J	J.7 J	2.9 J	3.8 J	₽.4 U	4.6
Vanadium	J. 85.	38	3.3 J		8.5 J	1.5 J	L 4.1
Zinc	1.7 J	46	3.6 J	2 J	21.4		1
Ovanide	t	1	1		1	1	99
Notes: SWMU = solid waste management unit. It bls = feet below fand surface. VOCs = votatile organic compounds. mg/kg = milligrams per kilogram.	nanagement unit. id surface. ic compounds. er kilogram.	analyte not detected. SVOCs = semivolatile org "J" = estimated value.	= analyte not detected. SVOCs = semivolatite organic compounds. "J" = estimated value.	npounds.			

1,000,000 for an adverse carcinogenic effect for a continuous lifetime exposure. The concentrations listed for the USEPA Region III RBCs correspond to an HI of0.1, whereas the USEPA Superfund SSL and the State of Florida cleanup goals are based on an HI of 1. The Federal NCP final rule (40 CFR, Part 300) states that for carcinogens a lifetime excess cancer risk within the range of 10^{-4} (a chance of 1 in 10,000 for an adverse carcinogenic effect for a continuous lifetime exposure) to 10^{-6} represents concentrations that are considered by USEPA to be protective of human health.

<u>Surface Soils</u>. Target analytes detected in surface soil samples collected in Section 1 of SWMU 28 consisted of 2 VOCs (acetone and xylenes), 3 SVOCs (diethylphthalate, di-n-butylphthalate, and pyrene) and 13 inorganics (arsenic, barium, beryllium, chromium, cobalt, copper, lead, mercury, selenium, silver, tin, vanadium, and zinc).

Target analytes detected in surface soil samples collected in Section 2 of SWMU 28 consisted of 1 VOC (xylenes), 14 SVOCs (fluoranthene, pyrene, butylbenzylphthalate, benzo(a)anthracene, chrysene, bis(2-ethylhexyl)phthalate, di-n-octylphthalate, di-n-butylphthalate, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene) and 13 inorganics (antimony, arsenic, barium, beryllium, chromium, cobalt, copper, lead, selenium, tin, vanadium, zinc, and cyanide).

Target analytes detected in surface soil samples collected in Section 3 of SWMU 28 consisted of 1 VOC (acetone), 5 SVOCs (di-n-butylphthalate, bis(2-ethylhexyl)-phthalate, 4-chloro-3-methylphenol, pyrene, and 2-chlorophenol) and 14 inorganics (arsenic, barium, beryllium, chromium, cobalt, copper, lead, mercury, selenium, silver, tin, vanadium, zinc, and cyanide).

Target analytes detected in surface soil samples collected at the storage area behind the recycling center consisted of 1 VOC (methylene chloride) and 10 inorganics (arsenic, barium, beryllium, chromium, cobalt, copper, lead, nickel, vanadium, and zinc).

Pesticides and PCBS were not detected in any of the surface soil samples from Sections 1, 2, or 3 of SWMU 28.

<u>Subsurface Soil</u>. Target analytes detected in the subsurface soil samples collected at Section 1 of SWMU 28 consisted of 3 VOCs (acetone, carbon disulfide, and 2-butanone) and 12 inorganics (arsenic, barium, beryllium, chromium, cobalt, copper, lead, mercury, nickel, tin, vanadium, and zinc). SVOCs, pesticides and PCBs were not detected in subsurface soil samples collected at Section 1.

Target analytes detected in subsurface soil samples collected at Section 2 of SWMU 28 consisted of 3 VOCs (acetone, carbon disulfide, and xylenes), 1 SVOC (di-n-butylphthalate), and 12 inorganics (antimony, arsenic, barium, beryllium, chromium, cobalt, copper, lead, selenium, tin, vanadium, and zinc). Pesticides and PCBs were not detected in subsurface soil samples collected at Section 2.

Target analytes detected in subsurface soil samples collected in Section 3 of SWMU 28 consisted of 1 VOC (carbon disulfide), 9 SVOCs (fluoranthene, pyrene, butylbenzylphthalate, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene), and 14 inorganics (arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury, nickel, tin, vanadium, zinc, and cyanide). Pesticides and PCBs were not detected in the soil samples collected at Section 3.

Charten Links Frequency Pagings of the page of t			Che	Chemicals of Pote	Table 7-8 s of Potential Concern in Surface Soil at SWMU 28	r-8 in Surface 9	Soil at SWMU	28			
Frequency Freq					Groups I and II RF U.S. Naval S Mayport, FI	A SV Report Station orida					
2,35 10 to 12 97 to 110 104 ND 780,000 7,800,000 130,000 Nd 85,006 89 ND 16,000,000 160,000 1,400 ND 1,35 5 to 6 1 to 6 2.4 ND 16,000,000 160,000 1,000,000 1,400 ND 1,35 340 to 3,600 55 55 ND ND 880 90 1,400 ND 1,600,000 1,400 ND 1,400 ND 1,400 ND 1,600,000 1,400 ND 1,400 ND 1,400 ND 1,600,000 1,400 ND 1,400 ND 1,400 ND 1,600,000 1,400 ND 1,400 ND 1,600,000 1,400 ND 1,400 ND 1,600,000 1,400 ND 1,400 ND 1,600,000 1,400 ND 1,400 ND 1,600,000 1,400 ND 1,400 ND 1,600,000 1,400 ND 1,400 ND 1,600,000 1,400 ND 1,400 ND 1,400 ND 1,600,000 1,400 ND 1,400 ND 1,400 ND 1,600,000 1,400 ND 1,400 ND 1,400 ND 1,600,000 1,400 ND 1,400 ND 1,400 ND 1,600,000 1,400 ND 1,4	Analyte	Frequency of Detection ¹	Range of Reporting Limits	Range of Detected Concentrations (*)²	Mean of Detected Concentrations ³	Background Screening Vatue [‡]	Risk Based Screening Concentration ⁵	Superfund Proposed Soil Screening Levels	Cleanup Goals for the Military Sites in Florida ⁷	Analyte CPC? (Yes/No)	Reason
2/35 10 to 12 97 to 110 104 ND 780,000 780,000 130,000 sp/35 5 to 6 4 4 ND 65,000 160,000,000 16	Volatiles (µg/kg)					!	9	000	000	Š	0 0
1/35 5 to 6 4	Acetone	2/35	10 to 12		104	O.	000'087	000,000,7	000,000	2	
cg) 5 5 6 6 1 to 6 2.4 ND 16,000,000 NA 2.20 NA henol 1/35 340 to 3,600 89 89 ND 39,000 NA NA NA NA YA YA </td <td>Methylene chloride</td> <td>1/35</td> <td>5 to 6</td> <td>4</td> <td>4</td> <td>2</td> <td>85,000</td> <td>85,000</td> <td>9,300</td> <td>2 :</td> <td>5 C</td>	Methylene chloride	1/35	5 to 6	4	4	2	85,000	85,000	9,300	2 :	5 C
1/35 340 to 3,600 89 ND 39,000 NA NA 220 1/35 340 to 3,600 55 55 ND NA NA NA NA 1/35 340 to 3,600 46 46 ND 880 900 1,400 1/35 340 to 3,600 50 50 ND 880 900 1,400 1/35 340 to 3,600 50 50 ND 880 900 1,400 1/35 340 to 3,600 48 49 ND 1,600,000 1,400 1,400 1/35 340 to 3,600 48 49 ND 1,600,000 1,400 1,400 1/35 340 to 3,600 42 42 ND 1,600,000 1,600,000 1,500,000 5/35 340 to 3,600 40 40 ND 1,600,000 1,600,000 1,600,000 1,600,000 1/35 340 to 3,600 40 40 ND 1,600,000 1,600,000 1,6	Xylenes (total)	5/32	5 to 6	1 to 6	2.4	Q	16,000,000	160,000,000	6,400,000	2	N T
1/35 340 to 3,600 89 ND 39,000 NA 220 1/35 340 to 3,600 55 55 ND NA NA NA NA 1/35 340 to 3,600 46 46 ND 880 900 1,400 NA 1/35 340 to 3,600 50 50 ND 880 900 1,400 NA 1,400	Semivolatiles (µg/kg)							:		1	ď
tylphenol 1/35 340 to 3,600 55 55 ND NA NA NA cene 1/35 340 to 3,600 46 ND 880 900 1,400 NA state 1/35 340 to 3,600 50 50 ND 880 900 1,400 NA ylene 1/35 340 to 3,600 50 50 ND NB 880 900 1,400 NA ylene 1/35 340 to 3,600 50 50 ND NB 880 900 1,400 NA ylene 1/35 340 to 3,600 48 48 ND 1,600,000 1,400 1,400 halate 3/35 340 to 3,600 40 40 ND 1,600,000 1,400 1,400 halate 1/35 340 to 3,600 40 40 ND 1,600,000 1,600,000 1,400 halate 1/35 340 to 3,600 40 40 ND 1,600,0	2-Chlorophenol	1/35	340 to 3,600	83	68	ON N	39,000	∀ Z	220	2 ;	ว ดั
1/35 340 to 3,600 46 46 ND 880 900 1,400 1/35 340 to 3,600 50 50 ND 88 90 1,400 1/35 340 to 3,600 50 50 ND 880 900 1,400 1/35 340 to 3,600 48 48 ND 1,600,000 14,000 1,400 1/35 340 to 3,600 48 48 ND 1,600,000 14,000 1,400 1/35 340 to 3,600 42 42 ND 1,600,000 15,000,000 14,000 5/35 340 to 3,600 75 to 203.5* 128 ND 7,800,000 7,800,000 1,500,000 1/35 340 to 3,600 40 40 ND 1,600,000 1,500,000 1,600,000 1,500,000 1,400 1/35 340 to 3,600 49 49 ND 83,000 3,100,000 1,400 1,400 1/35 340 to 3,600 48 49 ND	4.Chloro-3-methylnhenol	1/35	340 to 3,600	55	55	문	NA N	A'N	Y Y	√	1
1/35 340 to 3,600 50 50 ND 88 90 140 ND 1/35 340 to 3,600 50 50 50 ND NB NA NA 1,400 P 1/35 340 to 3,600 48 48 ND 1,600,000 14,000 P 1/35 340 to 3,600 83 to 100 89.7 ND 1,600,000 14,000 P 1/35 340 to 3,600 42 42 ND 7,800,000 15,000,000 P 5/35 340 to 3,600 75 to 203.5* 128 ND 7,800,000 7,500,000 1/35 340 to 3,600 40 ND 6,300,000 1,600,000 1,400 1/35 340 to 3,600 49 49 ND 6,300,000 51,000,000 1/35 340 to 3,600 48 49 ND 6,300,000 51,000,000 1/35 340 to 3,600 48 48 ND 2,300,000 2,300,000 3	Hepro (a) anthracene	1/35	340 to 3,600	46	46	2	880	006	1,400	2	လ် ရ
1/35 340 to 3,600 50 50 ND 680 900 1,400 N 1/35 340 to 3,600 50 50 ND NB NA 14,000	Denzo(a)curene	1/35	340 to 3,600	92	50	2	88	06	140	2	ο.
1/35 340 to 3,600 50 50 ND NA NA 14,000 1/35 340 to 3,600 48 49 ND 1,600,000 15,000,000 14,000 3/35 340 to 3,600 42 42 ND 1,600,000 15,000,000 140,000 1/35 340 to 3,600 75 to 203.5* 128 ND 780,000 7,800,000 1,500,000 1/35 340 to 3,600 40 40 ND 160,000 1,600,000 1,500,000 1/35 340 to 3,600 111.5* 112 ND 6,300,000 51,000,000 1/35 340 to 3,600 49 ND 310,000 2,800,000 1,400 1/35 340 to 3,600 49 ND 310,000 2,800,000 2,200,000 1/35 340 to 3,600 39 to 108.5* 69.8 ND 230,000 2,200,000 3/35 340 to 3,600 37 to 199.5* 93.1 ND 46,000 2,300,000 2,200,000	Delizo(a)pyrene	SS/-	340 to 3 600	20	20	2	880	006	1,400	S S	လ ရ ပ
1/35 340 to 3,600 48 48 ND 1,600,000 16,000,000 14,000 1/35 340 to 3,600 83 to 100 89.7 ND 1,600,000 16,000,000 15,000,000 15,000,000 17,35 340 to 3,600 75 to 203.5* 1/35 340 to 3,600 75 to 203.5* 128 ND 780,000 7,800,000 7,800,000 1,500,000 1,500,000 1,350,000 1,350,000 1,1.5* 112 ND 6,300,000 63,000,000 7,800,000 1,400,000 1,350,000 1,350,000 1,350,000 1,350,000 1,350,000 1,350,000 1,350,000 1,350,000 1,350,000 1,350,000 1,350,000 1,350,000 1,350,000 1,350,000 1,400,	Benzo (b) fluoranthene	S .	240 to 2 600	: £	S	Q	N A	Ą	14,000	ş	တ
1/35 340 to 3,600 48 49 70 1 100 100 10 1000 10 1000 10 10 1000 10 1	Benzo(g,h,i)perylene	1/35	340 to 3,600	9 9		ç	8.800	000'6	14,000	운	S, P, G
3/35 340 to 3,600 83 to 100 89.7 ND 1,000,000 140,000 140,000 1/35 340 to 3,600 75 to 203.5* 128 ND 780,000 7,800,000 7,500,000 140,000 1/35 340 to 3,600 75 to 203.5* 128 ND 88,000 1,600,000 1,500,000 1,500,000 1,350 340 to 3,600 49 49 ND 310,000 2,300,000 2,800,000 1,400 1,35 340 to 3,600 37 to 199.5* 93.1 ND 46,000 46,000 46,000 46,000 46,000 46,000 46,000 46,000 46,000 1,400	Benzo(k)fluoranthene	1/32	340 to 3,600	2	D (2 5	1 600 000	16 000 000	15,000,000	2	S, P, G
phthalate 5/35 340 to 3,600 42 42 ND 780,000 7,800,000 7,500,000 phthalate 1/35 340 to 3,600 75 to 203.5* 128 ND 780,000 7,500,000 7,500,000 phthalate 1/35 340 to 3,600 52 52 ND 6,300,000 51,000,000 140 thalate 1/35 340 to 3,600 49 49 ND 310,000 2,800,000 2,800,000 2,3-cd]pyrene 1/35 340 to 3,600 48 48 ND 880 900 1,400 2,3-cd]pyrene 1/35 340 to 3,600 37 to 199.5* 69.8 ND 46,000 2,300,000 2,200,000 3/35 340 to 3,600 37 to 199.5* 93.1 ND 46,000 2,300,000 45,000	Butylbenzylphthalate	3/32	340 to 3,600	83 to 100	£.69	€ 5	000,000,1	000'000'01	140 000	2	S P D
5/35 340 to 3,600 75 to 203.5* 128 ND 780,000 7,500,000 7,500,000 1/35 340 to 3,600 52 52 ND 88 90 140 1/35 340 to 3,600 52 52 ND 6,300,000 51,000,000 1/35 340 to 3,600 49 49 ND 310,000 3,100,000 2,800,000 1/35 340 to 3,600 37 to 199.5* 69.8 ND 230,000 2,300,000 2,200,000 1thalate 4/35 340 to 3,600 37 to 199.5* 93.1 ND 46,000 46,000 45,000	Chrysene	1/35	340 to 3,600	45	42	⊋ !	88,000	000'000	7 500 000	Ž	
1/35 340 to 3,600 40 40 ND 160,000 1,600,000 1,500,000 ene 1/35 340 to 3,600 52 52 ND 88 90 140 1/35 340 to 3,600 49 49 ND 310,000 51,000,000 2,800,000 1/35 340 to 3,600 48 48 ND 880 900 1,400 3/35 340 to 3,600 37 to 199.5* 93.1 ND 46,000 46,000 45,000	Di-n-butylphthalate	5/32	340 to 3,600		128	2	780,000	000,008,	1,300,000	2	
ene 1/35 340 to 3,600 52 52 ND 88 90 140 1/35 340 to 3,600 111.5* 112 ND 6,300,000 63,000,000 51,000,000 1/35 340 to 3,600 49 49 ND 310,000 3,100,000 2,800,000 1/35 340 to 3,600 39 to 108.5* 69.8 ND 230,000 2,200,000 1/400 4/35 340 to 3,600 37 to 199.5* 93.1 ND 46,000 46,000 45,000	Di-n-octylphthalate	1/35	340 to 3,600	40	40	2	160,000	1,600,000	1,500,000	2 2	. •
1/35 340 to 3,600 111.5* 112 ND 6,300,000 51,000,000 51,000,000 1/35 340 to 3,600 49 49 ND 310,000 3,100,000 2,800,000 1/35 340 to 3,600 39 to 108.5* 69.8 ND 230,000 2,300,000 2,200,000 late 4/35 340 to 3,600 37 to 199.5* 93.1 ND 46,000 46,000 45,000	Dibenz(a,h)anthracene	1/35	340 to 3,600	25	52	2	8	3	040	2 4	
1/35 340 to 3,600 49 49 ND 310,000 3,100,000 2,800,000 pyrene 1/35 340 to 3,600 48 48 ND 880 900 1,400 3/35 340 to 3,600 39 to 108.5* 69.8 ND 230,000 2,300,000 2,200,000 Iphthalate 4/35 340 to 3,600 37 to 199.5* 93.1 ND 46,000 46,000 45,000	Diethylohthalate	1/35	340 to 3,600	111.5*	112	2	6,300,000	63,000,000	51,000,000	§ :	ב ב
d)pyrene 1/35 340 to 3,600 48 48 ND 880 900 1,400 1,400 3/35 340 to 3,600 37 to 199.5* 69.8 ND 230,000 2,300,000 2,200,000 3/35 340 to 3,600 37 to 199.5* 93.1 ND 46,000 46,000 45,000	Granthene	1/35	340 to 3,600	49	49	Q	310,000	3,100,000	2,800,000	2	<u>.</u>
3/35 340 to 3,600 37 to 199.5* 69.8 ND 230,000 2,300,000 2,200,000 45,000 44,35 340 to 3,600 37 to 199.5* 93.1 ND 46,000 46,000 45,000		1/35	340 to 3.600	48	48	QN ,	680	006	1,400	2	Δ.
3/35 340 to 3,600 37 to 199.5* 93.1 ND 46,000 46,000 45,000	Indeno(1,2,3-ca)pyrene	26/0	340 to 3 600		8.69	2	230,000	2,300,000	2,200,000	2	S, P, G
4/35 340 10 5,000	Pyrene		340 to 2 600		93.1	S	46,000	46,000	45,000	온	S, P, G
	bis(2-Ethylhexyl)phthalat		000'6 01 046								

		Che	micals of Pote	Table 7-8 (Continued) Chemicals of Potential Concern in Surface Soil at SWMU 28	ntinued) in Surface 9	Soil at SWMU	28			
				Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	A SV Report tation orida					
Analyte	Frequency of Detection ¹	Range of Reporting Limits	Range of Detected Concentrations	Mean of Detected Concentrations ³	Background Screening Value	Risk Based Screening Concentration ⁵	Superfund Proposed Soil Screening Leveis [®]	Cleanup Goals for the Military Sites in Florida	Analyte CPC? (Yes/No)	Reason
Pesticides/PCBs (µg/kg)										
No analytes detected										
Inorganics (mg/kg)										1
Antimony	1/35	1.04 to 1.12	0.89	0.89	Q	3.1	31	56	2	S, O,
Arsenic	35/35	2.075 to 2.25	0.49* to 3.2	0.97	2	°0.37	9.0	0.7	Yes	
Barin	35/35	41.515 to 44.99	2.2 to 17.4	5.6	5.6	550	5,500	5,000	욷	S, P, G
Bendlium	29/35	1,04 to 1.12	0.05 to 0.2	0,1	0.16	0.15	0.1	0.1	Yes	
Chamin	35/35	2.075 to 2.25	1,2 to 5	2.4	5.6	6E ₀₁	390	10150	운	S, P, G
Cabali	R/35	10.375 to 11.25	0.58 to 3.0125*	-	2	470	A A	4,700	욷	ග ග
Codall	5,700 16,735	5 19 to 5.62	0.87 to 6.8	2.1	2.2	290	NA V	2,900	ş	g Š
laddo	2/35	79:0 or 69:0	0.45 to 6.1	1.	2	,,400	11400	200	2	S, P, G
Lead	1/35	0.04 to 0.04	*20.0	0.07	2	2.3	23	23	운	S, P, G
Mercury	1/35	8.305 to 9	1.6	1.6	9	160	1,600	1,500	£	S, P, G
Salanium	2/35	1.04 to 1.12	0.29 to 0.47	0.38	9	38	390	390	8	S, P, G
	6/35	2.075 to 2.25	0.48 to 0.78	0.58	2	39	390	380	Š	S, P, G
	30/35	10.375 to 11.25	2.2 to 27.5	6 .	5.4	4,700	¥	44,000	Š	S S
Vanadium	35/35	10.375 to 11.25	0.925* to 6	2.2	4	55	550	480	S	S, P, G
Zinc	17/35	4.15 to 4.5	1.1 to 17.2	5.2	2.6	2,300	23,000	23,000	Š	လ ရ (၁
Cyanide	1/35	2.075 to 2.25	0.05	0.05	S	160	1,600	1,600	2	S, P, G
See notes on next page.										

Chemicals of Potential Concern in Surface Soil at SWMU 28 Table 7-8 (Continued)

Groups I and II RFA SV Report U.S. Naval Station

				Mayport, Florida	Orion					
Analyte	Frequency of Detection ¹	Range of Reporting Limits	Range of Detected Concentrations	Mean of Detected Concentrations ³	Background Screening Value*	Risk Based Screening Concentration ⁵	Superfund Cleanup Proposed Soil Goals for the Screening Military Sites Levels* in Florida?	Cleanup Goals for the Military Sites in Florida?	Analyte CPC? (Yes/No)	Reason®
								on paparior soft	(100)	

Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values). Value indicated by asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetected values, 1/2 the contract required quantitation limit or

The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected including values qualified with a "J"; it does not include those samples where the analyte was not detected ("U" or "UJ" qualitiers) and rejected ("R" qualitier). contract required detection limit (CRDL) is used as a surrogate.

The background screening value is twice the average of detected concentrations for inorganic analytes in background samples. Organic values are one times the mean of detected concentration. Organic values are included for comparison purposes only.

EPA/903/R-93-001) was used for screening. Actual values are taken from the USEPA Region III RBC tables dated February 1995, and are based on a cancer risk of 10° and an concentrations (RBC) for residential surface soil exposure per January 1993 guidance (Selecting Exposure Routes and Contaminants of Concern by Risk-Based Screening. For all chemicals except the essential nutrients (calcium, iron, magnesium, potassium, and sodium), U.S. Environmental Protection Agency (USEPA) Region III risk based adjusted hazard quotient of 0.1. For the essential nutrients, screening values were derived based on recommended daily allowances (RDAs).

Source: USEPA. December, 1994. Soit Screening Guidance, Review Draft, USEPA, Office of Solid Waste and Emergency Response, Washington, D.C., EPA/540/R-94/101. Values are taken from the Florida Department of Environmental Protection memorandum, Cleanup Goals for Military Sites in Florida, dated April 5, 1995. The values are for the Values are taken from the Florida Department of Environmental Protection memorandum, Cleanup Goals for Military Sites in Florida, dated April 5, 1995. The values are for the

aggregate resident based on a cancer risk of 10° and the child resident based on a hazard quotient of 1.

Analytes were included or excluded from the risk assessment for the following reasons:

C = the analyte is a member of a chemical class that contains other chemicals of potential concern (CPCs) (i.e., carcinogenic polynuclear aromatic hydrocarbons [PAHs]). S = the maximum detected concentration did not exceed the screening concentration and will not be considered further.

G = the maximum detected concentration did not exceed the Florida cleanup goals and will not be considered further.

B = the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations.

F = the frequency of detection was less than 5 percent and professional judgment was used to exclude analyte from further study.

P = the maximum detected concentration did not exceed the USEPA proposed soil screening levels (SSLs), 9355.4-14FS, dated December 1994. M = the analyte was detected at less than 5 percent and is a CPC in more than one media.

The value is based on arsenic as a carcinogen.

" USEPA Office of Solid Waste and Emergency Response (OSWER) Directive No. 9355.4-12 revised interim recommended soil cleanup for Comprehensive Environmental Response, 10 The value is based on chromium hexavalent form.

Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites.

The average of a sample and its duplicate is used for all table calculations. Notes:

Sample locations include:

Background sample locations include: MPT-B-SS01; MPT-B-SS02; MPT-B-SS03; MPT-B-SS04; MPT-B-SS05; MPT-B-SS06 PCBs = polychlorinated biphenyls. NA = not available. Duplicate background sample locations include: MPT-B-SS01Dup SWMU = solid waste management unit.

mg/kg = milligrams per kilograms.

ND = not detected in any background samples. CPC = chemicals of potential concern. µg/kg = micrograms per kilograms.

		Cher	Table 7-9 Chemicals of Potential Concern in Subsurface Soil at SWMU 28	Table 7-9 itial Concern in S	7-9 n Subsurfac	e Soil at SWI	MU 28			
				Groups I and # RFA SV Report U.S. Naval Station Mayport, Florida	FA SV Report Station Iorida					
Analyte	Frequency of Detection	Range of Reporting Limits	Range of Detected Concentrations ²	Mean of Detected Concentrations ³	Background Screening Value	Risk Based Screening Concentration ⁵	Superfund Proposed Soil Screening Levels ⁶	Cleanup Goals for the Military Sites In Florida?	Analyte CPC? (Yes/No)	Reason
Voletiles (va/ka)							I			
2-Butanone	1/6	11 to 21	21	21	S	4,700,000	N	17,000,000	ž	S, G
Acetone	3/6	11 to 21	59 to 200	116	<u>Q</u>	780,000	7,800,000	000'068	8	S, P, G
Carbon disulfide	3/6	5 to 11	2 to 24	7.6	2	780,000	7,800,000	18,000	2	S, P, G
Xylenes (total)	5/6	5 to 11	1 to 2	1.5	QV	16,000,000	160,000,000	44,000,000	2	S, P, G
Semivolatiles (µg/kg)										
Benzo(a)anthracene	1/6	350 to 1,700	210	210	9	880	006	4,900	Yes	ပ
Benzo(b)fluoranthene	1/6	350 to 1,700	310	310	9	880	006	4,900	Yes	ပ
 Benzo(g,h,i)perylene	1/6	350 to 1,700	200	200	Q	A A	Y Y	20,000	2	o
Butylbenzylphthalate	1/6	350 to 1,700	230	230	2	1,600,000	16,000,000	300,000,000	2	ල ර
Chrysene	1/6	350 to 1,700	270	270	9	88,000	88,000	490,000	Yes	ပ
Di-n-butylphthalate	1/6	350 to 1,700	20	S	오	780,000	7,800,000	150,000,000	2	လ ၅ (၁
Dibenz(a,h)anthracene	1/6	350 to 1,700	180	180	Q	88	6	200	Υes	ပ
Fluoranthene	1/6	350 to 1,700	280	280	9	310,000	3,100,000	44,000,000	<u>8</u>	S, P, G
Indeno(1.2,3-cd)pyrene	1/6	350 to 1,700	290	290	2	880	006	2,000	Yes	ပ
Pyrene	1/6	350 to 1,700	280	280	2	230,000	2,300,000	37,000,000	2	S, P, G
Pesticides/PCBs (µg/kg)	-									
No Analytes detected										
See notes at end of table.	Je.									

					mined					
		Chemical	icals of Poten	s of Potential Concern in Subsurface Soil at SWMU 28	Subsurface	Soil at SWM	J 28			
				Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	A SV Report tation orida			٠.		
Frequency of Oterction	rion1	Range of Reporting Limits	Range of Detected Concentrations ²	Mean of Detected Concentrations ³	Background Screening Value ⁴	Risk Based Screening Concentration ⁵	Superfund Proposed Soil Screening Levels*	Cleanup Goals for the Military Sites in Florida	Analyte CPC? (Yes/No)	Reason
Inorganics (mg/kg)									,	(
Antimony 1/6	စ္	1.06 to 1.89	0.67	0.67	Š	3.1	9	210	2	S, P,
	ç	2.12 to 3.78	0,385* to 8.3	2.6	6:0	°0.37	0.4	ဗ	Yes	
	ي پر	42.42 to 75.61	2.1 to 26.9	o	7.2	550	5,500	74,000	2	S, P, G
{	<u>(</u>	1.06 to 1.89	0.11 to 1.3	0.46	0.14	0.15	0.1	0.2	Yes	
	ي پر	1.06 to 1.89	0.82*	0.82	2	3.9	33	900	Š	S, P, G
	<u>, </u>	9 12 to 3 78	1 to 38.7	6.0	3.4	1039	330	10220	운	S, P, G
	ر ب	10.6 to 18.9	0.87 to 7.4	3.2	1.04	470	¥	110,000	2	S _. G
	ر پر	5.3 to 9.45		3.5	3.6	290	A A	72,000	Š	ა ე
5	۷ پر	0.64 to 1.13	1.65* to 11.3	6.	2.8	"400	400	1,000	8	S, P, G
	<u>, (</u>	0.04 to 0.08	0.32 to 1	0.66	90.0	2.3	ឌ	480	<u>8</u>	S, P, G
Mercury 2/6	2/2	8.48 to 15.12	2.2 to 10.6	6.4	Q	160	1,600	11,000	Š	S, P, G
į	o /2 0 /2	1.06 to 1.89		0.38	2	33	330	006'6	8	S, P, G
	י ני ע ני	10.6 to 18.9	2.9 to 4.5*	3.8	5.4	4,700	A A	000'099	Ş	₽
	0/0	10.6 to 18.9	0.85 to 38	6	3.2	55	220	4,800	Š	S, P, G
	9/9	4 24 to 7.56	1.7 to 46	14.9	4.8	2,300	23,000	550,000	운	S, P, G
Zalic Oyonide	1/6	2.12 to 3.78	0.57*	0.57	0.66	160	1600	40,000	2	a
is on next page.										

Chemicals of Potential Concern in Subsurface Soil at SWMU 28 Table 7-9 (Continued)

Groups I and II RFA SV Report U.S. Naval Station

				Maypor, Tolica	PIOL CA					
								i		
Analyte	Frequency of Detection'	Range of Reporting Limits	Range of Detected Concentrations ²	Mean of Detected Concentrations ³	Background Screening Value	Risk Based Screening Concentration ⁵	Superfund Cleanup Proposed Soil Goals for the Screening Military Sites Levels* in Florida*	Cleanup Goals for the Military Sites In Florida?	Analyte CPC? (Yes/No)	Reason

2 Value indicated by asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetected values, 1/2 the contract required quantitation limit or Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values).

The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected including values qualified with a "J"; It does not include those contract required detection limit (CRDL) is used as a surrogate.

The background screening value is twice the average of detected concentrations for inorganic analytes in background samples. Organic values are one times the mean of samples where the analyte was not detected ("U" or "UJ" qualifiers) and rejected ("R" qualifier)

EPA/903/R-93-001) was used for screening. Actual values are taken from the USEPA Region III RBC tables dated February 1995, and are based on a cancer risk of 10° and an concentrations (RBC) for residential surface soil exposure per January 1993 guidance (Selecting Exposure Routes and Contaminants of Concern by Risk-Based Screening, For all chemicals except the essential nutrients (calcium, iron, magnesium, potassium, and sodium), U.S. Environmental Protection Agency (USEPA) Region III risk based adjusted hazard quotient of 0.1. For the essential nutrients, screening values were derived based on recommended daily allowances (RDAs). detected concentration. Organic values are included for comparison purposes only.

Values are taken from the Florida Department of Environmental Protection memorandum, Cleanup Goals for Military Sites in Florida, dated April 5, 1995. The values are for the Source: USEPA. December, 1994. Soil Screening Guidance, Review Draft, USEPA, Office of Solid Waste and Emergency Response, Washington, D.C., EPA/540/R-94/101. Industrial Worker based on a cancer risk of 10° and the general worker based on a hazard quotient of 1.

Analytes were included or excluded from the risk assessment for the following reasons:

= the maximum detected concentration did not exceed the screening concentration and will not be considered further.

= the maximum detected concentration did not exceed the Florida cleanup goals and will not be considered further.

= the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations.

= the frequency of detection was less than 5 percent and professional judgment was used to exclude analyte from further study. 囟

the analyte is a member of a chemical class that contains other chemicals of potential concern (CPCs) (i.e., carcinogenic polynuclear aromatic hydrocarbons [PAHs]). II

= the maximum detected concentration did not exceed the USEPA proposed soil screening levels (SSLs), 9355.4-14FS, dated December 1994 = the analyte was detected at less than 5 percent and is a CPC in more than one media.

The value is based on arsenic as a carcinogen.

10 The value is based on chromium hexavalent form.

11 USEPA Office of Solid Waste and Emergency Response (OSWER) Directive No. 9355.4-12 revised interim recommended soil cleanup for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites.

The average of a sample and its duplicate is used for all table calcutations. Notes:

Sample locations include: 28BS00106, 28BS00504, 28BS01004, 28BS01704, 28BS002204, 28BS03104, Duplicate sample locations include: 28BS03104D

Background sample locations include: MPT-B-BS01; MPT-B-BS04; MPT-B-BS05; MPT-B-BS06 Duplicate background sample locations include: MPT-B-BS1Dup

SWMU = solid waste management unit CPC = chemicals of potential concern. = not detected in any background samples.

μg/kg = micrograms per kilograms. ND = not detected in any backgrour

mg/kg = milligrams per kilograms. PCBs = polychlorinated biphenyls. NA = not available.

MP-GI&II.RFA ASW.11.95

Groundwater Analytical Results. A summary of groundwater quality parameters is provided in Table 7-10 and Table 7-11 summarizes the validated analytical results for organic and inorganic analytes detected in groundwater samples collected at SWMU 28. A summary of frequencies of detection, range of detection limits, range of detected concentrations, arithmetic mean, and bench mark comparison values are provided in Table 7-12. Bench mark comparison values consist of background screening values computed from station wide background groundwater samples (ABB-ES, 1995b), USEPA Region III RBCs (USEPA, 1995), and Florida groundwater guidance values (FDEP, 1994).

Each of the bench mark criteria provided in Table 7-12 are human health based and represent the lower of either a noncarcinogenic HI of 1 or a lifetime excess cancer risk of 10^{-6} . Bench mark values for a noncarcinogenic HI of 1 or less represent a concentration where noncarcinogenic effects are not likely. A bench mark value for a lifetime excess cancer risk of 10^{-6} represents a chance of 1 in 1,000,000 for an adverse carcinogenic effect for a continuous lifetime exposure.

The water quality parameters for the SWMU 28 groundwater monitoring wells were compared to the State of Florida secondary water quality criteria (Table 7-10). Values determined for color met or exceeded the State of Florida secondary water quality criteria for six of the groundwater samples. Values determined for Hardness as CaCo_3 suggest that the groundwater would be considered very hard (greater than 180 mg/ ℓ for the groundwater sample collected from the monitoring wells [Durfor and Becker, 1964]). The values determined for total dissolved solids suggest that the groundwater would be considered fresh. The range for classifying water as fresh is 0 to 1,000 mg/ ℓ (Freeze and Cherry, 1979).

Target analytes detected in monitoring well MPT-8-MW05S, which is hydraulically upgradient from SWMU 28, consist of one SVOC 3- and 4-methylphenol (2) and nine inorganics (arsenic, barium, calcium, chromium, iron, magnesium, manganese, vanadium, and zinc). VOCs, pesticides, and PCBs were not detected in the groundwater samples collected from monitoring well MPT-8-MW05S.

Target analytes detected in the monitoring wells and piezometers hydraulically downgradient from SWMU 28 consisted of 1 VOC (methylene chloride), 1 SVOC (bis(2-ethylhexyl)phthalate), and 15 inorganics (arsenic, barium, calcium, cadmium, chromium, iron, magnesium, manganese, nickel, sodium, tin, thallium, vanadium, zinc, and cyanide).

Groundwater samples collected for inorganic analysis from MPT-8f-MWO1S on July 11, 1994, consisted of an unfiltered (08MWO01S) and filtered (45 micron) sample (08MW001SF). The filtered sample contained lower concentrations of arsenic, calcium, iron, magnesium, manganese, and magnesium, and similar concentrations for sodium and thallium. The filtered sample did not contain barium. The difference in the two samples may be due to the removal of colloidal size material in the filtered sample. The filtered sample is a reference sample to assess the low flow sampling methodology, which appears to effectively obtain a groundwater sample that is representative of the aquifer.

7.4 PRELIMINARY RISK EVALUATION. The following presents a preliminary risk evaluation of the target analytes detected in surface and subsurface soil samples. The preliminary risk evaluation assesses the detected concentrations in the environmental samples against background screening and bench mark values. The evaluation includes surface soil samples collected at Sections 1, 2, and 3 and the

		Water Quality	Table 7-10 Water Quality Parameters for SWMU 28 Groundwater Samples	Table 7-10 for SWMU 28 Ground	water Samples		
			Groups I and III U.S. Nav Mayport	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida		·	
Analyte Batch No.:		23921	M7505	23887	M7505	R8405	
Sample Matrix:		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Location:		MPT-8-MW01S	MPT-8-MW01S	MPT-8-MW05S	MPT-8-MW05S	MPT-28-MW01S	Secondary 1
Sample No.:		8MW1	08MW001S	BMW5S	08MW005S	28MW001S	Criteria
Date Sampled:		01-FEB-94	11-JUL-94	1-27-93	26-JUL-94	11-JULY-94	
Common Name	Units	Conc.	Cone.	Conc.	Сопс.	Conc.	Conc.
Alkalinity as CaCO,	mg/t	163	150	250	242	332	:
Ammonia-N	∦ /gw	0.2	0.7	į	6 , 1	ł	1
Chloride	1 /6ш	14.9	5.6	8,5	31.7	17.1	250,000
Calor	APHA	. 15	0.2	15	30	50	5
Hardness as CaCO ₃	1/6m	220	180	288	262	251	
Nitrate/Nitrite-N	#/gm	AN	NA AN	N V	NA A	0.26	10,000
Oil and Grease	mg/f	324	0.1	5 <u>,</u>	NA	I	ı
Phosphorous-P, Total	mg/t	0.75	8.0	0.24	0.81	9:	1
Sulfate	mg/ <i>t</i>	25.5	33.2	45.2	36,4	71.4	250,000
Sulfide	1/6m	0.5	ł	ı	6.0	ı	:
Total Dissolved Solids	3 /6ω	324	422	388	417	442	200
Total Kjeldahl Nitrogen	mg/f	0.8	1.3	9.0	3.4	8.3	t
Total Organic Carbon	1 /6ш	4.1	4.6	4.7	5.2	e S	!
H	Sı	7.6	7.6	7.5	7.4	7.3	6.5 to 8.5
See notes at end of table.							

Water Quality Pal	ramete	rs for SWMU 28	Water Quality Parameters for SWMU 28 Groundwater Samples	saidu
	Grou	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	oort	
Analyte Batch:		R8609	R8609	
Sample Matrix:		Groundwater	Groundwater	Groundwater
Sample Location:		MPT-10-P01	MPT-15-P01	Secondary 1 Water Quality
Sample No.:		100P001	15OP001	Criteria
Date Sampled:		24-AUG-94	24-AUG-94	
Common Name	Units	Conc.	Cone.	Conc.
Alkalinity as CaCO ₃	mg/t	207	291	!
Ammonia nitrogen	7/6w	ı	9.0	l
Chloride	a/gш	9.1	43.7	250,000
Color	APHA	20	5.0	15
Hardness as CaCO ₃	mg/!	252	326	;
Nitrate = nitrite nitrogen	mg/t	0.26	l	10,000
Oit and grease	1/6m	N A	¥N	•
Phosphorous P, total	mg/ℓ	0.63	5.0.5	!
Sulfate	mg/f	48	62.9	250,000
Sulfide	mg/t	1,4	1	•
Total dissolved solids	mg/t	349	503	200
Total Kjeldahl nitrogen	mg/t	1,7	1.2	1
Total organic carbon	a/6m	36.1	8.2	1
Hd	SU	7.4	7.1	6.5 to 8.5
' Secondary Water Quality Criteria Chapter 17-550.320, Florida Administrative Code (FAC)	ia Chapt	er 17-550.320, Florida	Administrative Code	(FAC).
Notes: Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C. SWMU = solid waste management unit. APHA = American Public Health Association. Caco. = carcium carbonate. NA = not analyzed.	d at Nav anageme	al Energy and Envirol ant unit. AP NA	ronmental Support Activity (NEESA) Level C analyte not detected. APHA = American Public Health Association. NA = not analyzed.	ity (NEESA) Level 1. 5 Health Association

Organic	Table 7-11 Table 7-11 Croundwater Samples At SWMU 28	Table 7-11 lytes Detected in G	iroundwater Samp	les At SWMU 28	
		Groups I and II RFA SV Report U.S. Naval Station Mayoort, Florida	/ Report on a		
aboratory Batch No.:	23918	M7504	M7504	23886	R8403
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Location:	MPT-8-MW01S	MPT-8-MW01S	MPT-8-MW01S	MPT-8-MW05	MPT-8-MW05
Sample No.:	8MW1	08MW001S	08MW001SF	MPT8MW5S	08MW005S
Sample Date	2-FEB-93	11-JUL-94	11-JUL-94	27-JAN-93	26-JUL-94
VOCs (8240) (µg/f)					
Methylene chloride	J S	;	:	i	:
SVOCe (8270) (µg/l)					
bis(2-Ethylhexyl)phthalate	5.5	:	ŀ	i	: 6
3- 8. 4-Methylphenol (2)	:	1	1	:	87
Inorganics (µg/f)			•	- 6	1
Arsenic	3.2 J	1.1 J	.95 J	C 5.3	i
Barium	6.7.6	3.9 J	:	6.5 J	1 6
Calcium	:	27,900	58,800	89,500	84,500 J
Cadmium	3.0 J	:	:	: 3	:
Chromium	J 5,4	i	:	1 20 1	:
lou	:	710 J	450	2,760 J	t
Magnesium	ı	6,180	5,730	15,400	:
Малдалеѕе	t	43.6 J	39.3 ქ	5.6E	;
Nickel	•	1	1	:	Ì
Sodium	;	4,980 ل	4,940 J	:	:
<u> </u>	13.2 J	ı	1	;	t
Thallium	1	1.5 J	1.5 վ	: !	:
Vanadium	6.3 J	t	:	7.2 J	ı
Zinc	31	:	ı	23.9 J	1
Cyanide	1	1	;	:	;
See notes at end of table.					

	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	SV Report ion da	
Laboratory Batch No.:	M7505	R8609	R8607
	Groundwater	Groundwater	Groundwater
Sample Location:	MPT-28-MW01S	MPT-10-PO1	MPT-15-P01
Sample No.:	28MW001S	100P001	15OP001
Sample Date	11-JUL-94	24-AUG-94	24-AUG-94
VOCs (8240) (µg/f)		l	
Methylene chloride	;	:	:
SVOCs (8270) (µg/f)			
bis(2-Ethylhexyl)phthalate	ı	:	:
3- & 4-Methylphenol (2)	:	i	•
Inorganics (µg/1)			•
Arsenic	4.3 J	1.4 J	LO.L
Barium	L 0.7	4.7 J	3.1 J
Calcium	97,700	006'22	129,000
Cadmium	;	ı	1
Chromium	;	:	l
u o	173 J	46.7	130
Magnesium	10,800	11,400	4,800 J
Manganese	42.9 J	4.5 J	33.4
Nickel	7.6 J	1	•
Sodium	12,400	8,190	30,800
Tin	1	:	1
Thallium	;	ī	1
Vapadium	4.8	U 4.4	1.9.1
Zoc	;	3.6 J	5.4 J
Cinc	ŧ	3.6 J	3.0 ₪
Notes: SWMU = solid waste management unit.		"J" = estimated value. = analyte not detected.	

				Table 7-12		90			
		Chemica	Chemicals of Potential Concern in Groundwater at SWMU 28	oncern in Gro	undwater at \$	WMU 28			
			Groups I U.S M	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	epart				
Analyte	Frequency of Detection ¹	Range of Reporting Limits	Range of Detected Concentrations ²	Mean of Detected Concentration	Background Screening Concentration	Risk Based Screening Concentration ^s	Florida Guidance Concentration	Analyte CPC? (Yes/No)	Reason
Volatiles (µg/l)									
No Analytes Detected									
Semivolatiles (µg/f)									
No Analytes Detected									
Pesticides/PCBs (µg/f)									
No Analytes Detected									
Inorganice (µg/f)						e e	í	1	0
Arsanic	4/4	0.6 to 10	1 to 4.3	α,	11,4	°0.038	ŝ	2 :	י מ
Barium	4/4	0.4 to 200	3.1 to 7	4.7	10.2	260	2,000	2	6
Calcium	4/4	41.7 to 5,000	57,900 to 129,000	90,625	170,450	1,055,398	¥ Z	ž	c ò
oc.	4/4	9.1 to 100	46.7 to 710	265	2,076	13,267	300	£	œ
Macnesium	4/4	31.4 to 5,000	4,800 to 11,400	8,295	21,234	118,807	¥ Z	S S	6
Mandanese	4/4	0.6 to 15	4.5 to 43.6	31.1	185.8	18	20	2	æ
le soil	1/4	5.9 to 40	7.6	7.6	Q.	73	100	운	ග ග්
Sodium	4/4	14.4 to 5,000	4,980 to 30,800	14,237	18,624	396,022	160,000	ž	g Š
Thallium	1/4	0.6 to 10	7:5	7.	Q	°0.29	8	Yes	
Vanadium	3/4	1.5 to 50	1.9 to 4.8	3.7	10.6	58	49	2	80
Zinc	2/4	1 to 20	3,6 to 5,4	4.5	90	1,100	2000	2	œ
Cyanide	2/4	2.7 to 10	3 to 3.6	3.3	6.1	73	500	운	ย
See notes on next page.									

Chemicals of Potential Concern in Groundwater at SWMU 28 Table 7-12 (Continued)

Groups I and II RFA SV Report U.S. Naval Station

(Yes/No) Analyte CPC? Concentration Guidance Concentration Risk Based Screening Concentration* Background Screening Mayport, Florida Concentrations³ Detected Mean of Concentrations Detected Reporting Range of Limits Detection 1 Frequency

Analyte

Reason'

Value indicated by asterisk is the average of a sample and its duplicate. For nondetected values, 1/2 the contract required quantitation limit or contract required detection Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values)

The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected including values qualified with a "J"; it does not include those samples where the analyte was not detected ("U," or "UJ" qualifier) and rejected ("R" qualifier).

concentrations (RBC) for tap water per January 1993 guidance (Selecting Exposure Routes and Contaminants of Concern by Risk-Based Screening, EPA/903/R-93-001) was For all chemicals except the essential nutrients (calcium, iron, magnesium, potassium, and sodium), U.S. Environmental Protection Agency (USEPA) Region III risk based used for screening. Actual values are taken from RBC Table dated February 1995, and are based on a cancer risk of 10° or an adjusted hazard quotient of 0.1. For the The background screening value is twice the average of detected concentrations for inorganic analytes in background samples.

 Florida Department of Environmental Protection Groundwater Guidance Concentrations (June 1994). essential nutrients, screening values were derived based on recommended daily allowances (RDAs).

Analytes were included or excluded from the risk assessment for the following reasons:

S = the maximum detected concentration did not exceed the screening concentration and will not be considered further.

= the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations. = the maximum detected concentration did not exceed the Rorida cleanup goals and will not be considered further.

= the frequency of detection was less than 5 percent and professional judgment was used to exclude analyte from further study. மைய

= the analyte is a member of a chemical class that contains other human health chemicals of potential concern (HHCPCs) (i.e., carcinogenic polynuclear aromatic hydrocarbons [PAHs]).

= the maximum detected concentration did not exceed the USEPA proposed soil screening levels (SSLs), 9355.4-14FS, dated December 1994. M = the analyte was detected at less than 5 percent and is a HHCPC in more than one media.

The values is based on thallium as thallium sulfate. The value is based on arsenic as a carcinogen. •

The average of a sample and its duplicate is used for all table calculations. Notes:

Sample locations include: OBMW001S, 100P001, and 150P001

Background sample locations include: 01MW001, 08MW005S, 08MW001S, 0SMW001R, 8MW5S, MPT-1-MW1-1, MPT-S-1-1, and S1.

CPCs = chemicals of potential concern.

ug/1 = micrograms per litter

PCBs = polychlorinated biphenyls.

 not detected in any background samples. NA = not available. ND = not detected recycling center at SWMU 28; subsurface soil collected at Sections 1, 2, and 3; and groundwater samples collected from monitoring wells and piezometers located hydraulically downgradient from SWMU 28.

<u>Surface Soil</u>. Chemicals of potential concern consist of one SVOC (4-chloro-3-methylphenol and two inorganics (arsenic and beryllium). VOCs were not determined to be chemicals of potential concern, and pesticides and PCBs were not detected in the surface soil samples collected at SWMU 28.

Section 1 surface soil samples did not contain detectable concentrations of the SVOCs 4-chloro-3-methylphenol and benzo(g,h,i)perylene. Arsenic was detected in nine samples and a duplicate and beryllium was detected in eight surface soil samples and a duplicate at Section 1.

Arsenic was not detected in background surface soil samples. The concentrations of arsenic detected in the Section 1 surface soil samples exceeded the USEPA Region III RBC (0.37 mg/kg), the proposed Superfund SSL (0.4 mg/kg), and the FDEP cleanup goal (0.7 mg/kg).

The concentrations of beryllium detected in the Section 1 surface soil samples exceeded the background screening value (0.16 mg/kg) in one sample. The USEPA Region III RBC (0.15 mg/kg) was exceeded in one sample and the proposed Superfund SSL and Florida cleanup goal of 0.1 mg/kg was exceeded in three samples.

Section 2 surface soil samples did not contain detectable concentrations of the SVOC 4-chloro-3-methylphenol. Arsenic was detected in nine samples and a duplicate and beryllium was detected in eight surface soil samples and a duplicate at Section 2.

The concentrations of arsenic detected in the Section 2 surface soil samples exceeded the USEPA Region III RBC, the proposed Superfund SSL, and the FDEP cleanup goal. The concentrations of beryllium detected in the Section 2 surface soil samples did not exceed the background screening value. The USEPA Region III RBC was not exceeded and the proposed superfund SSL and Florida cleanup goal was exceeded in three samples.

Section 3 surface soil samples contained 4-chloro-3-methylphenol in 1 of 15 samples at a concentration of 55 mg/kg. Arsenic was detected in 15 samples and 2 duplicates and beryllium was detected in 11 surface soil samples and 2 duplicate surface soil samples.

4-Chloro-3-methylphenol was determined to be a chemical of potential concern because there are no bench mark values to assess this organic compound.

The concentrations of arsenic detected in the Section 3 surface soil samples exceeded the USEPA Region III RBC, the proposed Superfund SSL and Florida cleanup goal. The FDEP cleanup goal was exceeded in eight surface soil samples.

The concentrations of beryllium detected in the Section 3 surface soil samples exceeded the background screening value in three surface soil samples. The USEPA Region III RBC was exceeded in 3 surface soil samples and the proposed superfund SSL and Florida cleanup goal was exceeded in 13 samples.

Surface soil samples collected at the recycling center part of SWMU 28 did not contain detectable concentrations of the SVOC 4-chloro-3-methylphenol. Arsenic and beryllium were detected in both of the surface soil samples collected at this location. The concentrations of arsenic exceeded the USEPA Region III RBC, the proposed Superfund SSL, and the FDEP cleanup goal. The concentrations of beryllium exceeded the background screening value, the USEPA Region III RBC, the proposed Superfund SSL and the Florida cleanup goal.

<u>Subsurface Soil</u>. The subsurface soil samples did not contain VOCs at concentrations that exceeded bench mark values. Pesticides and PCBS were not detected in the subsurface soil samples. Organic target analytes that exceeded bench mark values were five SVOCs (benzo(a)anthracene, benzo(b)perylene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene). Inorganic target analytes that exceeded background screening values and bench mark values were arsenic and beryllium.

The subsurface soil samples collected in Section 1 of SWMU 28 did not contain detectable concentrations of the SVOCs. Arsenic was detected in both of the Section 1 subsurface soil samples and beryllium was detected in only one of the samples.

Only one of the samples contained arsenic at a concentration (8.3 mg/kg) that exceeded the background screening value (0.9 mg/kg). Both of the subsurface soil samples collected at Section 1 contained arsenic at concentrations that exceeded the USEPA Region III RBC (0.37 mg/kg) and the proposed Superfund SSL (0.37 mg/kg). One subsurface soil sample contained arsenic at a concentration that exceeded the FDEP cleanup goal (3 mg/kg) for an industrial worker.

The concentration of beryllium detected in the Section 1 subsurface soil sample (1.3~mg/kg) exceeded the background screening value (0.14~mg/kg), the USEPA Region III RBC (0.15~mg/kg), and the proposed Superfund SSL and the Florida cleanup goal 0.1~mg/kg.

The subsurface soil samples collected in Section 2 of SWMU 28 did not contain detectable concentrations of the SVOC. Arsenic and beryllium were detected in both of the Section 2 subsurface soil samples.

Arsenic was detected in one of the subsurface soil samples at a concentration (1.9~mg/kg) that exceeded the background screening value. Both of the section 2 subsurface soil samples contained arsenic at concentrations that exceeded the USEPA Region III RBC and the proposed Superfund SSL, but not the FDEP cleanup goal for an industrial worker.

Beryllium was detected in one of the subsurface soil samples at a concentration (1.9 mg/kg) that exceeded the background screening value. One of the samples contained beryllium at a concentration that equaled the USEPA Region III RBC and both of the section 2 subsurface samples contained beryllium at concentrations that exceeded the proposed Superfund SSL.

One of the subsurface soil samples from Section 3 contained the SVOC dibenz(a,h)anthracene at a concentration (180 $\mu g/kg$) that exceeded the USEPA Region III RBC (88 $\mu g/kg$) and the proposed Superfund SSL (90 $\mu g/kg$). Because PAH compounds like dibenz(a,h)anthracene may have additive adverse carcinogenic effects, the other PAH compounds (benzo(a)anthracene, benzo(b)perylene, chrysene,

and indeno(1,2,3-cd)pyrene) were also indicated to exceed the bench mark values. However, none of the PAH compounds were detected at concentrations that exceed the FDEP cleanup goals.

Arsenic was detected in one of the subsurface soil samples at a concentration (4 mg/kg) that exceeded the background screening value. One subsurface soil sample and the corresponding duplicate to the other subsurface soil sample contained arsenic at concentrations that exceeded the USEPA Region III RBC and the proposed Superfund SSL. One of the samples contained arsenic at concentrations that exceeded the FDEP cleanup goal for an industrial worker.

Beryllium was detected as a single occurrence in the Section 3 subsurface soil samples at a concentration (0.28 mg/kg) that exceeded the background screening value, the USEPA Region III RBC, and the proposed Superfund SSL and the Florida cleanup goal.

Groundwater. Four of the groundwater samples collected in 1994 from monitoring wells MPT-8-MWO1S and MPT-28-MWO1S, and piezometers MPT-10-PO1 and MPT-15-PO1 were used to assess CPCs for SWMU 28 groundwater samples. Monitoring well MPT-8-MW05S was excluded because it is hydraulically upgradient from SWMU 28. Data collected in 1992 from monitoring well MPT-8-MW01S was excluded because the sampling method produced a turbid sample that was not as representative of the groundwater produced from the well as data collected in 1994 using low flow sampling methodology. The difference between the samples is illustrated by the detection of different analytes, with the exceptions of arsenic and barium, in the samples from 1993 and 1994.

Only one target analyte, thallium, was determined to be a chemical of potential concern. Thallium was detected as a single occurrence in the groundwater sample from monitoring well MPT-8-MWOl at a concentration of 1.5 μ g/ ℓ . It should be noted that the filtered sample contained thallium at the same concentration. Thallium was not detected in the background groundwater samples. The concentration of thallium exceeded the USEPA Region III RBC (0.29 μ g/ ℓ), but not the FDEP guidance concentration (2 μ g/ ℓ). The FDEP guidance concentration is a promulgated standard.

7.5 CONCLUSIONS AND RECOMMENDATIONS.

7.5.1 Conclusions

<u>Surface Soil Samples</u>. None of the VOCs (acetone, methylene chloride, and xylenes) were detected in the surface soil samples collected at SWMU 28 at concentrations that exceeded the bench mark values. Pesticides and PCBs were not detected in the surface soil samples. One SVOC (4-chloro-3-methylphenol) and two inorganics (arsenic and beryllium) were determined to be chemicals of potential concern.

The SVOC 4-chloro-3-methylphenol was determined to be a chemical of potential concern because, currently, there is not a bench mark criteria for this compound.

The inorganic analytes, arsenic and beryllium, exceeded both background screening and bench mark values. Arsenic is considered to exceed background screening

values because it was not detected in surface soil background samples. Concentrations of arsenic exceeded the USEPA Region III RBC (0.37 mg/kg), the proposed Superfund SSL (0.4 mg/kg), and the FDEP cleanup goal (0.7).

Beryllium was detected at concentrations that exceeded the background screening value (0.16 mg/kg), the USEPA Region III RBC (0.15 mg/kg), and the proposed Superfund SSL and Florida cleanup goal of 0.1 mg/kg.

Arsenic and beryllium were detected in surface soil samples at concentrations that exceeded bench mark values, which are based on values for a lifetime excess cancer risk of 10^{-6} . However, the potential risk associated with concentrations of arsenic and beryllium that were detected is within a range (10^{-4} to 10^{-6}) that is considered by USEPA to be protective of human health (40 CFR 300, 1990) (see Table C-1, Appendix C).

Subsurface Soil Samples. None of the VOCs (2-butanone, acetone, carbon disulfide, and xylenes) were detected in the subsurface soil samples collected at SWMU 28 at concentrations that exceeded the bench mark values. Pesticides and PCBs were not detected in the surface soil samples. Five SVOCs (benzo(a)anthracene, benzo(b)perylene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene) and two inorganics (arsenic and beryllium) were determined to be chemicals of potential concern.

One of the subsurface soil samples from Section 3 contained the SVOC dibenz(a,h)anthracene at a concentration (180 μ g/kg) that exceeded the USEPA Region III RBC (88 μ g/kg) and the proposed Superfund SSL (90 μ g/kg). Because PAH compounds like dibenz(a,h)anthracene may have additive adverse carcinogenic effects, the other PAH compounds (benzo(a)anthracene, benzo(b)perylene, chrysene, and indeno(1,2,3-cd)pyrene) were also indicated to exceed the bench mark values. However, none of the PAH compounds were detected at concentrations that exceed the FDEP cleanup goals.

Arsenic and beryllium were detected in subsurface soil samples at concentrations that exceeded bench mark values, which are based on values for a lifetime excess cancer risk of 10^{-6} . However, the potential risk associated with concentrations of arsenic and beryllium that were detected is within a range (10^{-4} to 10^{-6}) that is considered by USEPA to be protective of human health (40 CFR Part 300) (see Table C-7, Appendix C).

Because the land features at NAVSTA Mayport are influenced by the deposition of dredge material from Mayport Turning Basin, it cannot be determined whether the concentrations of arsenic and beryllium are related to a release at SWMU 28, or are residual concentrations from the dredge material.

<u>Groundwater</u>. Only one target analyte, thallium, was determined to be a chemical of potential concern. Thallium was detected as a single occurrence and exceeded the USEPA Region III RBC $(0.29~\mu g/\ell)$, but not the FDEP guidance concentration (2 $\mu g/\ell$) (see Table C-8, Appendix C). The FDEP guidance concentration is a promulgated standard. Also, thallium was not detected in surface or subsurface soil samples, therefore, SWMU 28 is not likely the source for this analyte in groundwater.

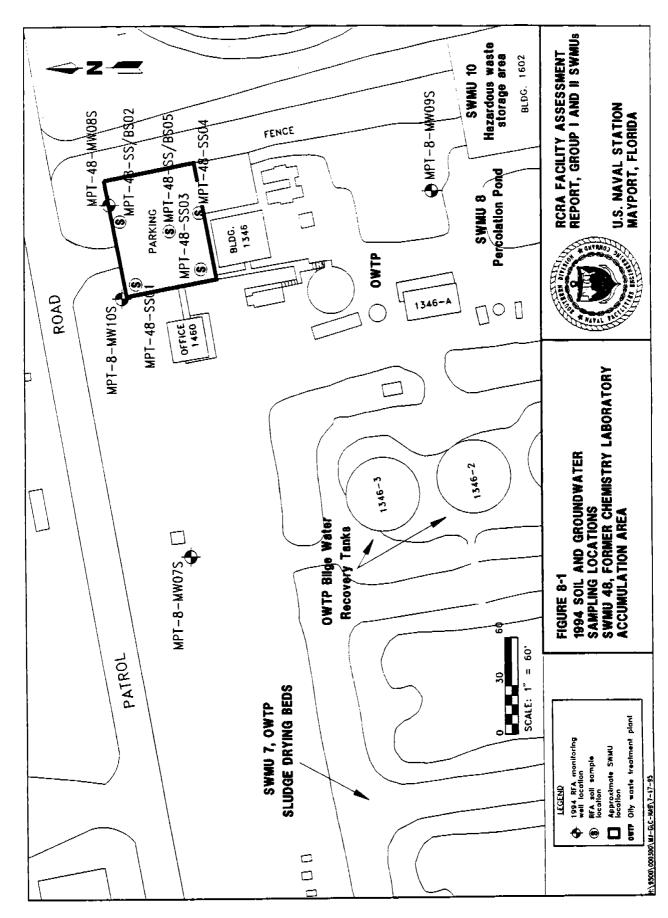
7.5.2 Recommendations SWMU 28 is recommended for no further investigation at this time based on the following rationale.

- No pesticides or PCBs were detected in surface or subsurface soil samples.
- None of the VOCs (acetone, methylene chloride, and xylenes) were detected in the surface soil samples collected at SWMU 28 at concentrations that exceeded the bench mark values.
- None of the VOCs (2-butanone, acetone, carbon disulfide, and xylenes) were detected in the subsurface soil samples collected at SWMU 28 at concentrations that exceeded the bench mark values.
- None of the PAH compounds were detected at concentrations that exceed the FDEP cleanup goals.
- Arsenic and beryllium were detected in surface and subsurface soil samples at concentrations that exceeded bench mark values, which are based on values for a lifetime excess cancer risk of 10^{-6} . However, the potential risk associated with concentrations of arsenic and beryllium that were detected is within a range (10^{-4} to 10^{-6}) that is considered by USEPA to be protective of human health (40 CFR Part 300).
- Thallium was detected as a single occurrence and exceeded the USEPA Region III RBC, but not the FDEP guidance concentration, which is a promulgated standard. Thallium was not detected in the surface or subsurface soil samples at SWMU 28. SWMU 28 is not likely the source of the thallium detected in the groundwater samples.
- The only extenuating factor is the SVOC 4-chloro-3-methylphenol, which was detected as a single occurrence in a surface soil sample and was determined to be a chemical of potential concern. Currently there are no bench mark criteria to evaluate this compound. Because this analyte was detected in 1 of 35 samples (approximately 2.8 percent) and was not detected in subsurface or groundwater samples, USEPA guidance allows 4-chloro-3-methylphenol not to be considered a chemical of potential concern. (USEPA, 1989b).
- The default assumptions used in estimating risk based bench mark concentrations may not be representative and likely overstate the specific exposure present at the site (i.e., underestimate the concentration that would result in a lifetime excess cancer risk of 10^{-6}). Because the chemicals were detected in only one or two media (i.e., soil and or groundwater) all of the exposure pathways and assumptions used to estimate the bench mark concentrations are not relevant. Therefore, the concentrations may exceed the bench mark values (USEPA, 1994, USEPA, 1995, and FDEP, 1995) but actually result in a lower excess cancer risk than 10^{-6} .

8.0 SWMU 48, FORMER CHEMISTRY LABORATORY ACCUMULATION AREA

8.1 SITE DESCRIPTION AND BACKGROUND. SWMU 48 was identified from photographs obtained from FDEP, formerly the Florida Department of Environmental Regulation (FDER), files (FDER, 1981) during preparation of the RFA (A.T. Kearney, 1989). The photographs showed numerous plastic and steel containers labeled "mercury waste" stored outside in a grassy field near a fence, ten 55-gallon drums, and approximately 50 smaller plastic containers. Visible in one of the photographs was a half-buried storage tank (believed to be Tank 1432, SWMU 51-S), with an underground, above-grade tank behind it, and a road and fence in front.

It is believed that SWMU 48 is located behind (northwest) the current Chemistry Laboratory at the OWTP (Building 1346, formerly Building 1442), approximately 400 feet from the St. Johns River (Figure 8-1). This agrees with the captions on the photographs, which read "Waste Behind Chemistry Lab" and "Mercury Waste." At the time of the VSI, no drums or containers were observed in the area. The area was not specifically identified during the IAS (ESE, 1986) nor had it been examined for evidence of releases to the environment.


The RFA recommended that the location and areal extent in which these wastes were stored be verified. The RFA also recommended that soil and groundwater samples be collected and analyzed to confirm the presence or absence of any releases of hazardous constituents to the environment. Based on previous site activities, it was recommended that the soil and groundwater samples be analyzed for mercury, other heavy metals, and select volatile and semivolatile organic compounds.

8.2 RFA SV FIELD INVESTIGATIONS. RFA SV field investigations at SWMU 48 included collection of surface soil, subsurface soil, and groundwater samples. Soil sampling was conducted on August 8, 1994. Groundwater sampling occurred between June and August 1994. Soil and groundwater sampling was conducted to assess the potential release of hazardous constituents at the site and to obtain sufficient surface soil, subsurface soil, and groundwater samples to evaluate potential exposure pathways and conduct a preliminary risk screening.

Five surface soil samples and two subsurface soil samples were collected at SWMU 48 (Figure 8-1). The surface soil samples were collected from 0 to 1 foot bls and the subsurface soil samples were collected at 4 to 5 feet bls.

Groundwater samples were collected from two existing monitoring wells (MPT-8-MW07S and MPT-8-MW08S) and two newly installed monitoring wells (MPT-8-MW09S and MPT-8-MW10S) (Figure 8-1). Monitoring wells MPT-8-MW07S and MPT-8-MW08S were sampled previously in 1993. Monitoring well MPT-8-MW07S was not sampled in 1994 due to the presence of floating free-phase hydrocarbons. The floating free-phase hydrocarbons in monitoring well MPT-8-MW07S are believed to be related to a release from SWMUs 6 and 7 (Figure 8-1).

Because many field activities are common to all NAVSTA Mayport SWMUs, the sampling procedures for RFI and RFA SV (confirmatory sampling) events are described in Section 2.1, Summary of Exploration and Sampling Program, of the NAVSTA Mayport GIR (ABB-ES, 1995b). Site-specific elements and deviations from sampling procedures, if any, particular to SWMU 48 are discussed in subsequent paragraphs, and standard operating procedures are referenced where necessary. Monitoring well installation, soil and groundwater sampling procedures,

and associated equipment decontamination procedures were conducted in general conformance with USEPA Region IV standard operating procedures (USEPA, 1991a).

<u>Soil Sample Collection Procedure</u>. Surface and subsurface soil sampling was accomplished as described in the NAVSTA Mayport RFI workplan (ABB-ES, 1991), and Subsection 2.1.1, Soil Sampling, of the GIR (ABB-ES, 1995b).

Monitoring Well Installation Procedure. Drilling and well installation were accomplished as described in the NAVSTA Mayport RFI workplan (ABB-ES, 1991), and Subsection 2.1.1, Monitoring Well and Piezometer Installation, of the GIR (ABB-ES, 1995b).

Groundwater Sample Collection Procedure. Groundwater sampling was accomplished as described in Subsection 2.1.4, Groundwater Sampling, of the GIR (ABB-ES, 1995b).

<u>Laboratory Analyses</u>. Soil and groundwater samples were analyzed for the same target analytes including VOCs, SVOCs, pesticides, PCBs, metals, and cyanide selected from the groundwater monitoring list contained in Appendix IX, 40 CFR 264 and USEPA Contract Laboratory Program target compound list and target analyte list. Environmental samples were analyzed using methods from Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW 846) (USEPA, 1986). A list of the target analytes is provided in Appendix A and complete analytical results are provided in Appendix B.

8.3 FINDINGS. The following presents a brief description of the results of the RFA SV sampling activities at SWMU 48. The results include site geologic and hydrogeologic conditions and results of the analyses of surface and subsurface soil samples and groundwater samples.

Site Geology. Subsurface soil samples were collected to determine the lithology of sediments beneath SWMU 48. During the installation of monitoring wells MPT-8-MW07S, MPT-8-MW08S, MPT-8-MW09S, and MPT-8-MW10S (Figure 8-1) soil samples were collected at discrete 2-foot intervals down to the explored depth of 15.5 feet (Figure 8-1). Soil samples for lithologic information were not submitted for laboratory analyses because these wells were installed outside the SWMU boundary. The shallow monitoring wells were installed with the screens placed across the water table (Table 8-1).

Boring logs for monitoring wells are found in the GIR Appendix A, Boring Logs (ABB-ES, 1995b). The following is a description of the subsurface soils encountered at the boring locations.

- Boring MPT-8-MW07S (located approximately 160 feet west of SWMU 48) encountered a dark brown sand with shells from the land surface to a depth of 2 feet bls overlying a fine-grained sand with shells to the explored depth of 15.5 feet bls.
- Boring MPT-8-MW08S (located at the northeast corner of SWMU 48) encountered a dark brown sand to 2 foot bls beneath a surficial asphalt layer, which was overlying fine-grained sands to the explored depth of 15.5 feet bls. A thin seam of silty sand also was encountered from 7 to 8 feet bls.

Table 8-1 Monitoring Well Installations Near SWMU 48

Groups I and II RFA SV Report U. S. Naval Station Mayport, Florida

	***-	3 F = 1 - 1 - 1		
SWMU Number	Monitoring Well No.	Diameter (inches)	Total Depth (feet)	Screened interva
8	MPT-8-MW07S	2	15	5 to 15
8	MPT-8-MW08S	2	15	5 to 15
8	MPT-8-MW09S	2	15	5 to 15
8	MPT-8-MW18S	2	15	5 to 15

Notes: SWMU = solid waste management unit. bls = below land surface.

- Boring MPT-8-MW09S (located approximately 150 feet south of SWMU 48) encountered surficial seams of sands with medium-sized gravel and silty clay to 1 foot bls overlying silty fine- to medium-grained sands with shells to the explored depth of 15.5 feet bls.
- Boring MPT-8-MW10S (located at the northwest corner of SWMU 48) encountered
 a silty fine- to medium-grained sand with shells from the land surface to
 the explored depth of 15.5 feet bls.

Geologic cross sections provided in the NAVSTA Mayport GIR (see Figures 3-5 and 3-6, ABB-ES, 1995b) depict subsurface geologic conditions in the vicinity of SWMU 48.

The groundwater levels at each monitoring well in the Site Hydrogeology. vicinity of SWMU 48 and for other RFI and RFA SV sites at NAVSTA Mayport were measured within a 7-hour period on August 30, 1994. The depth to the groundwater at each location was measured relative to a notch or mark on the north side of each well surveyed to the NGVD of 1929 (commonly referred to as msl). The depths to groundwater measured at each of the SWMU 48 monitoring wells are provided in Appendix G, along with other monitoring wells in the vicinity of the site. Also shown on the table are values for the water level measurements relative to the NGVD datum. The elevation data were used to prepare a map of the potentiometric surface (lines that represent altitudes of equal height above the reference datum) of the water table zone of the surficial aquifer. The potentiometric surface map of the water table is used to infer that groundwater flow is from higher to lower altitudes in a direction perpendicular to the equipotential lines. Based on the equipotential lines shown on Figure 7-2, the groundwater flow direction at SWMU 48 is generally toward the north, toward the St. Johns River.

The hydraulic position of the monitoring wells relative to SWMU 48 also is based on the equipotential lines shown on Figure 7-2. Monitoring well MPT-8-MW09S is located hydraulically upgradient from SWMU 48. Monitoring wells MPT-8-MW08S and MPT-8-MW10S are located on a hydraulic downgradient side of SWMU 48. Monitoring well MPT-8-MW07S is along a similar hydraulic equal potential line as the northern part of SWMU 48. Therefore, monitoring well MPT-8-MW07S is not in the flow path of groundwater beneath SWMU 48.

An approximation of the horizontal linear velocity of groundwater flow in the water table zone of the surficial aquifer in the vicinity of SWMU 48 is based on the potentiometric surface (hydraulic gradient) of the water table, estimates of radial hydraulic conductivities at monitoring well locations, and an estimate of the porosity (ratio of the volume of voids to total volume of the soil) of the saturated subsurface soil. The horizontal linear velocity was calculated from a modified form of Darcy's equation and represents the ratio of linear travel distance to travel time between two points (Freeze and Cherry, 1979). The horizontal linear velocity is expressed as $V_{\rm D}/N_{\rm e}$, where $V_{\rm D}$ is the Darcy velocity ($V_{\rm D}={\rm KI}$, where K is radial hydraulic conductivity and I is hydraulic gradient) and $N_{\rm e}$ is the effective porosity of the saturated geologic stratum. An effective porosity of 0.35 is used in calculations. (See Section 3.2.3, Physical Characteristics of Soil, in the NAVSTA Mayport GIR, ABB-ES, 1995b).

In-situ radial hydraulic conductivity values for monitoring wells in the vicinity of SWMU 48 are presented in Table 8-2. The range of in-situ radial hydraulic conductivity values in the vicinity of SWMU 48 are approximately 1 foot per day (MPT-8-MW08S) to 2.1 feet per day (MPT-8-MW07S). The hydraulic gradient appears to be relatively uniform over SWMU 48 (0.008 ft/ft on August 30, 1994) and an approximation of the horizontal linear velocity of the groundwater ranges from approximately 0.02 to 0.05 foot per day.

Based on the values for horizontal linear velocity and assuming no dilution, dispersion, or retardation, a contaminant in the water table zone of the surficial aquifer may travel at rates of 8 to 17 feet per year (Table 8-2).

Table 8-2
Average Groundwater Velocities at SWMU 48

Groups I and II RFA SV Report U. S. Naval Station Mayport, Florida

Location	Estimated Effective Porosity	Hydraulic Conductivity (feet per day)	Estimated Gradient¹ (feet per feet)	Estimated Linear Velocity (feet per day)	Estimated Linear Velocity (feet per year)
MPT-2-MW07S	0.35	2.1 ²	0.008	0.05	17
MPT-2-MW08S	0.35	1.0 ²	0.008	0.02	8

¹ Based on synoptic water table elevations, August 30, 1994.

Note: SWMU = solid waste management unit.

Surface and Subsurface Soil Analytical Results. Tables 8-3 and 8-4 summarize the validated analytical results for target analytes detected in surface and subsurface soil samples collected at SWMU 48. A summary of frequencies of detection, range of detection limits, range of detected concentrations, arithmetic mean, and bench mark comparison values are provided in Tables 8-5 and 8-6 for surface and subsurface soil samples, respectively. Bench mark comparison values consist of background screening values computed from station wide surface and subsurface soil samples (ABB-ES, 1995b), the USEPA soil screening guidance values (USEPA, 1994), USEPA Region III RBC (USEPA, 1995) and the State of Florida cleanup goals (FDEP, 1995). The state of Florida cleanup goals consist of residential values for surface soils and industrial worker values for subsurface soil.

² In-situ conductivity measurement at MPT-2-MW8S during December 1994.

Each of the bench mark criteria provided in Tables 2-6 and 2-7 is human health based and represents the lower of either a noncarcinogenic HI of 1, where values of less than 1 represent a concentration where noncarcinogenic effects are not likely or a lifetime excess cancer risk of 10^{-6} , which represents a chance of 1 in 1,000,000 for an adverse carcinogenic effect for a continuous lifetime exposure. The concentrations listed for the USEPA Region III RBCs correspond to an HI of 0.1, whereas the USEPA Superfund SSLs and the State of Florida cleanup goals are based on an HI of 1. The NCP (40 CFR, Part 300) states that for carcinogens a lifetime excess cancer risk in the range of 10^{-4} (a chance of 1 in 10,000 for an adverse carcinogenic effect for a continuous lifetime exposure) to 10^{-6} represents concentrations that are considered by USEPA to be protective of human health.

Target analytes detected in the surface soil samples consist of 2 VOCs (carbon disulfide and xylenes), 7 SVOCs (fluoranthene, pyrene, benzo(a)anthracene, chrysene, di-n-octylphthalate, benzo(b)fluoranthene, and benzo(k)fluoranthene), and 14 inorganics (antimony, arsenic, barium, chromium, cobalt, copper, lead, mercury, nickel, thallium, tin, vanadium, zinc, and cyanide) (Table 8-3). Pesticides and PCBs were not detected in the surface soil samples.

Target analytes detected in the subsurface soil samples consisted of 10 inorganics (arsenic, barium, chromium, copper, lead, mercury, nickel, tin, vanadium, and zinc). No VOCs, SVOCs, pesticides, or PCBs were detected in the subsurface soil samples.

Groundwater Analytical Results. A summary of groundwater quality parameters is provided in Table 8-7 and Tables 8-8 and 8-9 summarize the validated analytical results for organic and inorganic target analytes detected in groundwater samples collected at SWMU 48. A summary of frequencies of detection, range of detection limits, range of detected concentrations, arithmetic mean, and bench mark comparison values are provided in Table 8-10. Bench mark comparison values consist of background screening values computed from station wide background groundwater samples (ABB-ES, 1995b), USEPA Region III RBCs (USEPA, 1995), and Florida Groundwater guidance values (FDEP, 1994).

Each of the bench mark criteria provided in Table 8-10 is human health based and represents the lower of either a noncarcinogenic HI of l or a lifetime excess cancer risk of 10^{-6} . Bench mark values for a noncarcinogenic HI of l represent a concentration where noncarcinogenic effects are not likely. A bench mark value for a lifetime excess cancer risk of 10^{-6} represents a chance of l in 1,000,000 for an adverse carcinogenic effect for a continuous lifetime exposure.

The water quality parameters for the SWMU 48 groundwater monitoring wells were compared to the State of Florida secondary water quality criteria (Table 8-7). Values determined for color exceeded the State of Florida secondary water quality criteria for two of the groundwater samples and equaled the criteria in one of the samples. These criteria are used to assess potable water from a water supply system and may not be directly applicable to a groundwater sample collected from a monitoring well. Values determined for hardness as CaCo₃ suggest that the groundwater would be considered very hard (greater than 180 mg/l for the

		Ta	Table 8-3			
Organic		and Inorganic Analytes Detected in Surface Soil Samples at SWMU 48	sted in Surface	Soil Samples at	SWMU 48	
		Groups Land U.S. N Mayp	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida			
Analyte Ratch No	M7705	M7705	M7705	M7705	M7705	M7705
Sample Location:	MPT-48-SS01	MPT-SS-SS02	MPT-48-SS03	MPT-48-SS04	MPT-48-SS04	MPT-48-SS05
Sample No.:	8SS00101	48SS00201	48SS00301	48SS00401	48SS00401Dup	48SS00501
Date Sampled	08-AUG-94	08-AUG-94	08-AUG-94	08-AUG-94	08-AUG-94	08-AUG-94
Sample Depth (ft bis):	0 to 1	0 to 1	0 to 1	0 to 1	0 to 1	0 to 1
VOCs (8240) (µg/kg)						
Carbon disulfide	ı	;	;	:	2	;
Xylenes (total)	1	2 J	٦ ا	6 0	o	- -
SVOCs (8270) (µg/kg)						
Fluoranthene	;	i	ŀ	1	32.3	l
Pyrene	;	1	ì	ł	35	l
Benzo(a)anthracene	;	: 	;	1	, 92 1	ł
Chrysene	:	l		!	00 °	I
Benzo(k)fluoranthene	ı	1	1	1	18 T	:
Benzo(b)fluoranthene	1	;	1	ŀ	C 12	1
Di-n-octylphthalate	1	22 J	1	;	1	:
Inorganics (mg/kg)						
Antimony	ı	L 87.	ı	1	1	; ;
Arsenic	J. 15.	, 23 J	.28 J	J. 84.	. 54 J	U.7.0
Barium	D.	5.2 J	6.13	8.8	J.7.7	. 5.1 J
Chromium	2.4	2.8	3.1	5.2	4	3.0 J
Cobalt	ı	ţ	;	լ 75.	1	1
Copper	1	1	1	l	16.1 J	:
760	ı	3.8 J	1	7.5 ل	t	;
See notes at end of table.						

Organic and	Inorganic Ana	Table 8-3 (Continued) alytes Detected in Surfa	Continued) ed in Surface	Soil Samples	Table 8-3 (Continued) Organic and Inorganic Analytes Detected in Surface Soil Samples at SWMU 48	
		Groups I and II U.S. Nav: Mayport	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida			
Analyte Batch No.:	M7705	M7705	M7705	M7705	M7705	M7705
Sample Location:	MPT-48-SS01	MPT-SS-SS02	MPT-48-SS03	MPT-48-SS04	MPT-48-SS04	MPT-48-SS05
Sample No.:	8SS00101	48SS00201	485500301	48SS00401	48SS00401Dup	48SS00501
Date Sampled	08-AUG-94	08-AUG-94	08-AUG-94	08-AUG-94	08-AUG-94	08-AUG-94
Samole Depth (ft bis):	0 to 1	0 to 1	0 to 1	0 to 1	0 to 1	0 to 1
Mercury	;	ı	:	1	1	0.8 J
Nickel	:	l	i	!	3.6 J	ı
Thatlium	;	L 62	1	!	ì	1
Tin	2.8 J	2.7 J	2.7 J	:	ጉ ፎ	2.5 J
Vanadium	2.1 J	2.2 J	2.6 J	4.7 J	2.9 J	3.0 J
Zinc	:	f	7.1 J	8.1 J	14 J	;
Cyanide	1	J. 40.	.04 J			;
Notes: Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C. Suffix Dup = duplicate of the environmental sample.	at Naval Energy the environment	and Environment al sample.	tal Support Activi	ty (NEESA) Level	Ú	
SWMU = solid waste management unit. It bls = sample collection depth in feet below land surface VOCs = volatile organic compounds. µg/kg = micrograms per kilogram. = analyte not detected. "J" = estimated value. SVOCs = semivolatile organic compounds. mg/kg = milligram per kilogram.	nagement unit. o depth in feet be compounds. kilogram. ganic compounds	low land surface				

Table 8-4 Inorganic Analytes Detected in Subsurface Soil Samples at SWMU 48

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

Analyte Batch	M7705	M7705
Sample Location:	MPT-48-BS02	MPT-B\$-BS05
Sample No.:	48BS00205	48BS00505
Date Sampled	08-AUG-94	08-AUG-94
Sample Depth (ft bis):	4 - 5	4 - 5
Inorganics (mg/kg)		
Arsenic	2.5 J	0.68 J
Barium	10.1 J	7.0 J
Chromium	6.8	3.7
Copper	0.95 J	07X 15:5 J
Lead	4.0 J	
Mercury	0.15 J	-
Nickel	2.0 J	2.3 J
Tin	3.0 J	2.6 J
Vanadium	6.4 J	2.0 J
Zinc		10 J

Notes: Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C.

Suffix Dup = duplicate of the environmental sample.

SWMU = solid waste management unit.

ft bis = sample collection depth in feet below land surface.

mg/kg = milligram per kilogram.

"J" = estimated value.

- = analyte not detected.

				Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	FA SV Report Station orida					
Analyte	Frequency of Detection	Range of Reporting Limits	Range of Detected Concentrations ²	Mean of Detected Concentrations ³	Background Screening Value	Risk Based Screening Concentration ⁶	Superfund Proposed Soil Screening Levels [®]	Cleanup Goals for the Military Sites in Florida?	Analyte CPC? (Yes/No)	Reason
Voletiles (µg/kg) Carbon disulfide	1/5	5 to 5	2.25**	2.3	Q \$	780,000	7,800,000	2,600	8 2	S, P, S, D, P, S, D, P, D, P, D
Xylenes (total)	4/5	5 to 5	1 to 8.5*	Ť	<u> </u>		•			
Semivolatiles (µg/kg) Benzo(a)anthracene	1/5	350 to 1,800	100.5*	101	Q !	880	006	1,400	2 2	လ ရ ရ ရ ရ
Benzo(b)fluoranthene	1/5	350 to 1,800	*86	86	2	089	006	P.	!	<u>.</u>
į	, t	250 to 1 800	102.5*	103	8	98,000	98,000	140,000	2 :	ب ر
Chrysene D:	c/- c/-	350 to 1.800	22	52	8	160,000	1,600,000	1,500,000	<u></u> 2 :	
Di-n-octylphthalate	C/1	350 to 1,800	103.5*	104	2	310,000	3,100,000	2,800,000	2 :	ν γ ο ο
Fluorantnene Pyrene	1/5	350 to 1,800	103.5*	104	Q	230,000	2,300,000	2,200,000	2	r <u>.</u>
Posticides/PCBs (µg/kg)	=									
No analytes detected										
Inorganics (mg/kg)			,	ř	Ş		91	92	운	S, P, G
Antimony	1/5	1.04 to 1.06	0.78	0.78	2 2		4.0	°0.7	Yes	
Arsenic	2/2	2.08 to 2.12	0.23 to 0.7	0.41	2 1		, CO 10	2,000	2	S, P, G
Barium	2/2	41.58 to 42.33	5 to 8.25*	B. (o (000 000	<u> </u>	150	욷	S, P, G
Chromium	2/2	2,08 to 2.12	2.4 to 4.6*	3.2	ָם מ	930	9 Z	4,700	å	s S
Cobalt	1/5	10.395 to 10.58	2.88*	2.9	2 6	2 6	ą z	2.900	2	S, G
Copper	. 9/1	5.195 to 5.29	9.35*	9.4	, K	1,400	400	200	2	S, P, G
Lead	2/2	0.62 to 0.63	3.8 to 3.905*	9.0 0.0	2 9	50 1	, E	SZ	운	S, P, G
Mercury	1/5	0.04 to 0.04	0.08	0.08	2 5		1,600	1,500	2	S, P, G
Nickel	1/5	8.315 to 8.47	3.88*	න ⁽	<u> </u>	120.63		¥Z.	2	60
Thallium	1/5	2.08 to 2.12		62.0	9 9	4 700		44.000	2	S, G
ŢĬ	5/2	10.395 to 10.58	C)	 ෆ් (⊋ •	8,4	550	480	2	ш
Vanadium	2/2	10.395 to 10.58		2.7	· (3 6	23 000	23.000	운	S, P, G
Zinc	2/2	4.155 to 4.23	7.1 to 11.05*	- - -	. Z. 6	0,300 469	1 600	1.600	£	S, P, G
Cyanide	2/5	2.08 to 2.12	0.04	0.04	ᅙ	3	oosii.			

Chemicals of Potential Concern in Surface Soil at SWMU 48 Table 8-5 (Continued)

Groups I and II RFA SV Report J.S. Naval Station Mayport, Florida

Notes from previous pages.

Value indicated by asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetected values, 1/2 the contract required quantitation limit Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values).

or contract required detection limit (CRDL) is used as a surrogate

The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected including values qualified with a "J"; it does not include those the background screening value is twice the average of detected concentrations for Inorganic analytes in background samples. Organic values are one times the mean of samples where the analyte was not detected ("U" or "UJ" quairfiers) and rejected ("R" qualifier)

detected concentration. Organic values are included for comparison purposes only.

EPA/903/R-93-001) was used for screening. Actual values are taken from the USEPA Region III RBC tables dated February 1995, and are based on a cancer risk of 10° and Source: USEPA. December, 1994. Soil Screening Guidance, Review Draft, USEPA, Office of Solid Waste and Ernergency Response, Washington, D.C., EPA/540/R-94/101. Values are taken from the Florida Department of Environmental Protection memorandum, Cleanup Goals for Military Sites In Florida, dated April 5, 1995. The values are for concentrations (RBC) for residential surface soil exposure per January 1993 guidance (Selecting Exposure Routes and Contaminants of Concern by Alsk-Based Screening, For all chemicals except the essential nutrients (calcium, iron, magnesium, potassium, and sodium), U.S. Environmental Protection Agency (USEPA) Region III risk based an adjusted hazard quotient of 0.1. For the essential nutrients, screening values were derived based on recommended daily allowances (RDAs).

the aggregate resident based on a cancer risk of 10° and the child resident based on a hazard quotient of 1.

Analytes were included or excluded from the risk assessment for the following reasons:

= the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations. S = the maximum detected concentration did not exceed the screening concentration and will not be considered further.

G = the maximum detected concentration did not exceed the Florida cleanup goals and will not be considered further.

B = the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locat

F = the frequency of detection was less than 5 percent and professional judgment was used to exclude analyte from further study.

C = the analyte is a member of a chemical class that contains other chemicals of potential concern (CPCs) (i.e., carcinogenic polynuclear aromatic hydrocarbons

= the analyte was detected at less than 5 percent and is a CPC in more than one media.

= the maximum detected concentration did not exceed the USEPA proposed soil screening levets (SSLs), 9355.4-14FS, dated December 1994

The value is based on arsenic as a carcinogen.

The value is based on chromium hexavalent form. <u>.</u> 9

USEPA Office of Solid Waste and Emergency Response (OSWER) Directive No. 9355.4-12 revised interim recommended soil cleanup for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites.

The value is based on thallium as thallium sulfate.

Notes: The average of a sample and its duplicate is used for all table calculations.

Sample locations include:

Background sample locations include: MPT-B-SS1; MPT-B-SS2; MPT-B-SS3; MPT-B-SS4; MPT-B-SS5; MPT-B-SS6 Duplicate background sample locations include: MPT-B-SS1DUP

SWMU = solid waste management unit

µg/kg = micrograms per kilograms.
ND = not detected in any background samples. CPC = chemicals of potential concern.

mg/kg = milligrams per kilograms. PCBs = polychlorinated biphenyls. NA = not available.

	·	Cher	nicals of Pote	Table 8-6 Chemicals of Potential Concern in Subsurface Soil at SWMU 48	: 8-6 in Subsurfa	ce Soil at SW	MU 48			
				Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	RFA SV Report Il Station Florida					
Analyte	Frequency of Detection	Range of Reporting Limits	Range of Detected Concentrations	Mean of Detected Concentrations ³	Background Screening Value	Risk Based Screening Concentration ⁵	Superfund Proposed Soil Screening Levels	Cleanup Goals for the Military Sites In Florida ⁷	Analyte CPC? (Yes/No)	Reason
Volatiles (µg/kg)										
No analytes detected										
Semivoletiles (µg/kg)										
No analytes detected										
Pesticides/PCBs (µg/kg)	(6)									
No analytes detected										
Inorganics (mg/kg)						•	,	(,	,
Arsenic	2/2	2.12 - 2.56	0.68 - 2.5	1.6	6:0	°0.37	9.4	nî ¦		6
Barium	2/2	42.46 - 51.15	7 - 10.1	9.6	7.2	550	5,500	74,000		י א ע
Chromium	2/2	2.12 - 2.56	3.7 - 6.8	5.3	3.4	6E ₀₁	390	102201		S P D
Cohelt	1/2	10.62 - 12.79	0.95	0.95	1.04	470	A A	110,000	Š	6 0
1800	1/2	5.31 - 6.39	15.6	15.6	3.6	290	A A	72,000	2	O
peed .	2/2	0.64 - 0.77	3.5 - 4	3.8	2.8	11,400	400	1,000		ا ئە
Mercury	1/2	0.04 - 0.05	0.15	0.15	90:0	2.3	ន	480		ກຸ ເ ອີ ເ
Nickel	2/2	8.49 - 10.23	2 - 2.3	2.2	2	160	1,600	11,000		λ, 7.
Ţ.	2/2	10.62 - 12.79	2.6 - 3	2.8	5.4	4,700	A A	990'099		
Vanadium	2/2	10.62 - 12.79	2 - 6.4	4.2	3.2	55	550	4,800		5 G
Zinc	1/2	4.25 - 5.12	đ	10	4. 80.	2,300	23,000	550,000	€	ა შ
See notes on next page.	ige.									

Chemicals of Potential Concern in Subsurface Soil at SWMU 48 Table 8-6 (Continued)

Groups I and It RFA SV Report U.S. Naval Station Mayport, Florida

Value indicated by asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetected values, 1/2 the contract required quantitation limit Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values).

The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected including values qualified with a "J"; it does not include those samples where the analyte was not detected ("U" or "UJ" qualitiers) and rejected ("R" qualitier) or contract required detection limit (CRDL) is used as a surrogate.

The background screening value is twice the average of detected concentrations for inorganic analytes in background samples. Organic values are one times the mean of detected concentration. Organic values are included for comparison purposes only.

EPA/903/R-93-001) was used for screening. Actual values are taken from the USEPA Region III RBC tables dated February 1995, and are based on a cancer risk of 10° and concentrations (RBC) for residential surface soil exposure per January 1993 guidance (Selecting Exposure Routes and Contaminants of Concern by Alsk-Based Screening, For all chemicals except the essential nutrients (calcium, fron, magnesium, potassium, and sodium), U.S. Environmental Protection Agency (USEPA) Region III risk based an adjusted hazard quotient of 0.1. For the essential nutrients, screening values were derived based on recommended daily allowances (RDAs).

Source: USEPA. December, 1994. Soil Screening Guidance, Review Draft, USEPA, Office of Solid Waste and Emergency Response, Washington, D.C., EPA/540/R-94/101 Values are taken from the Florida Department of Environmental Protection memorandum, Cleanup Goals for Military Sites in Florida, dated April 5, 1995. The values are for

the Industrial Worker based on a cancer risk of 10° and the general worker based on a hazard quotient of 1.

S = the maximum detected concentration did not exceed the screening concentration and will not be considered further. Analytes were included or excluded from the risk assessment for the following reasons:

= the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations.

= the frequency of detection was less than 5 percent and professional judgment was used to exclude analyte from further study. G = the maximum detected concentration did not exceed the Florida cleanup goals and will not be considered further.

B = the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at back

F = the frequency of detection was less than 5 percent and professional judgment was used to exclude analyte from fu

C = the analyte is a member of a chemical class that contains other chemicals of potential concern (CPCs) (i.e., carcinc

M = the analyte was detected at less than 5 percent and is a CPC in more than one media.

P = the maximum detected concentration did not exceed the USEPA proposed soil screening levels (SSLs), 9355.4-14Fi

= the analyte is a member of a chemical class that contains other chemicals of potential concern (CPCs) (i.e., carcinogenic polynuclear aromatic hydrocarbons [PAHs]).

= the maximum detected concentration did not exceed the USEPA proposed soil screening levels (SSLs), 9355.4-14FS, dated December 1994.

The value is based on arsenic as a carcinogen.

10 The value is based on chromium hexavalent form.

1) USEPA Office of Solid Waste and Emergency Response (OSWER) Directive No. 9355.4-12 revised InterIm recommended soil cleanup for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites.

Notes: The average of a sample and its duplicate is used for all table calculations.

Sample locations include:

Duplicate sample locations include:

Background sample locations include: MPT-B-BS01; MPT-B-BS04; MPT-B-BS05; MPT-B-BS06

Duplicate background sample locations include: MPT-B-BS1DUP

SWMU = solid waste management unit CPC = chemicals of potential concern.

ND = not detected in any background samples. mg/kg = milligrams per kilograms. NA = not available.

> µg/kg = micrograms per kilograms. PCBs = polychlorinated biphenyls.

Table 8-7 Water Quality Parameters for Groundwater at SWMU 48

Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida

		мауро	rt, Florida		
Analytical Batch No.:		M7505	M7515	M7492	
Sample Matrix:		Groundwater	Groundwater	Groundwater	
Sample Location:		MPT-8-MW08S	MPT-8-MW09S	MPT-8-MW10S	Secondary 1 Water Quality
Sample No.:		08MW008S	08MW009S	08MW010S	Criteria
Date Sampled:		09-JUL-94	09-JUL-94	09-JUL-94	
Common Name	Units	Conc.	Conc.	Conc.	Conc.
Alkalinity as CaCO ₃	mg/£	224	3,390	238	_
Ammonia nitrogen	mg/1	-	7.6	-	_
Chloride	mg/2	906	3,790	29.6	250,000
Color	АРНА	25	70	15	15
Hardness as CaCO₃	mg/£	224	7,180	300	-
Nitrate + nitrite nitrogen	mg/£	0.52	0.38	3.69	10,000
Oil and Grease	mg/ !	NA	NA	NA NA	_
Phosphorous P, total	mg/t	0.21	NA	0.58	-
Sulfate	mg/£	167	-	54.5	250,000
Sulfide	mg/1	-	15.1	-	_
Total dissolved solids	mg/£	NA	NA	NA	500
Total Kjeldahl nitrogen	mg/£	-	15.2	1.3	_
Total organic carbon	mg/#	NA	NA	NA NA	
pH	su	7	6.2	7.47	6.5 to 8.5

¹ Secondary Water Quality Criteria, Chapter 62-550.320, Florida Administrative Code (FAC).

Notes: Laboratory data validated at Naval Energy and Environmental Support Activity (NEESA) Level C.

SWMU = solid waste management unit.

Conc. = concentration.

CaCO₃ = calcium carbonate.

 mg/ℓ = milligrams per liter.

- = analyte not detected.

APHA = American Public Health Association.

NA = not available.

SU = standard units.

			6 6			
	rable 6-6 Organic Analytes Detected in Groundwater Samples at SWMU 48	nan s Detected in G	rable 6-6 n Groundwater Sar	mples at SWMU	48	
		Groups Land U.S. Na Maypo	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida			
Analyte Batch No.:	23921	23918	R8710	R8710	R8710	R8710
Sample Location:	MPT-8-MW07S	MPT-8-MW08S	MPT-8-MW08S	MPT-8-MW09S	MPT-8-MW10S	MPT-8-MW10S
Sample No.:	MPT8MW7S	MPT8MW8S	08MW008S	08MW009S	08MW010S	08MW010SDup
Date Sampled	01-FEB-93	01-FEB-93	. 09-JUL-94	26-AUG-94	09-SEP-94	09-SEP-94
VOCs (8240) (µg/t)						
2-Butanone	ţ	1	;	230 J	1	i
Acetone	;	ı	;	330 J	ŧ	;
Benzene	2 J	ŀ	1	;	ŀ	ı
Carbon disutlide	23	1	1	٦. 4	ı	i
Ethylbenzene	21	į	;	1	ł	ŀ
Methylene Chloride	ı	L 4	1	1	;	;
Toluene	1	:	ı	J.B.	;	1
SVOCs (8270) (µg/f)			<u>, a. a.</u>			
Fluorene		i	!	ŧ	1	;
2-Methylnaphthalene	120	;	1	ł	1	1
Naphthalene	130	:	i	ŀ	:	ı
2-Methylphenol	;	:	1	081	;	1
2,4-Dimethylphenol	!	1	;	180	1	1
3- & 4-Methylphenol (2)	;	;	t	480	;	1
Diethylphthalate	:	:	1	50 7	:	L
ory data validiup = duplicate = solid waste volatile orga	ated at Naval Energy and te of environmental samp management unit. nic compounds.	d Environmental Sup ble.	pport Activity (NEES	A) Level C.		
$\mu g/\ell = micrograms per liter.$ = analyte not detected.	liter.					
"J" = estimated value.						
SVOCs = semitogatile organic compounds.	garic compounds.					

MP-GI&H.RFA ASW.11.95

<u> </u>	Table 8-9 Inorganic Analytes Detected in Groundwater Samples at SWMU 48	Tab S Detected in G	Table 8-9 in Groundwater Sa	mples at SWMU	1 48	
		Groups Land L U.S. Nav Maybol	Groups I and II RFA SV Report U.S. Naval Station Maybort, Florida			
Analyte Batch No.:	23921	23918	R8710	R8710	R8710	R8710
Sample Location:	MPT-8-MW07S	MPT-8-MW08S	MPT-8-MW08S	MPT-8-MW09S	MP1-8-IMW10S	001 A404-0-1 JIM
Sample No.:	MPT8MW7S	MPT8MW8S	08MW008S	08MW009S	08MW010S	08MW010SDup
Date Sampled	01-FEB-93	01-FEB-93	09-JUL-94	26-AUG-94	09-SEP-94	09-SEP-94
Inorganics (µg/f)				-	a -	1.1.4
Arsenic	41.2	20.7	5.6 J		0 0	
Barium	67.6 J	28.1	8.4 J	L 211	G 7:0	2 1
Beryllium	1.6.1	ր 96:0	1	: !	: 00	27 100
Calcium	1	;	33,800	1,830,000	009'67	2
Chromium	40.9	36.8	!	t	ì	<u> </u>
Cobalt	L 7.11	7.1 J	ì	۱ 	!	
Jacob	15.4 3	3.4 J	;	i	1	l
ing.	;	1	ß 98	4,820	ı	1
- TO -	45.9	10.4	1	;	;	:
Lead	;	1	28,100	401,000	17,100	16,500
Magnesium		;	12.)	2,260	21.5	19.2
Manganese	1 6		ı	1	;	;
Mercury	0.29	!		;	1	;
Nickel	19.9 J	i	I	!	L 6:	1,2 J
Selenium		1	! 	•	1	;
Silver	2.1 J	1	: 6	4 040 000	24 100	23,100
Sodium	∀ Z	¥ Z	675,000	000'016'1	- T	;
Tin	ì	!	1	: 6		2]
Vanadium	60.3	48.0 J	1	, d) ;	;
Zinc	127	52.2	1	C C:0		1
ide	12.8	1		:	-	
aboratory data validi Suffix Dup = duplicat	ated at Naval Energy and Ele of environmental sample. management unit.	nd Environmental Sunple.	ipport Activity (NEE)	SA) Level C.		
rg/t = micrograms per liter.	liter.					
= analyte not detected	7					
NA = target analyte note analyzeu	anaryzeu.					

				Table 8.10					
		Chemic	Chemicals of Potential Concern in Groundwater at SWMU 48	oncern in Gro	undwater at S	WMU 48			, <u> </u>
			Groups U	Groups I and II RFA SV Report U.S. Naval Station Mayport, Florida	pod				
Analyte	Frequency of Detection¹	Range of Reporting Limits	Range of Detected Concentrations ²	Mean of Detected Concentrations	Background Screening Concentration ⁴	Risk Based Screening Concentration ⁵	Florida Guldance Concentration [®]	Analyte CPC? (Yes/No)	Reason7
Volstfes (µg/I)									
2-Butanone	1/3	10 - 20	230 - 230	230	Q	190	4200	Yes	
Acetone	1/3	10 - 20	330 - 330	330	Q	370	700	2	<u>ව</u> ව්
Carbon disulfide	1/3	5 - 10	4 - 4	4	_	2.1	700	Yes	•
Toluene	1/3	5 - 10	3 - 3	ಣ	Ş	1,600	40	2	o v
Semivolatiles (µg/f)								;	
2,4-Dimethylphenof	1/3	10 - 80	180 - 180	180	9	23	400	Yes	
2-Methylphenol	1/3	10 - 80	180 - 180	180	2	180	350	욷	တ်
3- & 4-Methylphenol	1/3	10 - 80	480 - 480	480	29	81	35	Yes	
Diethylphthalate	1/3	10 - 80	20 · 20	8	2	2,900	2,600	S	ල ග්
Pesticides/PCBs (µg/f)									
No Analytes Detected									•
Inorganica (ug/1)							Ç	1	0
Arsenic	3/3	0.6 - 10	0.6 - 5.6	2.6	4 .	0.038	<u></u>	2 ;	9
Barium	9/3	0.4 - 200	6,25* - 112	42.2	10.2	260	2,000	Ž	ฮ
Calcium	3/3	41.7 - 5,000	33,800 - 1,830,000	647,383	170,450	1,055,398	V.	Yes	
İron	2/3	9.1 - 100	88 - 4,820	2,454	2,076	13,267	300	∀ 93	
Magnesium	3/3	31.4 - 5,000	16,800* - 401,000	148,633	21,234	118,807	Y Y	Yes	
Manganese	3/3	0.6 - 15	12 - 2,260	764	185.8	18	20	Yes	
Selenium	1/3	0.6 - 30	1.55*	1 .5	11.8	18	¥ V	£	60
Sodium	3/3	14.4 - 5,000	23,600* - 1,810,000	836,200	18,624	396,022	160,000	Yes	
Vanadium	2/3	1.5 - 50	2.5* - 8.3	5.4	10.6	56	49	2	6 0
Znc	1/3	1 - 20	16.5	16.5	20	1,100	5,000	2	8
See notes on next page.									

Chemicals of Potential Concern in Groundwater at SWMU 48 Table 8-10 (Continued)

Groups 1 and II RFA SV Report U.S. Naval Station Mayport, Florida

Analyte	Frequency of Detection ¹	Range of Reporting Limits	Pange of Detected Detected Screening Screening Guidance CPC? Concentrations Concentration Concentration (Yes/No)	Mean or Detected Concentrations	Background Risk based Screening Screening Concentration* Concentration*	Risk Based Screening Concentration ⁵	Guidance Concentration	CPC? Reason? (Yes/No) led values).	Reason7
1 Frequency of detection is the number of samples in wi	the number o	-	ich the analyte was detected divided by the total number of samples analyte was detected detection	stected divided by	1/2 the contract	t required quantitat	ion limit or contrac	ct required d	etection

Value indicated by asterisk is the average of a sample and its duplicate. For nondetected values, 1/2

The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected including values qualified with a "J"; it does not Include those samples where the analyte was not detected ("U" or "UJ" qualifiers) and rejected ("R" qualifier).

concentrations (RBC) for tap water per January 1993 guidance (Selecting Exposure Routes and Contaminants of Concern by Risk-Based Screening, EPA/903/R-93-001) was For all chemicals except the essential nutrients (calcium, iron, magnesium, potassium, and sodium), U.S. Environmental Protection Agency (USEPA) Region III risk based used for screening. Actual values are taken from RBC Table dated February 1995, and are based on a cancer risk of 10° or an adjusted hazard quotient of 0.1. For the The background screening value is twice the average of detected concentrations for inorganic analytes in background samples.

essential nutrients, screening values were derived based on recommended daily allowances (RDAs). Florida Department of Environmental Protection Groundwater Guidance Concentrations (June 1994)

Analytes were included or excluded from the risk assessment for the following reasons:

S = the maximum detected concentration did not exceed the screening concentration and will not be considered further.

G = the maximum detected concentration did not exceed the Florida cleanup goals and will not be considered further.

B = the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at backgr

F = the frequency of detection was less than 5 percent and professional ludgment was used to exclude analyte from furth

= the maximum detected concentration did not exceed twice the arithmetic mean of detected concentrations at background locations.

= the analyte is a member of a chemical class that contains other chemicals of potential concern (CPCs) (i.e., carcinogenic polynuclear aromatic hydrocarbons [PAHs]). = the frequency of detection was less than 5 percent and professional judgment was used to exclude analyte from further study.

= the maximum detected concentration did not exceed the USEPA proposed soil screening levels (SSLs), 9355.4-14FS, dated December 1994. = the analyte was detected at less than 5 percent and is a CPC in more than one media.

The value is based on arsenic as a carcinogen.

10 Treatment technology action limit for drinking water distribution systems per "National Primary Drinking Water Regulations" 40 CFR 141 as amended in 57 FR 41345, August

The values is based on thallium as thallium sulfate.

The average of a sample and its duplicate is used for all table calculations. Notes:

Sample locations include:

Background sample locations include: 01MW001, 08MW005S, 08MW001S, 0SMW001R, 8MW5S, MPT-1-MW1-1, MPT-S-1-1, AND S1

CPCs = chemicals of potential concern.

ug/t = micrograms per liter. ND = not detected in any background samples.

NA = not available.

PCBs = polychlorinated biphenyls.

groundwater collected from the monitoring wells [Durfor and Becker, 1964]). The highest value obtained for hardness was for the groundwater sample from monitoring well MPT-8-MW09S, which is hydraulically upgradient of SWMU 48 (Figure 7-2).

Target analytes detected in the groundwater samples consisted of 7 VOCs (2-butanone, acetone, benzene, carbon disulfide, ethylbenzene, methylene chloride, and toluene), 7 SVOCs (fluorene, 2-methylnaphthalene, naphthalene, 2-methylphenol, 2,4-dimethylphenol, 3- and 4-methylphenol (2), and diethylphthalate) (Table 8-8), and 20 inorganics (arsenic, barium, beryllium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, selenium, silver, sodium, tin, vanadium, zinc and cyanide) (Table 8-9).

VOCs and SVOCs detected in monitoring wells MPT-8-MW07S and MPT-8-MW09S are not related to a release from SWMU 48. Monitoring well MPT-8-MW07S is hydraulically side gradient to SWMU 48 and not in a flow path that would intercept contaminants from this SWMU. Monitoring well MPT-8-MW09S is hydraulically upgradient from SWMU 48.

Nine of the inorganic analytes (beryllium, chromium, cobalt, copper, lead, mercury, nickel, silver, and cyanide) detected in groundwater samples collected in 1993 were not detected in samples collected in 1994. This may be a result of using different sampling methods. The groundwater sampling event in 1993 used bailers to purge stagnant water within the well casing and collect a groundwater sample. This method generally produces water samples that are turbid and contain silt or clay materials. Preserving the samples with nitric acid to a pH of 2 Standard Units leaches metals from the sediment. The inorganic target analytes detected in 1993 that were not detected in 1994 are likely attributable to turbid groundwater samples.

The purging and sampling methodology used in the 1994 sampling event was a low flow method that generally does not produce a turbid groundwater sample. Samples produced by this method are generally more representative of the groundwater in an aquifer zone.

8.4 PRELIMINARY RISK EVALUATION.

Surface Soil. None of the VOCs or SVOCs detected in the surface soil samples exceeded the bench mark values. Only one inorganic analyte, arsenic, exceeded the bench mark values. Arsenic was not detected in surface soil background samples. Concentrations of arsenic exceeded the USEPA Region III RBC $(0.37 \, \text{mg/kg})$ and the proposed Superfund SSL $(0.4 \, \text{mg/kg})$ in two samples and a duplicate. One of the samples (MPT-48-SSO5) contained arsenic at a concentration of $0.7 \, \text{mg/kg}$ which is the same as the Florida cleanup goal.

<u>Subsurface Soil</u>. VOCs, SVOCs, pesticides, and PCBs were not detected in the subsurface soil samples. One of two samples exceeded the background screening value (0.9~mg/kg) for arsenic. Concentrations of arsenic exceeded the USEPA Region III RBC and the proposed Superfund SSL in the two subsurface soil samples. The FDEP cleanup goal (3~mg/kg) for an industrial worker was not exceeded.

<u>Groundwater</u>. Analytical results from 1993 were not used in the preliminary risk evaluation for the following reasons: monitoring well MPT-8-MW07S is not in a hydraulically downgradient position relative to SWMU 48, the methylene chloride detected in the 1993 groundwater sample from monitoring well MPT-8-MW08S is

likely a laboratory derived contaminant, and the inorganic results from this sampling event are biased high because of turbid groundwater samples.

Two VOCs (2-butanone and carbon disulfide) and two SVOCs (2,4-dimethylphenol and 3- & 4-methylphenol) detected in monitoring well MPT-8-MW09S exceeded bench mark values. Concentrations of 2-butanone (280 $\mu g/l$) and carbon disulfide (4 $\mu g/l$) exceeded their respective USEPA Region III RBC (190 and 2.1 $\mu g/l$), but not the FDEP guidance values (4,200 and 700 $\mu g/l$). One of the SVOCs (2,4-dimethylphenol, 180 $\mu g/l$) exceeded the USEPA Region III RBC (73 $\mu g/l$), but not the FDEP Guidance value (400 $\mu g/l$) and the other SVOC (3- & 4-methylphenol, 480 $\mu g/l$) exceeded the USEPA Region III RBC (18 $\mu g/l$) and the FDEP guidance value (35 $\mu g/l$). It should be noted that these organic compounds were detected in samples from monitoring well MPT-8-MW09S, which is hydraulically upgradient from SWMU 48; therefore, these analytes are not attributable to a release from SWMU 48.

Five of the inorganic analytes (calcium, iron, magnesium, manganese, and sodium) exceeded background screening values and bench mark values in the groundwater sample collected from monitoring well MPT-8-MW09S. Only samples from one other monitoring well, MPT-8-MW08S, contained concentrations of magnesium and sodium that exceeded the background screening values and bench mark values.

The concentrations of calcium, iron, magnesium, manganese, and sodium detected in the groundwater sample from monitoring well MPT-8-MW09S and background and bench mark values exceeded are as follows.

Analyte	Concentration $(\mu g/l)$	Background Screening Value $(\mu g/\ell)$	USEPA Region III RBC (μg/l)	FDEP Cleanup Goal (µg/l)
Calcium	1,830,000	170,450	1,055,398	NA
Iron	4,820	2,076	13,267	300
	401,000	21,234	118,807	NA
Magnesium	2,260	185.8	18	50
Manganese Sodium	1,810,000	18,624	396,022	160,000

Notes: $\mu g/\ell$ = micrograms per liter. NA = no bench mark value established.

Magnesium was detected in the groundwater sample collected from monitoring well MPT-8-MW08S at a concentration (28,100 $\mu g/l$) that exceeded the background screening value, but not the USEPA Region III RBC. The concentration of sodium detected in the groundwater sample collected from monitoring well MPT-8-MW08S exceeded the background screening value and the USEPA Region III RBC.

It should be noted that the inorganic analytes detected in groundwater samples collected from monitoring well MPT-8-MW09S, which is hydraulically upgradient from SWMU 48, are not attributable to a release from SWMU 48. The concentration of magnesium and sodium detected in the groundwater sample collected from monitoring well MPT-8-MW08S is likely attributable to the proximity of the well to the St. Johns River or is due to the well being hydraulically downgradient from the same source of contaminants detected in monitoring well MPT-8-MW09S samples.

8.5 CONCLUSIONS AND RECOMMENDATIONS.

8.5.1 Conclusions

Surface and Subsurface Soil. None of the VOCs or SVOCs detected in the surface soil samples exceeded the bench mark values. VOCs, SVOCs, pesticides, and PCBs were not detected in the subsurface soil samples. Only one inorganic analyte, arsenic, exceeded the bench mark values in both the surface and subsurface soil samples. Concentrations of arsenic in the surface soil samples exceeded the USEPA Region III RBC and proposed Superfund SSL and was equal to the FDEP cleanup goal. One of the subsurface soil samples contained arsenic at a concentration that exceeded the background screening value. Concentration of arsenic in the subsurface soil samples also exceeded the USEPA Region III RBC and the proposed Superfund SSL, but not the FDEP cleanup goal for an industrial worker.

Arsenic was detected in surface and subsurface soil samples at concentrations that exceeded bench mark values, which are based on a lifetime excess cancer risk of 10^{-6} . However, the potential risk associated with concentrations of arsenic that were detected is within a range (10^{-4} to 10^{-6}) that is considered by USEPA to be protective of human health (40 CFR Part 300) (see Tables C-9 and C-10, Appendix C).

Groundwater. VOCs and SVOCs were detected in a monitoring well (MPT-8-MW09S) located hydraulically upgradient from SWMU 48; therefore, these analytes are not attributable to a release from SWMU 48. However, these analytes did exceed bench mark values. Five inorganic analytes (calcium, iron, magnesium, manganese, and sodium) also exceeded background screening values and bench mark values in the groundwater sample collected from monitoring well MPT-8-MW09S. Only samples from one other monitoring well, MPT-8-MW08S, contained concentrations of magnesium and sodium that exceeded the background screening values and benchmark values. The inorganic analytes detected in monitoring well MPT-8-MW09S, which is hydraulically upgradient from SWMU 48, are not attributable to a release from SWMU 48. The concentrations of magnesium and sodium detected in the groundwater sample collected from monitoring well MPT-8-MW08S is likely attributable to the proximity of the well to the St. Johns River or is due to its location hydraulically downgradient from the same source of contaminants detected in monitoring well MPT-8-MW09S samples.

- 8.5.2 <u>Recommendations</u> SWMU 48 is recommended for no further investigation at this time based on the following rationale.
- None of the VOCs or SVOCs detected in the surface soil samples exceeded the bench mark values.
- Pesticides and PCBs were not detected in the surface soil samples.
- VOCs, SVOCs, pesticides, and PCBs were not detected in the subsurface soil samples.
- Only one inorganic analyte, arsenic, exceeded the bench mark values in both the surface and subsurface soil samples.
- The concentrations of arsenic detected in surface and subsurface soil samples exceeded human health based risk bench mark values, which represent a lifetime excess cancer risk of 10^{-6} . However, the potential risk associated with the concentrations of arsenic that were detected is within a range $(10^{-4}$ to $10^{-6})$ that is considered by USEPA to be protective of human health (40 CFR 300, 1990).

- VOCs, SVOCs, and inorganics were detected in a sample from monitoring well (MPT-8-MW09S) located hydraulically upgradient from SWMU 48; therefore, these analytes are not attributable to a release from SWMU 48. However, these analytes did exceed bench mark values.
- The concentrations of magnesium and sodium detected in the groundwater sample collected from monitoring well MPT-8-MWO8S are likely attributable to the proximity of the well to the St. Johns River or are due to its location hydraulically downgradient from the same source of contaminants detected in monitoring well MPT-8-MWO9S samples.
- The default assumptions used in estimating risk based bench mark concentrations may not be representative and likely overstate the specific exposure present at the site (i.e., underestimate the concentration that would result in a lifetime excess cancer risk of 10⁻⁶). Because the chemicals were detected in only one or two media (i.e., soil and or groundwater) all of the exposure pathways and assumptions used to estimate the bench mark concentrations are not relevant. Therefore, the concentrations may exceed the bench mark values (USEPA, 1994, USEPA, 1995, and FDEP, 1995) but actually result in a lower excess cancer risk than 10⁻⁶.

9.0 SUMMARY

9.1 GROUP I SWMUS.

9.1.1 SWMU 26, Landfill C SWMU 26 is recommended for no further investigation at this time based on analytical results of soil and groundwater samples.

<u>Soil Samples</u>. Pesticides and PCBs were not detected in surface or subsurface soil samples at SWMU 26. VOCs (acetonitrile, chloroform, 2-butanone, toluene, and xylenes) and SVOCs (di-n-butylphthalate and bis(2-ethylhexyl)phthalate) were detected in surface and subsurface soil samples at concentrations less than human health risk based benchmark values. Inorganic analytes (arsenic and beryllium) were detected in surface and subsurface soil samples at concentrations within a range of potential risk considered by USEPA to be protective of human health.

Groundwater Samples. VOCs, pesticides, PCBs, or cyanide were not detected in the groundwater samples collected from the SWMU 26 monitoring wells. The SVOCs detected in groundwater samples do not exceed human health based benchmark values. Inorganic analytes (antimony, magnesium, manganese, sodium, and thallium) were detected in groundwater samples at concentrations that exceed human health benchmark values; however, these same analytes, with the exception of thallium, were detected in groundwater samples collected from monitoring wells located hydraulically upgradient from the SWMU. SWMU 26 does not appear to be the source of the detected analytes (antimony, magnesium, manganese, sodium, and thallium). Groundwater in the vicinity of SWMU 26 is being assessed as part of the NAVSTA Mayport RFI for Group I landfill SWMUs 2, 3, 4, and 5.

9.1.2 SWMU 49, Flight Line Retention Ponds An RFI focused toward ecological risk assessment or interim measures to remove sediment in the ponds is recommended for SWMU 49. The focused RFI should include ecological diversity and aquatic and sediment toxicity testing to assess whether to place SWMU 49 on the no further action list, or establish a monitoring program to assess whether continued discharge from the industrial area is adversely affecting the ecology of the two ponds or conduct a corrective measures study. SWMU 49 is a stormwater retention pond that discharges to a Class III marine water body. SWMU 49 has restricted access and is not likely to be used for recreational fishing. However, it is common to see birds foraging at SWMU 49.

The following provides the rationale for this decision based on analytical results of surface water and sediment samples.

Surface Water Samples. VOCs, SVOCs, pesticides, and PCBs were not detected in surface water samples collected from SWMU 49. Eight inorganic analytes were detected at concentrations that exceeded background screening criteria. Concentrations of six inorganic analytes (arsenic, beryllium, lead, mercury, nickel, and zînc) exceeded AWQC for protection of aquatic life (acute). The Class III marine surface water standard was exceeded by concentrations of five inorganic analytes (beryllium, lead, mercury, nickel, and zinc).

Sediment Samples. PCBS have not been detected in sediment samples collected at SWMU 49. VOCs, SVOCs, pesticides, and inorganic analytes have been detected in the sediment samples. Currently, there are no ecological benchmark criteria to assess four of the VOCs (acetone, acetonitrile, 2-butanone, and carbon disulfide), the SVOC butylbenzylphthalate and pesticide heptachlor detected in the sediment samples.

The SVOCs bis(2-ethylhexyl)phthalate, pyrene, fluoranthene, 2-methylnaphthalene and naphthalene were detected at concentrations that exceed ecological bench mark criteria. The pesticides chlordane, 4,4'-DDD, and 4,4'-DDE were detected at concentrations that exceed ecological bench marks. The inorganics arsenic, cadmium, copper, lead, mercury, nickel, silver, and zinc also exceeded ecological bench marks.

Comparison of organic compounds and metals detected in the sediment samples to the background screening and bench mark values suggests that sediment in the SWMU 49 western and eastern ponds may be adversely impacted by discharge of stormwater runoff from the industrial areas served by the stormwater retention ponds. This is based on the detection of multiple organic and inorganic target analytes at concentrations where adverse biological effects are beginning to be observed (i.e., at concentrations greater than the ER-M and PEL).

9.1.3 SWMU 50, East and West Dredge Spoil Disposal Areas

Based on the analytical results, ecological diversity measurements and aquatic and sediment toxicity testing appear to be warranted as part of an RFI focused towards conducting an ecological risk assessment. However, before a commitment is made to the focused ecological risk assessment, the SWMU 50 analytical results should be assessed along with the results of the RFI being conducted for the Landfill SWMUs 2, 3, 4, and 5 which are located beneath and adjacent to SWMU 50. Recommendations pertaining to the need for a focused ecological risk assessment at SWMU 50 will be made in the RFI report for the Group I SWMUs

The Navy plans to remove some of the dredge material to provide capacity for future maintenance dredging of Mayport Turning Basin. Existing data and data obtained from a focused ecological risk assessment, if required, and corrective measures study, if required, could provide an adequate basis to evaluate use, if any, of the dredge material such as for asphalt or concrete mix for roads.

The possible need for a focused ecological risk assessment is based on the following rationale.

Because bench mark values have not been established by Long and others (1993) and MacDonald (1994) for benzo(k)fluoranthene, butylbenzylphthalate, di-noctylphthalate, antimony, beryllium, selenium, and cyanide, they were considered CPCs.

Target analytes that exceeded the TEL were benzo(a)anthracene, benzo(a)pyrene, chrysene, and pyrene. Target analytes that exceeded the ER-L and TEL were fluoranthene, cadmium, and lead. None of the target analytes exceeded values for the ER-M or PEL.

Concentrations of benzo(a)pyrene and antimony exceed FDEP residential soil cleanup goals and concentrations of beryllium exceeded residential and industrial worker soil cleanup goals.

9.1.4 SWMU 56, Building 1552 Accumulation Area SWMU 56 is recommended for no further investigation at this time based on analytical results of soil and groundwater samples.

<u>Soil Samples</u>. PCBs were not detected in surface or subsurface soil samples. Eight VOCs (acetone, acetonitrile, carbon disulfide, trichlorofluoromethane, chloroform, 2-butanone, 4-methyl-2-butanone, and toluene), two SVOCs (di-n-butyl-phthalate and bis(2-ethylhexyl)phthalate), and one pesticide (4,4'-DDE) were detected in surface soil samples at concentrations less than human health benchmark values. One VOC (acetone) and one pesticide (4,4'-DDE) were detected in subsurface soil samples at concentrations less than human health benchmark values.

Inorganic analytes (arsenic, beryllium, cadmium, and chromium) were detected in surface soil samples at concentrations within a range of potential risk considered by USEPA to be protective of human health. Inorganic analytes (arsenic, barium, lead, vanadium, and zinc) detected in subsurface soil samples did not exceed the human health benchmark values.

Groundwater Samples. The VOC (acetone) detected in the groundwater sample from SWMU 56 did not exceed human health benchmark values. Acetone is a contaminant that may be related to decontamination of the sampling equipment or the analytical laboratory. Magnesium and sodium were detected at concentrations that exceeded their respective background screening values; however, the concentrations were less than their USEPA Region III RBCs. The concentration of sodium exceeded the FDEP guidance concentration.

9.2 GROUP II SWMUS.

9.2.1 SWMU 19, Naval Aviation Depot (NADEP) Blasting Area SWMU 19 is recommended for no further investigation at this time. The following provides the rationale for this decision based on analytical results of soil and sediment samples and a sample of the Black Beauty sand blasting media.

<u>Soil Samples</u>. PCBs were not detected in either the surface or subsurface soil samples. VOCs were not detected in the surface soil samples and SVOCs were not detected in the subsurface soil samples.

Target analytes detected in the surface soil samples consist of 2 SVOCs, 2 pesticides, and 11 inorganic analytes. Target analytes detected in the subsurface soil samples consist of 1 VOC, 3 pesticides, and 10 inorganic analytes.

None of the VOCs, SVOCs, or pesticides detected in the surface or subsurface soil samples exceeded the human health benchmark values. Inorganic analytes (arsenic and beryllium) were detected in surface and subsurface soil samples at concentrations within a range of potential risk considered by USEPA to be protective of human health. None of the inorganic analytes detected in the subsurface soil samples exceeded the benchmark values.

<u>Sediment Samples</u>. VOCs, SVOCs, pesticides, and PCBs were not detected in the sediment samples. None of the eight inorganic analytes detected in the two sediment samples exceeded background screening values.

<u>Black Beauty</u> Samples. The result of the TCLP analysis indicate that the Black Beauty sand blasting media does not meet the definition of an RCRA-characteristic hazardous waste.

9.2.2 SWMU 28, Defense Reutilization and Marketing Office Yard SWMU 28 is recommended for no further investigation at this time. The following provides the rationale for this decision based on analytical results of soil and groundwater samples.

<u>Soil Samples</u>. Pesticides and PCBs were not detected in surface or subsurface soil samples. The three VOCs (acetone, methylene chloride, and xylenes) detected in the surface soil samples did not exceed human health based screening values.

The SVOC 4-chloro-3-methylphenol was determined to be a chemical of potential concern in surface soil samples, because human health benchmark criteria are not currently available. None of the other PAH compounds detected in the surface soil samples exceeded human health benchmark values.

Six SVOCs (benzo(a)anthracene, benzo(b)perylene, benzo(g,h,i)perylene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene) were determined to be chemicals of potential concern in subsurface soil samples. However, none of the PAH compounds were detected in the surface or subsurface soil samples at concentrations that exceed the FDEP cleanup goals.

Inorganic analytes (arsenic and beryllium) were detected in surface and subsurface soil samples at concentrations within a range of potential risk considered by USEPA to be protective of human health.

Groundwater Samples. Only one inorganic target analyte, thallium, was determined to be a chemical of potential concern. Thallium was detected as a single occurrence and exceeded the USEPA Region III RBC, but not the FDEP Guidance Concentration. Thallium was not detected in samples, therefore, SWMU 28 is not likely groundwater sample.

9.2.3 SWMU 48 Former Chemistry Laboratory Accumulation Area SWMU 48 is recommended for no further investigation at this time. The following provides the rationale for this decision based on groundwater samples.

<u>Soils</u>. Pesticides and PCBs were not detected in surface soil samples. None of the VOCs or SVOCs detected in the surface soil samples exceeded human health benchmark values. VOCs, SVOCs, pesticides, and PCBs were not detected in subsurface soil samples. One inorganic analyte (arsenic) was detected in surface and subsurface soil samples at concentrations within a range of potential risk considered by USEPA to be protective of human health.

Groundwater. VOCs and SVOCS were detected in a sample from a monitoring well (MPT-8-MW09S) located hydraulically upgradient from SWMU 48. These analytes are not attributable to a release from SWMU 48.

Five of the inorganic analytes (calcium, iron, magnesium, manganese, and sodium) exceeded background screening values and benchmark values in the groundwater sample collected from monitoring well MPT-8-MW09S. Only samples from one other monitoring well, MPT-8-MW08S, contained concentrations of magnesium and sodium

that exceeded the background screening values and benchmark values. The concentrations of magnesium and sodium detected in the groundwater sample collected from monitoring well MPT-8-MW08S is likely attributable to the proximity of the site to the St. Johns River or its location hydraulically downgradient from the same source of contaminants detected in monitoring well MPT-8-MW09S samples.

REFERENCES

- ABB Environmental Services, Inc., 1991, RFI Workplan, Volumes I, II, and III (Interim Final): prepared for Southern Division, Naval Facilities Engineering Command, North Charleston, South Carolina, October.
- ABB-ES, 1992a, RCRA Facility Investigation Phase 1, U.S. Naval Station, Mayport, Florida, (draft); prepared for SOUTHNAVFACENGCOM, November.
- ABB-ES, 1992b, Phase 1 RCRA Facility Assessment Sampling Visit Workplan, U.S. Naval Station, Mayport, Florida, prepared for SOUTHNAVFACENGCOM, (draft), February.
- ABB-ES, 1992c, Resource Conservation and Recovery Act (RCRA) Facility Assessment Sampling Visit Report, Phase 1, U.S. Naval Station Mayport, Florida, (Final Draft) prepared for SOUTHNAVFACENGCOM, North Charleston, South Carolina, November.
- ABB-ES, 1993a, Phase 1 RCRA Facility Assessment/Sampling Visit Workplan, Group I SWMUs 26, 49, 50 and 56, Addendum 1, U.S. Naval Station Mayport, Florida prepared for SOUTHNAVFACENGCOM, North Charleston, South Carolina, November.
- ABB-ES, 1993b, RCRA Facility Assessment/Sampling Visit Workplan, Group II SWMUs 19, 28 and 48, U.S. Naval Station Mayport, Florida prepared for SOUTHNAV-F-ACENGCOM, North Charleston, South Carolina, November.
- ABB-ES, 1995a, Corrective Action Management Plan, U.S. Naval Station Mayport, Florida, prepared for SOUTHNAVFACENGCOM, North Charleston, South Carolina, March.
- ABB-ES, 1995b, Resource Conservation and Recovery Act (RCRA) Corrective Action Program General Information Report, U.S. Naval Station Mayport (Volumes I and II), prepared for SOUTHNAVFACENGCOM, North Charleston, South Carolina, February.
- Durfor, C.N., and Becker, E., 1964, Public water supplies of the 100 largest cities in the United States, 1962, U.S. Geological Survey Water Supply Paper, 1812, 364 p.
- Environmental Science and Engineering, Inc. (ESE), 1986, Initial Assessment Study, Naval Station Mayport, Florida: prepared for Naval Energy and Environmental Support Activity, U.S. Navy, May.
- Enviropact, Inc., 1989, Report of Analysis, Extraction Procedure (EP) Toxicity Test: July.
- Florida Department of Environmental Regulation (FDER), 1981, Photographs (6) of Mercury Waste Storage Area: FDER files, April 29.

REFERENCES (Continued)

- FDEP, 1994, Groundwater Guidance Concentrations, Bureau of Drinking Water and Groundwater Resources, Florida Department of Environmental Protection (FDEP), Tallahassee, Florida, June.
- FDEP, 1995, Memorandum from Ligia Mora-Applegate to Tim Bahr, Subject: Cleanup Goals for the Military Sites in Florida; Technical Review Section, Bureau of Waste Cleanup, FDEP, Tallahassee, Florida, September.
- Freeze, Allen R, and Cherry, John, A., 1979, Groundwater, Prentice Hall Inc., Englewood Cliffs, New Jersey, 604 p.
- Gilbert, R.O., 1987, Statistical Methods are Environmental Pollution Monitoring, Van Nostrand Reinhold Company, New York.
- E.C. Jordan, Inc, 1988, NIRP Expanded Site Investigation Naval Station Mayport, Florida, (Final Report), prepared for the U.S. Department of the Navy, SOUTHNAVFACENGCOM, Charleston, S.C., April.
- A.T. Kearney, Inc., 1989, RCRA Facility Assessment of the Naval Station Mayport, Jacksonville, Florida (Draft): prepared for USEPA, September.
- Long, Edward R., MacDonald, Donald D., Smith, Sherri L., and Calder, Fred D., 1993, Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments, National Oceanic and Atmospheric Administration, October.
- MacDonald, D. D., 1994, Approach to the Assessment of Sediment Quality in Florida Coastal Water, prepared for FDEP, Tallahassee, Florida, by MacDonald Environmental Sciences, Ltd., November.
- Naval Energy and Environmental Support Activity (NEESA), 1988, Sampling and chemical analysis quality assurance requirements for the Navy Installation Restoration Program: NEESA 20.2-047B, June.
- U.S. Environmental Protection Agency (USEPA), 1986, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods: SW-846.
- USEPA, 1988a, HSWA Permit No. FL9-170-024-260: Region IV, March 25, 1988, revised and reissued June 15, 1993.
- USEPA, 1988b, Guidance Document for Assessment of RCRA Environmental Data Quality, draft: June.
- USEPA, 1988c, Laboratory data validation functional guidelines for evaluating inorganic analyses: July.
- USEPA, 1989a, Interim final RCRA facility investigation guidance, four volumes:
 May 1989, Waste Management Division, Office of Solid Waste, EPA 530/SW-89-031.

REFERENCES (Continued)

- USEPA, 1989b, Risk Assessment Guidance for Superfund: Volume I Human Health Evaluation Manual (Part A), Interim Final: Office of Emergency and Remedial Response, EPA/540/1-89/002.
- USEPA, 1990, National functional guidelines for organic data review: December 1990 (revised June 1991).
- USEPA, 1991a, Environmental Compliance Branch Standard Operating Procedures and Quality Assurance Manual, USEPA Region IV, Environmental Services Branch, Athens, Georgia, February.
- USEPA, 1991b, Water Quality Criteria Summary, Office of Science and Technology, Health and Ecological Criteria Division, Washington, D.C., May.
- USEPA, 1991c, Letter from Elmer W. Aiken, Health Assessment Officer, to Hazardous Waste Contractors; Subject: Risk Assessment Guidance; USEPA Region IV, risk Assessment Guidance, March.
- USEPA, 1992, Guidance for Data Useability in Risk Assessments (Part A), Office of Emergency and Remedial Response, Washington, D.C. 9285.7-09A, April.
- USEPA, 1993, Supplemental Region IV Risk Assessment Guidance: USEPA Region IV Atlanta, Georgia, October.
- USEPA, 1994, Soil Screening Guidance, Office of Solid Waste and Emergency Response, Hazardous Site Control Division, USEPA, EPA/540/R-94/101, December.
- USEPA, 1995, Memorandum from Roy L. Smith to RBC Table Mailing List, Subject: Risk-Based Concentration Table, First Quarter 1995; USEPA Region III, Philadelphia, Pennsylvania, February.

APPENDIX A TARGET ANALYTE LIST

APPENDIX A: ANALYTICAL PROGRAM

The analytical program for the RCRA Corrective Action Program at NAVSTA Mayport addresses analytes selected from both the 40 CFR 264, Appendix IX, groundwater monitoring list and the USEPA Contract Laboratory Program target compound list and target analyte list (Tables A-1 through A-4). Tables A-1 through A-4 provide a summary of target analytes in both lists, current target analytes, and target analytes that have been detected in previous investigations at NAVSTA Mayport. Gas chromatography and mass spectroscopy (GC/MS) methods are used for analyses of environmental and QA/QC samples. Specifically, USEPA Method 8240 is used to analyze for VOCs (Table A-1) and USEPA Method 8270 is used to analyze for SVOCs (Table A-2). USEPA Method 8080 is used to analyze for chlorinated pesticides and Organophosphorus pesticides (USEPA 8140) and chlorinated PCBs (Table A-3). herbicides (USEPA Method 8150) are target analytes only at sites known to be used for pesticide storage, handling, and mixing. Selected metals are analyzed by inductively coupled plasma (ICP), graphite furnace atomic absorption (GFAA), or cold vapor atomic absorption (CVAA), as appropriate (e.g., USEPA Methods 6010, 7420, or 7470) (Table A-4). USEPA Method 9010 is used to analyze for cyanide.

The analytical data packaging for reporting VOCs, SVOCs, pesticides, PCBs, and inorganics is NEESA Level C.

The number of field and laboratory QA/QC samples collected is in accordance with the generic Quality Assurance Program Plan (QAPP), Appendix A, Volume II, of the NAVSTA Mayport RFI Workplan (ABB-ES, 1991). Field and laboratory QA/QC samples are analyzed by the same analytical methods as the associated environmental samples. The following presents a brief description of field QA/QC samples.

- <u>Duplicates</u>. Duplicates of soil, waste, groundwater, surface water, and sediment samples are submitted for analyses at a rate of 10 percent of the samples analyzed, or a minimum of 1 per event for each media sampled.
- <u>Trip Blanks</u>. A trip blank is included with each shipment of samples scheduled for VOC analysis and analyzed with other VOC samples.
- Equipment Rinsate Blanks. A minimum of one equipment rinsate (sampler) blank per week per media is collected from each piece of equipment used in the sampling event (bailers, sampling pumps, and/or tubing). If equipment is decontaminated in the field, then a minimum of two equipment rinsate blanks are collected each day. One is collected at the initiation of daily sampling activities and the other at the completion.
- <u>Field Blanks</u>. A field blank or source water blank is collected at a rate of at least one blank per field event or every 10 days, whichever is greater. The source blank monitors water used by the field operations for daily operations.

Table A-1

Gas Chromatograph and Mass Spectrometer Volatiles Comparison of Target Analytes From Resource Conservation and Recovery Act Appendix IX Groundwater Monitoring List and U.S. Environmental Protection Agency Contract Laboratory Program Target Compound List

O	Appendix IX	CLP TCL	Currently A Target Analyte	Detected at NAVSTA Mayport
Volatile Organic Compounds	 '^-+	- 102 -	<u> </u>	
Chloromethane	- 	- ; -		
Bromomethane	 	- 		T
/inyl chloride				
Chloroethane	 			<u> </u>
Methylene chloride	 ' 			
Acetone	 ' 			
Carbon disulfide	 			+
Trichlorofluoromethane				+
1,1-Dichloroethene				
1,1-Dichloroethane				
.2-Dichloroethene (total)				
Chloroform				
1,2-Dichloroethane				
2-Butanone			/	
1,1,1-Trichloroethane	/			<u> </u>
Carbon tetrachloride	/	J		
Bromodichloromethane	1			/
1.2-Dichloropropane	1			
cis-1,3-Dichloropropene	1	/	/	
Trichloroethene	1	· /	1	
Benzene	1	1		
Dibromochloromethane	1	1	/	/
1,1,2-Trichloroethane	/	/	1	
trans-1,3-Dichloropropene	/	/	/	<u> </u>
2-Chloroethylvinylether			. /	
Bromoform	1	1.	/	
2-Hexanone	/	1	1	
Tetrachioroethene	/	· /	/	
1,1,2,2-Tetrachloroethane	/	/	/	/
Toluene	1	1	/	/
Chlorobenzene	/	/		/
Ethylbenzene	7	1	1	

Table A-1 (Continued)

Gas Chromatograph and Mass Spectrometer Volatiles Comparison of Target Analytes From Resource Conservation and Recovery Act Appendix IX Groundwater Monitoring List and U.S. Environmental Protection Agency Contract Laboratory Program Target Compound List

Group I and II RFA/SV Report U.S. Naval Station Mayport, Florida

Volatile Organic Compounds	Appendix IX	CLP TCL	Currently A Target Analyte	Detected at NAVSTA Mayport
Styrene	/	1	/	
Xylenes (total)			<u></u> .	
4-Methyl-2-pentanone	1	1		
1,3-Dichlorobenzene	1			<u> </u>
1,4-Dichlorobenzene	1			
1,2-Dichlorobenzene	_/			
Acetonitrile	/			
Acrolein	1		1	/
Acrylonitrile	1		✓	
Chloroprene	/		1	<u> </u>
3-Chloropropene	1			<u> </u>
1,2-Dibromo-3-chloropropane	1		/	/
1,2-Dibromoethane	1		1	
Dibromomethane	1		1	
1.4-Dioxane	1		<u> </u>	
Propionitrile	1			
Ethyl Methacrylate	1		1	
lodomethane	1		/	
isobutyl alcohol	1		•	
Methacrylonitrile	1			
Methyl methacrylate	1		<i>,</i>	
Vinyl acetate	1		•	
Trans-1.4-dichloro-2-butene			1	
Dichlorodifluoromethane	1			
Pentachioroethane	1		<i>J</i>	
1.1.1,2-Tetrachioroethane	1		· ·	
1,2,3-Trichloropropane		7	· ·	1

Appendix IX = 40 Code of Federal Regulations Part 264, Appendix IX, Ground Water Monitoring List. Analytical Methodology for Appendix IX is <u>Test Methods for Evaluation of Solid Wastes</u>, US EPA, SW 846, Third Edition, November, 1986. (And Proposed Update Package, 1989.)

CLP TCL = U.S. Environmental Protection Agency Contract Laboratory Program, <u>Statement of Work for Organic Analysis</u>, <u>Multi-Media</u>, <u>Multi-Concentration</u>, Exhibit C, Target Compound List and Contract Required Quantitation Limits, 0LM01.0, July 1993.

Table A-2

Gas Chromatograph and Mass Spectrometer Semivolatiles Comparison of Target Analytes From Resource Conservation and Recovery Act Appendix IX Groundwater Monitoring List and U.S. Environmental Protection Agency Contract Laboratory Program Target Compound List

Semivolatile Organic Compounds	Appendix IX	CLP TCL	Currently A Target Analyte	Detected at NAVSTA Mayport
Acid Extractables				
Phenoi	/	•		/
2-Chiorophenol	/		1	
2-Methylphenol	/		· ·	,
4-Methylphenol	1	•	1	/
2-Nitrophenol	/	1		
2,4-Dimethylphenol	1		,	
2,4-Dichlorophenol	1		· ·	
4-Chloro-3-methylphenol	1	/	1	<u> </u>
2,4,6-Trichlorophenol	1		/	
2,4,5-Trichlorophenol	1	1	/	
2,4-Dinitrophenol	1	1	1	
4-Nitrophenol	1	1	/	<u> </u>
2-Methyl-4,6-dinitrophenol	1	1	1	<u></u>
Pentachiorophenol	1	1	1	/
2,3,4,6-Tetrachiorophenol	/		/	<u> </u>
2.6-Dichlorophenol	/			
Benzoic Acid			/	/
Base-Neutral Compounds				
1,3-Dichlorobenzene¹	1	/	/	<u> </u>
1,4-Dichlorobenzene ¹	1	1	/	
1,2-Dichlorobenzene¹	1	1	/	<u> </u>
Hexachioroethane	1	1	/	
1,2,4-Trichlorobenzene	/	1	/	
Naphthalene ²	/	1	/	
Hexachlorobutadiene	1	/	/	
Hexachlorocyclopentadiene	1	1	·	

Table A-2 (Continued)

Gas Chromatograph and Mass Spectrometer Semivolatiles Comparison of Target Analytes From Resource Conservation and Recovery Act Appendix IX Groundwater Monitoring List and U.S. Environmental Protection Agency Contract Laboratory Program Target Compound List

	Mayport, F	Torida		
Semivolatile Organic Compounds	Appendix IX	CLP TCL	Currently A Target Analyte	Detected at NAVSTA Mayport
<u> </u>	/	1	1	
2-Chloronaphthalene Acenaphthylene ²	 		1	<u>.</u>
	+		/	1
Acenaphthene ²	+			1
Dibenzofuran	+			/
Fluorene ²	+ -		-	<u> </u>
4-Chlorophenyl-phenylether	+		 	
4-Bromophenyl-phenylether	 		-	
Hexachlorobenzene	 		 	-
Phenanthrene ²	 	· · ·	<u> </u>	
Anthracence ²	/		-	/
Fluoranthene ²	/			
Pyrene ²		· /		
Benzo(a)anthracene²			/	/
Chrysene ²		<i></i>	 	
Benzo(b)fluoranthene ²	/	· · ·	/	<u> </u>
Benzo(k)fluoranthene²	/	<u> </u>	/	
Benzo(a)pyrene ²			/	/
Indeno(1,2,3-cd)pyrene ²	/	- 1	<u> </u>	<u> </u>
Dibenzo(a,h)anthracene ²		1	/	
Benzo(g,h,i)perylene²	1	1	/	. /
bis(2-Chloroethyl)ether				
n-Nitroso-di-n-propylamine	/	/	/	
Nitrobenzene	1	· /	1	
Isophorone	/	1	1	
bis(2-Chloroethoxy)methane	/	1	1	
Dimethylphthalate		1	/	
2,6-Dinitrotoluene	1	1	1	
2.4-Dinitrotoluene	1	/	1	
Diethylphthalate	/	1	1	1
n-Nitrosodiphenylamine	/	1	1	
di-n-Butylphthalate	/	1	1	/
Butylbenzylphthalate	1	/	/	1
3,3'-Dichlorobenzidine	1	1	/	
bis(2-Ethylhexyl)phthalate		1	1	1
di-n-Octylphthalate		1	1	/
n-Nitrosodimethylamine	/			1

Table A-2 (Continued)

Gas Chromatograph and Mass Spectrometer Semivolatiles Comparison of Target Analytes From Resource Conservation and Recovery Act Appendix IX Groundwater Monitoring List and U.S. Environmental Protection Agency Contract Laboratory Program Target Compound List

		CLP	Currently A Target	Detected at NAV\$TA
Semivolatile Organic Compounds	Appendix IX	TCL	Analyte	Mayport
2-Picoline			· · · · · · · · · · · · · · · · · · ·	<u> </u>
Diphenylamine				<u> </u>
4-Nitroaniline				
Benzyl alcohol	/			
n-Nitrosopiperidine	-		/	
n-Nitrosomethylethylamine				
4-Chloroaniline	1			
p-Phenylenediamine	1		/	
3- and 4-Methylphenol				
bis(2-Chloroisopropyl)ether	1			<u> </u>
Pyridine	1		/	
3,3'-Dimethylbenzidine	/		1	
Isosafrole	1		/	
Phenyl-tert-butylamine	*		1	
1,2-Diphenylhydrazine			/	
1,4-Naphthoquinone	1		/	
1-Naphthylamine	/		1	
Aramite	1		1	
Hexachloropropene	1		/	<u> </u>
Pronamide	/		/	
2-Acetylaminofluorene	/		1	/
n-Nitrosodiethylamine	/		1	<u> </u>
3-Methylcholanthrene	1		/	
4-Nitroquinoline-1-oxide			1	
7,12-Dimethylbenz(a)anthracene	/		/	
n-Nitrosomorpholine	/		/	
p-(Dimethylamino)azobenzene	/			
Pentachlorobenzene	1		/	
Phenacetin	1			
Ethyl methanesulfonate	/		1	
Aniline	/		1	
Methyl methanesulfonate	/		1	

Table A-2 (Continued)

Gas Chromatograph and Mass Spectrometer Semivolatiles Comparison of Target Analytes From Resource Conservation and Recovery Act Appendix IX Groundwater Monitoring List and U.S. Environmental Protection Agency Contract Laboratory Program Target Compound List

Group I and II RFA/SV Report U.S. Naval Station Mayport, Florida

Semivolatile Organic Compounds	Appendix IX	CLP TCL	Currently A Target Analyte	Detected at NAVSTA Mayport
Hexachlorophene	/		1	
Pentachloronitrobenzene	1		1	
2-Nitroaniline	1	1	1	
2-Methylnaphthalene ²	/	1	1	1
2-Naphthylamine	1		1	<u> </u>
Methapyrilene	/		/	
4-Aminobiphenyl	1			
Benzidine			/	
n-Nitroso-di-n-butylamine	1		1	
n-Nitrosopyrrolidine	/			<u> </u>
Safrole	1			
o-Toluidine	1		1	
1,2,4,5-Tetrachlorobenzene	1	<u></u> .	1	
Acetophenone	1		/	
3-Nitroaniline	1	1	/	<u> </u>
1,3,5-Trinitrobenzene	1		1	
5-Nitro-o-toluidine	1		1	
1,3-Dinitrobenzene	1		1	<u> </u>
Carbazole		1	1	<u> </u>

¹ Analyte is both a volatile and semivolatile target analyte.

Notes: Target analytes for environmental and quality control samples collected at each Solid Waste Management Unit.

Appendix IX = 40 Code of Federal Regulations Part 264, Appendix IX, Ground Water Monitoring List. Analytical Methodology for Appendix IX is <u>Test Methods for Evaluation of Solid Wastes</u>, US EPA, SW 846, Third Edition, November, 1986. (And Proposed Update Package, 1989.)

CLP TCL = U.S. Environmental Protection Agency Contract Laboratory Program, <u>Statement of Work for Organic Analysis</u>, <u>Multi-Media</u>, <u>Multi-Concentration</u>, Exhibit C, Target Compound List and Contract Required Quantitation Limits, 0LM01.0. July 1993.

² Analyte is a polynuclear aromatic hydrocarbon.

Table A-3

Gas Chromatograph Pesticides, Herbicides and Polychlorinated Biphenyls Comparison of Target Analytes From Resource Conservation and Recovery Act Appendix IX Groundwater Monitoring List and U.S. Environmental Protection Agency Contract Laboratory Program Target Compound List

Pesticides, Herbicides and Polychlorinated Biphenyls	Appendix iX	CLP TCL	Currently A Target Analyte	Detected at NAVSTA Mayport
Organochlorine Pesticides			<u> </u>	
alpha-Benzene hexachloride (BHC)	1	1		/
beta-BHC	1	1		/
delta-BHC	1	· /	1	1
gamma-BHC (Lindane)	1	1		
Heptachlor	1	/	/	1
Aldrin	/	1	✓	
Heptachlor epoxide	1	1	/	1
Endosultan I	1	1	1	<u> </u>
Dieldrin	/	1	/	
4,4'-Dichlorodiphenyldichloroethylene (4,4'-DDE)	1	1	1	/
Endrin	1	1	/	<u> </u>
Endosulfan II	1			
4.4'-Dichlorodiphenyldichloroethane (4-4'-DDD)	/	1		/
Endosulfan sulfate	1	1	/	
4.4'-Dichlorodiphenyltrichloroethane (4,4'-DDT)		/	/	
Methoxychlor	_/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	
Endrin keytone		1	/	<u> </u>
Endrin aldehyde	1	1	/	<u> </u>
alpha-Chlordane	/	1	/	/
gamma-Chlordane	1		/	/
Toxaphene	1	1	/	
Organophosphorus Pesticides				
Aspon-SS	/		*	
Triethylphosphorothioate	1		*	
Thionazin	1		*	
Parathion methyl	- /		*	
Phorate	1		+	
Disulfoton			+	
Sulfotepp	/		*	
Famphur	1		*	
Parathion ethyl	1		*	
Dimethoate				

Table A-3 (Continued)

Gas Chromatograph Pesticides, Herbicides and Polychlorinated Biphenyls Comparison of Target Analytes From Resource Conservation and Recovery Act Appendix IX Groundwater Monitoring List and U.S. Environmental Protection Agency Contract Laboratory Program Target Compound List

Group I and il RFA/SV Report U.S. Naval Station Mayport, Florida

Pesticides, Herbicides and Polychlorinated Biphenyls	Appendix IX		Currently A Target Analyte	Detected at NAVSTA Mayport
Chlorinated Herbicides				,
2,4-Dichlorophenylacetic acid			*	
3,5-Dichlorobenzoic acid			*	
Dinoseb	1		*	<u> </u>
(2,4,5-Trichlorophenoxy)-acetic acid (2,4,5-T)	/		*	
a-(2,4,5-Trichlorophenoxy) propionic acid (2,4,5-TP) (Silvex)	,		*	
2,4-Dichlorophenoxyacid (2,4-D)			*	
Polychlorinated Biphenyls (PCBs)				1
Aroclor-1016	1	1	/	
Aroclor-1221	1	1	/	
Arocior-1232	1		/	<u> </u>
Aroclor-1242	/	1	/	
Arocior-1248	/	1	1	/
Aroclor-1254	1	1	1	
Aroclor-1260	1	1	T .	\ \ \ \ _

Notes:

- ✓ = Target analytes for environmental and quality control samples collected at each Solid Waste Management Unit.
- * = Target analytes for environmental and quality control samples collected at pesticide handling and storage sites.

Appendix IX = 40 Code of Federal Regulations Part 264, Appendix IX, Ground Water Monitoring List. Analytical Methodology for Appendix IX is <u>Test Methods for Evaluation of Solid Wastes</u>, US EPA, SW 846, Third Edition, November, 1986. (And Proposed Update Package, 1989.)

CLP TCL = U.S. Environmental Protection Agency Contract Laboratory Program, <u>Statement of Work for Organic Analysis</u>, <u>Multi-Media</u>, <u>Multi-Concentration</u>, Exhibit C, Target Compound List and Contract Required Quantitation <u>Limits</u>, 0LM01.0, July 1993.

Table A-4

Inorganics and Cyanide

Comparison of Target Analytes From Resource Conservation and Recovery Act Appendix IX Groundwater Monitoring List and U.S. Environmental Protection Agency Contract Laboratory Program Target Analyte List

Group I and II RFA/SV Report U.S. Naval Station Mayport, Florida

<u> </u>	- Waype	ort, riorida	Currently	Detected at
Inorganics and Cyanide	Appendix IX	CLP TAL	A Target Analyte	NAVSTA Mayport
Aluminum	<u> </u>	1		
Antimony	/	1	1	/
Arsenic	1	1	1	
Barium	/	1	1	
Beryllium	1	1	1	
Cadmium	1	1	1	
Calcium		1	1	
Chromium	/	1	1	
Cobalt	1	1		
Copper	/	1	/	
Iron		1	1	
Lead	/	1	/	
Magnesium		1	/	
Manganese		1	/	/
Mercury	/	1	/	
Nickel	1	1	/	
Potassium		1	/	/
Selenium	1		/	
Silver	1	/	/	/
Sodium		1		/
Thallium	1	1		
Tin	/	 	/	
Vanadium	1	/		/
Zinc	1	1		
Cyanide		/	/	-

Notes: ✓ = Target analytes for environmental and quality control samples collected at each Solid Waste Management Unit.

Appendix IX = 40 Code of Federal Regulations Part 264, Appendix IX, Ground Water Monitoring List. Analytical Methodology for Appendix IX is <u>Test Methods for Evaluation of Solid Wastes</u>, US EPA. SW 846, Third Edition, November, 1986. (And Proposed Update Package, 1989.)

CLP TAL = U.S. Environmental Protection Agency Contract Laboratory Program, Statement of Work for Inorganic Analysis, Multi-Media, Multi-Concentration, Target Analyte List and Contract Required Quantitation Limits, ILMO 1.0, March 1990.

APPENDIX B DATA SUMMARY TABLES

																200.000 page 1
558	46/kg	558	823	646 646	&&8 ⊏ = c	225	666	2 U ug/kg	888		21 E 19/6				Araclar-1254 Araclar-1254	
883	6/6 6/6	170 120 120 120	eri	6.5 6.2	ES:	i62	666	: C C	:52		42 L1 m9/kg				Araciar-1232 Araciar-1242	
1783 170	- - - - - - - - - - - - - - - - - - -	18 55 5 5 5 5	35	6 6 6 6 8 8	325 8 % 6	25	566		252						Kepone Aractor-1016	
1.85 7.00	\$/\$ \$/\$	1.7 6	∴ 88	\$ \$ \$ 6 8 6	1 8 8	25%	466	- ug/kg	265		51 UJ 48/kg 42 UJ 49/kg 86 UJ 49/kg			9 61.	Dialiete Toxaphere Isodrin	5000, 5000 5000,5000,000
	49/kg 69/kg	51 U	24.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	277 277	9.1 9.1 27	666		1.8 9.1 27		EEE				Endrin ketone Chlordene Chloroberzilate	
. W.O.	6/6 6/6			\$ 8 1		1.0	664	C C (1.0		EES	-4-			Mathoxychlor Endrin midehyde	83 II.
 	6/kg 6/kg	- - - - - - - - - - - - - - - - - - -	4 4 4		444 		666	= = =							6,6-000 Endosulfan sulfate	. 1910000
	£ 5 5	3.3. C.C.	w	6 6 6 6 6 6		 - - -	666	U ve/ke			EEE					jang.
	66		144	& & & & & & & & & & & & & & & & & & &	 	<u>.</u>	666	_ C C			EEE				3	
† 5 7	6 6 6 6 6	1.70			 	222	666	= = =			EE				Heptachlor Aldrin	uddsta.
177	6/6 6	1.7 U		881 881	177 70	22;	666	_			EEE			3	delta-BHC (Lindane)	Si desire
3 - 1 3 - 7	ug/kg	1.7 u			1.7 u	. 2	i éi	= =	<u>;</u>				180) vg/kg	(SV-846, 80	PESTICIDES/PCDa (SV-846,8080)	
DL	REATSOOCE READATA READATA 49SDO17D 12-SEP-94 QUAL UNITS	RB RB 12 VALUE QU	2	R8730001 RFADATA 49SD017 12-SEP-94 QUAL UNITS		VALUE	S DL	R8730003 RFADATA 49SD016 12-SEP-94 QUAL UNITS	VALUE	몬	R8730005 RFADATA 49SD015 12-SEP-94 QUAL UNITS	VALUE ::	Lab Sample Number: Site Locator Collect Date:	[1
							ORT	NAVSTA MAYPORT RFA Sediment Data	RFA							1

•	
•	•
1	#
	0
=	, T.
₹	0
5	Ŧ.
-	-
▣	՛
-	9
-	=
3	•
	.= '
⊆	77
m	-
_	•
Ξ	-
	m
	42
_	⊆
- 24	_
8.	
ĸ.	_
٠.	100
-	_
::::	-
	~
•	•
Œ	7
8=	=
=	ö
-	1933
=	b 32
٠.	20
	pi. ;
	00
	1.5
_	0.85
3	100
=	
	rin.
•	
€.	
- 64	le i e
v	
=	:
3	
5	
=	* BOT DETECTED R = RESULT IS REJECTED
8	
_	•

1,00101.15	9	roctor-12			roctor-10	erioge)	ed;			or dera	ndrin keton			de Liter	4-0B		P	eldrin			prechlor		51 to - 816	948-83C	子言	CIDES/P	
2	, T		Si	3.	-0						3	<u> </u>		aul fata] 						0806 976-RS) 18.	
		19																								e Sel	
									sa J							5.465 6.655 6.655 6.655 6.655 6.655						eri			,	5 8	
•	37 	Ē		= 1			=	=	7 2	30	5.4 -	5, 6 U	_; _;	7	 -	5.4	5 B.	7.6 C	2.6 U	N), 	J N.		2.0 U		
1	. S	ug/kg	6/Kg	ue/ko	5 2	ng/kg	es/ke	5/Kg	70/Kg	19/kg	₩/K	£.	5 £	5	\$ \$	€ : ∑ :		<u>₹</u>	& :				5	5	₹ *		
	<u> </u>	140	₹	28	Š	Šā	 	- -	31	2 2	, .	,		n y		UI:	.	10 G	O) () t) N				
1	2 &	_	_	_				_	_		-	4.8	= :	20 CZ	. 4.	.9		.5	2.5	2:5	, ,	, i	, i.	, CI	2.5		
•	= =	_	_	_	— (= =	: C	_		= 0	= =	C	- 9	= =	=	=	=	_	_		= 4	= 0	= =	: =	_		
ŧ	ĘĘ	Ę	Ę	5 4	ĘĘ	Ę	Ę	Ę.	5	ĘĘ	٤	Æ	٤ ا	€ €	Ę	٤	ĘĘ	5	<u>و</u>	5	Ę	5 4	.	8	Æ		
4	ug/kg	ug/kg	ug/kg	19/kg		10/Kg	ug/kg	ug/kg	بي/kg	vg/kg	49/kg	19/kg	ug/kg	ug/kg	ug/kg	ug/kg	64/60 64/60	ug/kg	ug/kg	L9/kg	wo/ko	58/kg	19/Kg	Vg/kg	ug/kg		
•	ug/kg 63	_	_				_		•		_	_			_		_		₩g/kg 2.5	ug/kg 2.5	10/kg 2.5	50/kg 2.5	19/Kg 2.5	Ug/kg 4.0	ug/kg 2.5		
	26	120	120	250	200		2.5	120	150	75	,		3 ;	P .0			_	2.5	2.5	2.5	2.5	25), , ,		- 2.5		
	63 20 U	J 120	120 42 U	250 24 u	250	100 A2 II	2.5	120 42 11	150 50 L	74 25 0	2.0 T.O C	4.8	100 ST.	4.0 1.0 1.0		4.8 1.6 U	.	2.5	2.5		7.5	2.5			2.5		
) 63 20 U ug/kg	120 42 U 49/kg	120 42 4 40/40	250 24 U Ug/kg	250 04 0 40/60	64/44 Fr. 15 000	2.5	120 42 U 49/kg	150 50 L vg/kg	74 23 0 20/40	77 P P P 20/F0	4.8 1.6 U 19/kg	10 3.4 U 40/89		1.0 Co/kg	4.8 1.6 U 49/G	4.8	2.5	2.5	2.5 .84 U ug/kg		2.5			2.5 .04 U ug/kg		
	63 20 U ug/kg 20	120 45 U 49/kg 42	120 42 U 40/kg 42	250	250 84 C La/ka 84	68/68 PT 124 DC1	2.5 Lat U ca/kg	120 42 U 40/kg 42	150 50 U wo/kg 50	74 25 U 19/kg 25	7.0 P. C. 20/20 1.0	4.80 1.6 U V9/kg	10 24 F C 20 14		4.8 1.6 U cg/kg 1.6	4.8 1.6 U 19/KG 1.6	1.6 C C9/kg	2.5	2.5	2.5 .64 U .6/kg .64					2.5 .04 U ug/kg .04		
	, 63 20 U 149/kg 20 22 U	120 45 U 49/40 45 C 55 C	120 42 u uq/kg 42 45 c	250 04 U 10/kg 04 92 U	250 PA W 1976 PA 92 C	120	2.5	120 42 L La/kg 42 45 L	150 50 L works 50 55 L	74 25 1 19/30 25 26 1		4.00 1.6 U 1.0 1.0 1.0 U	10 3.7 U 3.7 U 3.7 U		4.8 1.6 U (0/kg 1.6 1.8 U	4.8 1.6 U ug/kg 1.6 1.8 U	4.8 - 1.5 C - 1.5 C - 1.5 C	2.5 .84 U wg/kg .84 .92 U	2.5 .04 U Ug/kg .04 .92 U	2.5 .84 U .mg/kg .84 .92 U	2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2.5 % U 16/kg .92 U			2.5 .04. u ug/kg .04 .92 u		
	, 63 20 U 149/kg 20 22 U	120 45 U 49/40 45 C 55 C	120 42 u uq/kg 42 45 c	250 04 U 10/kg 04 92 U	250 PA W 1976 PA 92 C	120	2.5	120 42 L CA/R9 42 45 L	150 50 L works 50 55 L	74 25 1 19/30 25 26 1		4.00 1.6 U 1.0 1.0 1.0 U	10 3.7 U 3.7 U 3.7 U		4.8 1.6 U (0/kg 1.6 1.8 U	4.8 1.6 U ug/kg 1.6 1.8 U	4.8 1.6 C 09/kg 1.6 1.8	2.5 .84 U wg/kg .84 .92 U	2.5 .04 U Ug/kg .04 .92 U	2.5 .84 U .mg/kg .84 .92 U	2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2.5 % U 16/kg .92 U			2.5 .04. u ug/kg .04 .92 u		

NAVSTA NAYPORT RFA Sediment Data

Lab Sample Number: Site Locator Collect Date:

M7645009 RFADATA 49SD011 02-AUG-94 QUAL UNITS

AVLUE

VALUE

무

N7645008 RFADATA 49SD012 02-AUG-94 QUAL UNITS

R8730004 RFADATA 49SD013 12-SEP-94 QUAL UNITS

R8730006 RFADATA 49SD014 12-SEP-94 QUAL UNITS

| PESTICIDES/PCBs (SN-846;8000) alpha-BHC beta-BHC delte-BHC delte-BHC Heptachlor epoxide Endosulian II 1,4-DOE Endosulian II 4,4-DOE Endosulian sulfate 4,4-DOT Endosulian sulfate 4,4-DOT Endosulian sulfate 6,4-DOT Endosulian sulfate 1,4-DOT _ |
|--|--|
| (SW-866,0000) | Lab Sample Number:
Site
Locator
Collect Date: |
| PORTED AND CONTRACTOR OF THE C | AYLAE |
| | R8730008
RFADATA
498006
12-SEP-94
QUAL UNITS |
| | DL |
| | RFA |
| 22222222222222222222222222222222222222 | RFA Sediment Data
R8730007
RFADATA
49SD007
12-SEP-94
QUAL UNITS |
| 92002 | Dr. |
| | VALUE |
| 2.7 U 48/6 | M7645007
RFADATA
4950009
02-AUG-94
QUAL UNITS |
| 55.22
5.22
5.22
5.23
5.23
5.23
5.23
5.23 | <u> </u> |
| 55000000000000000000000000000000000000 | VALUE |
| | W7645006
RFADATA
49SD010
02-AUG-94
QUAL UNITS |
| 55 11 12 22 22 22 22 22 22 22 22 22 22 22 | P. |

NAVSTA MAYPORT

RFA	2
Sed	27.00
3	3
2	5

o-Toluidine Hexachloropropene P-Phenylenedissine Sefrole 1,4-Naphthoquinone 1,3-Dinitrobenzene 4-Nitroprinoline-1-oxide Hexachlorophene 3,7-Disethylbenzidine Hexachlorophene 4-mite 2-Chlorophene Aramite 2-Chlorophenol 1,3-L-Methylphenol 1,3-	
entered (2)	Lab Sample Number: Site Locator Collect Date:
	. VALUE
	R8730003RE RFADATA 49SD016RE 12-SEP-94 QUAL UNITS
	턴
1700 8200 8200 8200 8200 170000 1700 1700 1700 8200 1700 8200 1700 8200 1700 1700 1700 1700	VALUE
00	R8730001 RFADATA 49SD017 12-SEP-94 QUAL UNITS
1700 8200 8200 8200 8200 170000 1700 1700 1700 1700 1700 1700	DL.
1600 80000 160000 160000 160000 80000 80000 1600 16	VALUE
	R8730002 RFADATA 49SD017D 12-SEP-94 QUAL UNITS
1600 8000 16000 16000 1600 1600 1600 160	DL .

		RFA Se		•			
 R8730003RE RFADATA 49SD016RE 12-SEP-94			730001 FADATA 9SD017 SEP-94	2		RB730002 RFADATA (9SD017D 12-SEP-94	2
		888	6/kg	1700 1700	388		1600 1600
			50/kg	8200		(A)	38
· · · · · · · · · · · · · · · · · · ·			6/kg	1700 1700	- 1 N N		38 88
61		1700 U	5/6 5/6	1700			88
		8200 U	6/kg	8200	8	5 £	
		1700 U	ug/kg	3 3 2 8	28		5 8
8033 1			19/kg	25	8	. s	8
****			\$/\$	700	568	£ (4)	1600
. 5/KG		1700 u	6/6 6	7 1700	3300 3300		3300 3300
£ (3)		1700 U	P/80	17	ě	- W/Kg	88
		7 077 0 0071	بر وراي		8	- - - - -	
			5 5 6 6	1700 1700	5 6	5/4 2/4	88
<u>چ</u>				1	38		268
5 /62			-9/kg	1700	8	5/2	5
24/67 24/24			5/kg	178 808	188		568
5/S					:588	\$ (
\$ \$				178	88	د ا	5
5 € 5 €			6/kg	8200	8	6/8/A	5
5 5 5 2			€ & & &	78	3 8		1600
22				1700	15 88 88	 E6	1600
				8200	288	5.5	388
				8200			
 4/4				1700	: :88		168
 				8200 8200	285 285		565 565 565
			5 6 6 6 6	170	88		-
			بو/لان 4/kg	1700 1700	5 5 8 8		3 8 8
 2/4		1700 0	6/Kg	178	168		568
{							
Lab Sample Number: Site Locator Collect Date: WALUE Rether	R8730003RE RFADATA 4950018RE 12-SEP-94 VALUE OUAL UNITS USF/RS US	R8730003RE RFADATA 4,950016RE 12-SEP-94 VALUE OUAL UNITS UNIT	R8730003RE RFADATA 4950016RE 12-SEP-96 VALUE QUAL UNITS USA/KG	RE730003RE RE730003RE RE750003RE REFACT APPROATA	## A Sectiment Data ## PATODOSSE ## PATODOSS	## Sediment Data ## Sed	RETOROUSHE RETOROUT RETORUTE DATA RETOROUSHE RETOROUT RETORUTE RE

BKG SVOC (8270-24) Rittrasodimethylamine Pheroi Aniline big (2-Chlorosthyl) ether 1,3-Dichlorobenzere 1,4-Dichlorobenzere 1,2-Dichlorobenzere 2-Rethylpherol bis (2-Chlorolsopropyl) ether 1,2-Dichlorobenzere 1,4-Dichlorosthara Hitroso-di-n-propylamine Hexachlorosthara Hitropherol 2,4-Dimethylpherol 2,4-Dimethylpherol 1,2,4-Trichlorobenzere 1,4-Dichloropherol 1,2,4-Trichlorobenzere 1,2-Dichloropherol 1,2,4-Trichlorobenzere 1,2-Dichloropherol 1,2,4-Trichlorobenzere 1,2-Dichloropherol 2-Hethylpherol 2-Hethylamhthelere 2,4,5-Trichloropherol 2-Hethylamhthelere 2,4,5-Trichloropherol 2-Chloromaphthelere 2,4,5-Trichloropherol 2-Chloromaphthelere 2,4,5-Trichloropherol 3-Ethylpherol 2-Chloromaphthelere 2,4,5-Trichloropherol 3-Chloromaphthelere 2,4-Dinitrotolume 3-Ethylpherol	Lab Sa
• • • • • • • • • • • • • • • • • • •	Lab Sample Number: Site Locator Collect Date: VALUE
E EE 645666666666666666666666666666666666	R8730003RE RFADATA 49SD016RE 12-SEP-94 QUAL UNITS DL
1700 U 1700 U	R8730001 RFADAT/ 49SD011 12-SEP-5 VALUE QUAL UNI
1700 18/46 18/	R8730001 RFADATA 4950017 12-SEP-94 QUAL UNITS DL
1600 U 44/44 1600 U 44/44	R8730002 RFADATA 49SD0170 12-SEP-94 VALUE QUAL UNITS
######################################	LS DI

1000 100/kg \$100 0000 0 1000 1000 0 1	41000 U 100/kg 41000 U 1000 U 100/kg 41000 U 100/kg 4100 U	n 006 078 11 074 11 074 11 000	TO 000 C 04/8 C 1/2 C 1/	41000 U U9/Kg 41000 4400 U U000 4400 U U000 4400 U U000 4400 U U000 4400 U U000 U U000 4400 U U000 U	000 U 0014 0014 000 U 00	Lab Sample Number: R8730004 R8730006 Site RFADATA RFADATA 49SD014 Locator 49SD013 49SD014 Collect Date: 12-SEP-94 VALUE QUAL UNITS DL VALUE QUAL UNITS	NAVSTA MAYPORT RFA Sediment Data
			49/kg 900 900 900	00000 04/kg 4400 09/kg 4400 09/kg 4400		DN178 D144 P-94 DNITS DL	MYPORT ent Data
		100	850 U 49/kg 850 U 49/kg	6668 2668	ug/kg	R8730005 RFADATA 49SD015 12-SEP-94 VALUE QUAL UNITS DL	
990 U 4300 U	4300 U Ug/kg 650 890 U Ug/kg 850 890 U Ug/kg	43000 U	890 C C			R8730003 RFADATA 4980016 12-SEP-94 VALUE QUAL UNITS	
4300	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	890 890			43000 6300 6300 6300		

E-Hitrosomorpholine	7723	3-Hethylcholanthrane	7, 12, 51 Tethy (Dena (A) Anthropresse						C. Marting Committee		Pentachlorobenzene	1,2,4,5:Tetrachlorobenzene	Dent Idina	E-Mitrosopy rolidine	#1201700001017Ylanina	M-Mitroso-di-n-butylesine	2,6-Dichloropherol	Prony Control Ducy Control	H-H-KTOROP-Dericking	Acetocherone		Rechyl Becharesulf prace			ロープログラストアルス・イグ・マファー・コード・イン・イン・イン・イン・アルス・イグ・マー・イン・マー・イン・マー・イン・マー・イン・マー・イン・マー・イン・マー・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・			Benzo(b) 1 Lucrenthene	Di-n-octylphthalate	bie(2-Ethylhexyl)phthalate		Benzo(a)anthracene	S G - Dichiprobenz idine	- But City Poy City Protection 1997 (1997)	T L COT BYLINETS		Anthreces A	Phenonthrene	PentachLorophenol	Hexaco Corobantana	4-Broschenyl-Dienylether	1 2-D Cohart Party 2 Tell 1 2 Cohart Party 2 Cohart		トトラーナー・ファン・ソート・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア		4-Chlorophenyl-phenylether			Locator	Site	Lab Sample Number:	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61	r.	25	2		- 3		. 23	Se	35	•	4100	♣100	25	8	2	2	^ 18	2	2	R	2	416	B (.	28	2.0		2	110	2	940	170	2 2 2	3	3	20	220		2.0	200	} }	26	•		2		WLUE				
cc	ء:	•	-	- -	0 ·	5 (= (5 .	> ¢	3 E) C	; =	_	0	9	0	0 E	-	ō c	-	- -		0 -	5 ; = (5 č	> ₹ = ¢	> < = c) <u>c</u>	: e	-	7	<u> </u>	6 C	5 (- (⊃ € = c) č - 		٥ _	<u> </u>	=	_	5 (5 (5 č	5 è	5 č = c	5 E	200		ار 196	12-6	RF≥	R8730004	
# KE		2	&	50/X				į	3	5	\$/2	8/Kg	₩/K9	€	5	50 kg	₩ 6	<u>د</u> و	ج چ	5 (2 (\	£ 2	\ \{\cdot\}	19/20	20	3 /8	50/20	8 (6)	5 4 5 2		20/20	₩/Kg		€/kg	- 2 - 2 - 2	5 6		1			-S/K	wa/ka		BUAL UNITS	49SDU13	READATA	2 000	
22	<u>\$</u>	£	\$	Z.	5	<u> </u>				Ē	2	Ŝ	<u>2</u>	£	3	2	2	- 100	2	2	R.	E :		<u> </u>	2	23	? \$	3	8		2	2	3 {	5 2	: 2	3	£	£		2	2	. . .	, ,	3 E		2	1	2				
88	24	3	900	9	9 2	24	200	3 8	34	4400	4400	4400	4400	8	90	99	8	4400	900	92	98	9 2	0077	9 2	8 8	88	32	8 8	9	2	8	98	1800		98	8	900	90	4400	90	3	33		***		98		VALUE				
c c	_	c	_	= 1	= 4	= <	= <	: c	: <	: =	_	=	<u> </u>	_	<u> </u>	=	c .	c	-	= 4	=	= 0	= <	= 0	= c	: c	: =	=	c	<u>-</u>	_	= (= c	= =	ċ	_	_	_	-	= (= 0	= c	= c	: c	: =	=		OUAL UNIT	49SD014	RFADATA	88730006	
49/Kg	₽ Ve	<u>ور</u>	5 ,	2	16/kg				-Q/Kg	-6/Kg	-6/kg	6/kg	5/kg	<u>ار کو</u>	5/KG		<u>ار</u>		ر ارا	6 4 6 4	6/kg	- 6 - 7 - 6				19/Kg	19/kg	ug/kg	ug/kg	بو/kg	ور م	19/kg	5/4 6/49	ug/kg	ug/kg	ug/kg	19/kg	9/kg	E/6	5/Ka	04/60 64/60	2/8/	. F	19/kg	eg/kg	ug/kg		DUAL UNITS	014	ATA	8	
38	1400	8	8	98	g (25	32	38	*	: £	\$	84	8077	8	8	8	ž	204	ž	8 8	3	9 5	254	8 8	3 5	38	88	88	90		20	98	1900	98	90	96	99	900	42	2	9 3	9 6		*	38	90		2				
									•		•	•	•																																		1	VALUE				
5 5	198 u	95 -	55	5	5 (3 2	3 E	: 0 : 0 : 0 : 0	Ē	8	8	ਭ =	ਤ =	250 L	850 U	850 C	55	6 -		3 5 5		3 5 5 5	38				. C	850 U	850 U	8	050 C		1700	2 2 2 2 3 4	55	250 L	850 U	850 E		5 5 5				3 6		850 U	ŀ			20 (2	
6/ <u>6</u>	L Q/ X Q	<u>و</u>						Ę	19/Kg	Se/Kg	5 3			W K	E (6 (6)					; }			97.60	00/KG	Dx/Gn	جر حر	- S	S/62	5 <u>6</u>		09/kg		ug/kg	- 2 /6	9×/6×	29/Kg				- P/- 20	6 / 6	ug/kg	19/kg	8/6	6	DUAL UNITS	4950015	RFADATA	R8730005	
85 65 0 0	ŝ	3	8	3 (7.0	35		2	Š	•	<u>*</u> 12	ŝ	<u>.</u>	8	2	3	250	2	3			35	38			3		8	8		연	32	30	38	85	850	8	85		350				19	85	850	1	2				
8 8 8 8	4300	9	3	20 CO		100	1 2	3	1300	4300	4300	200	4300	3	200	200		6367	2 5		82		740.	3 3	3 2	3	5	90	59	9	892			3 3	89	890	3	890	4300	800	940	28	4300	4300		œ	4ALUE					
c c	c	<u> </u>	_	= 0	= c	: c	: =	-	-	-	6	6	=	<u> </u>	-	- (= 0	⊃ (= (3 c	= =	5 e	5 e	5 e	5 2	: c	: C	. C	6	<u>ح</u>	& (3 6	3	5 è	: c	ζ	2	2 (¥ ;	5 č	3	3 2	3 Z	. c	6	1 068	0	٤	12-S	\$61	2 T	B 77	
ug/kg ug/kg	50/kg	6/kg	10/kg		Q/Kg	V9/K0	ug/kg	ug/kg	₩9/k9	ug/kg	جر <u>ا</u>	<u>ار</u>	Co/ko	5 (A)		() / ·	6 4 X				(Q/XQ		-0/xg	60/Kg	19/kg	ug/kg	ug/kg	يم/kg	ر و و			6 /6	9/6	9/kg	0×/g	<u>و</u> ا	ار ار	ug/kg	() () () () () () () () () ()	\ \{\frac{2}{3}\}	9/6	-0/Kg	-0/kg	49/kg	2 0/kg	ng/kg	CONT ON 1900	2-SEP-94	49SD016	RFADATA	PR730003	
9 9	4300	2	3 3	3 5	30		3	90	4300	4300	4300	£ 308	4300	9	200	3 3			3 3	3 2	3 2	3	3	3	98	99	890	890	890	5	96	3	9	90	890	690	890	200	000	200	3 2	98	4300	4300	690	890	٩	⊉				

Collect Date: Collect Date
--

₽F∑	3
š	Ž
ij	7
7 0	3
Ē	=

Mathapyrilere 3,3'-bimethylbenzidir Hexachlorophenol 2-Chlorophenol 3- & 4-Mathylphenol 4-Mathylphenol biphemylamine Hexachloropropene 2-Acetylaminofluorena	
&	Lab Sample Number: Site Locator Collect Date:
13000 U 000651 0 000051 0 000051 0 000051 0 000051 0 000051 0 000051 0 000051	VALUE
04/46 04/46	N7645007 RFADATA 4950009 02-AUG-94 QUAL UNITS
000000 130000 130000 130000 130000 130000 130000 130000 130000 130000	ρt
53000 U 530000 U 530000 U 11000 U 11000 U 11000 U	VALUE
9	M7645006 RFADATA 49SD010 02-AUG-94 QUAL UNITS
53000 11000 53000 11000 11000 11000	ē
14000 14000 14000 14000 19000 19000 19000 19000 19000 19000 19000	VALUE
201010101010101010101010101010101010101	M7645009 READATA 49SD011 02-AUG-94 QUAL UNITS
14000 14000 14000 14000 14000 14000 14000 14000	۶
61000 U 610000 U 610000 U 12000 U 12000 U 12000 U 12000 U	WALUE QU
49/kg 49/kg 49/kg 49/kg 49/kg	H7645008 RFADATA 49SD012 02-AUG-94 QUAL UNITS
61000 12000 61000 12000 12000 12000 12000	<u>5</u>

ATION LIMIT IS ESTIMATED

2-: 13-: AND 14-DICHLOROBENZENE WERE GENERATED FROM THE SVOC (8270) ANALYTICAL RUN.

			"	NAVSTA MAYPORT RFA Sediment Data	YPORT It Data							
Lab Sample Number: Site Locator Collect Date:	W7645007 RFADATA APSD009 02-AUG-94 VALUE QUAL UNIT	M7645007 RFADATA 49SD09 02-AUG-94 DUAL UNITS DL	VALUE	N7645006 RFADATA 495D010 02-AUG-94 QUAL UNITS	1178 1078 1078	VALUE	_	15	DL VA	N7 R1 43 VALUE QUI	N7645008 RFADATA 49SD012 02-AUG-94 QUAL UNITS	Þ
BKG \$100 (8270+24) vg/kg	13000 U					38		5 <u>5</u>	88 84 84 84 84 84 84 84 84 84 84 84 84 8	12000 U 12000 U	ug/kg 40/kg	12000 12000
	13000 E	\$ \$ 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		5			4.4	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	•	12000 LJ	- - - - - - - - - - - - - - - - - - -	12000
bis (2-Chloroethyl) ather	13000 U		13000 13000 110	11000 U U		11000 23	- 000 	26/20 26/20	14000		5	17
1 N-Dichiorobenzene				=		Very Alan	11.00	16/kg	2 8 2	12000 U	5 5 6 2	12000
Benzyl Alcohol	13000 U		13000	11000 c c	19/kg		13.00 C	€ §	ŭ.		<u>و</u> و	7200 72000
1,2-Dichtorobenzena	1.766			==			 	2 <u>2</u>	1	12000 LJ	- - - - - - - - - - - - - - - - - - -	12000
biacz-chioroisopropyi)ether	7 00051 77 80051	6 6 2	13000 11	- 2	ug/kg		88	5	14000	12000 U	6/kg	12000
Hexach lorgethane			13000 13000 11	11000 U U	49/kg		14000	\$ { 2 2	1,000		6/6	12000 12000
Teophorone Troops and Teophorone	2.52		,	c c	ug/kg 1	1000		49/gg 20/20	14000		ار ار	12000
2_A-Oimethy iphenol			13000 11 53	53000 U U	1	1000		\$ \$ \$ \$	- T			1
Benzoio acid bis(2-chtorosthoxy)sethere		30-08 ()); (1.) (30) (1.) (31);		= = ;	16/kg	100 100 100 100 100 100 100 100 100 100	1400 C	€ € 2 €	14000	12000 U	ug/kg	12000
2,4-Dichlorophenol	13000			= = (56	les Yesi	1688 E 2	€ € 2 2 2		12000 U 12000 U	يو√و و√دو دو	12000
E-phicha (ana		\$ & & &		- -	19/19			8	. T.	12000 12000 U	5 5 6 6	12000 12000
Hexach in obuted are	13000 U		13000		ug/kg		200	• 2 :		12000 U		12000 12000
2-Nethy (neph that erre	13000 C		13000 11 13000 11	1000 U	49/kg	88		54	5	12000 U	(A)	12000 12000
	13000 U		13000	11000 U .	Ug/kg		1686 C	5 (2)	14000	12000 U	-0/kg	12000
0 imethy (phthe late				= =	19/kg		1600 	2 2 2 2	14000	12000 U	6/kg	12000
2-Chloromephthaleme				==	ug/kg		14990 U		- 698 698 8	12000 U	وم/يو مو/يو مو/يو	12000
Acenaph thy lene	13000 C	5/6 26/6		= 0	49/kg		1400 E	S	1.68 88	12000 U	- Lg/kg	61000 61000
S-Bitrognilling	18000 U		13000	11000 U	49/kg	11000		£ {	1600	12000 U	- 6/kg	12000 12000
2,4-0 initrophenol	\$608 = =		66000 53	53000 U	5/6 6/6			5.E	69000	61000 U		61000
0 ibenzofuren	13000 U			c c	19/kg	11 88		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1,000	12000 U		12000
2.4-Dinitrotoluene	13000	69/kg		= =	19/kg		# # # # # # # # # # # # # # # # # # #	5 <u>5</u> 2 2	14000 14000	12000 U		12000
4-Chtorophenyl-phenylether	13000	5 <u>5</u> 2	13000	_	ug/kg			(A)	14000	12000 U		61000
A-Mitroeni Line	66000 11		66000 5	53000 U	49/kg	53000 	T 00069	4)/g	69000			61000
**************************************				11000 E	ug/kg		7 900 F					
1, 2-0 iphery lhydraz ina		₽ 2 2		== ;	6		14000 L	\$ \$ 2 2		12000 U	€0/kg	12000
Hexachiorobenzere Pentachiorobenoi	56000 U	\$ \\$\	56000	11000 U		13000 	15000 - -	₩/kg	00041 00069	61000 U 12000 U	ug/kg /kg	61000 12000
Phenanthrena	į											

⊈ ∅	· I	
r		
	4	Ó
σĖ	3	
==		×
≓ 5	H	¥
ΩΞ	=	
58	8	्
. I	⇉	
-5	8	
<u>,,</u> €		
%	~	
Ξ-	. •	
ត្ត ៦	2	
" _	贤	
<u>∘"</u>	.≝	
75	:=	dil.
23	ं	ď
ឌន	55	3
⊆≘	!_	ŧ,
드림	i m	à
w	٤,	
- E	"	ľ
85	:=	Ľ
7.	: 6	
	100	Ó
N		
	4.60	
100	3.3	Ø
	.	
147	- 60	
		Ö,
		×
	• :::	
5		3
₹.		
8.	7	
₹.	7	
5.		
1,4-0	17 70 BSTE	
1,4-01C	17 10 857186	
1,4-DICK		\$ 100 mm 1 mm 1 mm 1 mm 1 mm 1 mm 1 mm 1
NO 1,4-DICKLO	IT TO MOTIMATED	
NO 1,4-DICHLORG		
NO 1,4-DICHLOROS	IT TO MOTIVATED	
MD 1,4-DICHLOROSEN	T C SCTIMATED	
ND 1,4-DICHLOROSENZ	IT TO MOTINATED	
ND 1,4-DICHLOROBENZE	T TO MOTIMATED	
ND 1,4-DICHLOROSENZEM	T C MSTIMATED	
MD 1,4-DICHLOROBENZEMS-H	17 of Hotelshied	
NO 1,4-DICHLOROBENZEM WE	17 of Hotelship	
NO 1,4-DICHLOROBENZEM WERE	T TO MOTINATED	
NO 1,4-DICHLOROBENZENS WERE O	T TO MOTIMATED	
UD 1,4-DICHLOROBENZEM WERE GE	17 - co mortistated	
UD 1,4-DICHLOROBENZEM WERE GENE	17 -e hetikated	
NO 1,4-DICHLOROBENZEME WERE GENERA	17 of Hotelship	
NO 1,4-DICHLOROBENZEM WERE GENERAT		
UD 1,4-DICHLOROBENZEME JERE GENERATEL	14 of Motivated	
UD 1,4-DICHLOROBENZEME JERE GENERATED	14 of Mathematical	
UD 1,4-DICHLOROBENZEME JERE GENERATED FI		
UD 1,4-DICHLOROGENZEM WERE GENERATED FRO		
UD 1,4-DICHLOROGENZEM WERE GENERATED FROM		
DITIONAL LISTINGS OF RESULTS FOR 1,2-1 1,3-1 AND 1,4-DICHLOROSENZEM LERE GENERATED FROM T	TO MOTINATED	
MO 1,4-DICHLOROBENZEMS WERE GENERATED FROM THE		
MO 1,4-DICHLOROGENZEMS WERE GENERATED FROM THE I	TT TO ROTTED TO	
MO 1,4-DICHLOROBENZEME LERE GENERATED FROM THE SY		
MO 1,4-DICHLOROBENZEW LERE GENERATED FROM THE SYD	at an anathra	
UND 1,4-DICHLOROBENZEMS WERE GENERATED FROM THE SYDC	TT TA MATTER TERM	
MO 1,4-DICHLOROBENZEMS WERE GENERATED FROM THE SVDC (TO THE HOTELS OF THE STATE OF T	
UND 1,4-DICHLOROBENZEWS LERE GENERATED FROM THE SYDC (82	TO THE HOTEL TO THE TOTAL TO TH	
WO 1,4-DICHLOROBENZEMS WERE GENERATED FROM THE SVDC (5270		
UND 1,4-DICHLOROBENZEMS WERE GENERATED FROM THE SYDC (8270)		
UND 1,4-DICHLOROBENZEME WERE GENERATED FROM THE SYDC (6270) AM		

		NAVSIA MAYPORT RFA Sediment Data	
Lab Sample Number: Site Locator Collect Date:	R8730003RE RFADATA 49SD016RE 12-SEP-94 VALUE QUAL UNITS DL	R8730001 RFADATA 49SD017 12-SEP-94 VALUE QUAL UNITS DL	RB730002 RFADATA 49SD017b 12-SEP-94 VALUE QUAL UNITS DL
1,2-Dichiorobenzene 2-Chioroethylvinylether Ethyl methacrylete	7 III 19/kg 7 III 19/kg	13 U 19/kg 26 UJ 19/kg 13 U 19/kg 13 U 19/kg	13 12 U Wg/kg 12 25 UJ Wg/kg 12 13 12 U Wg/kg 12 13 12 U Wg/kg 12
trans-1 4-Dichloro-2-butere isobuty! elcoho! 1-1-1-2-Tetrachloroethare	7 UJ Wg/kg 270 R wg/kg 7 UJ Wg/kg		13
1, 2- Discourse thans 1, 2- Discourse thans 1, 4- Discourse 3- Chioropropone	78/kg 78/kg 78/kg	510 P S	500 A CAVAG
Acetonitrile Chloroprene Chloroprene Methacrylonitrile Methyl methacrylate			887. EEE '
Pentachioroechum Propienitrile Vinyl acetate	140 UJ 197kg 14	-5	250 LLJ LLB/kg 25 25 U LLB/kg 25

NAVSTA MAYPORT RFA Sediment Data

PITION	NOT DETECT				
VALUE UJ	760 27 11 28				ar yer Al Tossill
OF RESULTS	2. 15 2. SEL				
FOR 1,2	IECTED				
				julijanin e Laukudauk	
CHLOROBENZ	1				

	R Leg/kg			# % % % % % % % % % % % % % % % % % % %			- 25	140 140 140		13 U U9/Kg 13 U U9/Kg 14 U9/Kg		entachioroethane ropionitrile inyl acetate	Pentachioroeti Pentachioroeti Propionitrile Vinyl acetate
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 7.		55 66 66 66 66 66 66 66 66 66 66 66 66 6			7 UJ Ug/kg	1. 7 · 16	3				Acetonitrite Chloroprene Methacrylonit
	# # # vo/kg	270 7			2		E = =	270	•		N	p libroscothene -D louene hl aropropene	1,2-D braso 1,4-D ouene 3-chleropro
	# # # # # # # # # # # # # # # # # # #	1270 7		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 8		7 U U9/kg	1		3686 E 46/2 6/2		-1) & Dichtoro-2-butene ityl & cohol 2-Tetrachtoroethene	1,1,1,2
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7775	200				_	_		6 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		hioraethylvinylether yl methocrylate 2,3-Trichloropropene	2-Chloro Ethyl me 1,2,3-Tr
۽	4950016 12-SEP-94 QUAL UNITS R ug/kg	VALUE 7	25 25	4950015 12-SEP-94 QUAL UNITS	VALUE 850	2	4950014 12-SEP-94 QUAL UNITS	AVLUE	&	4950013 12-SEP-94 QUAL UNITS	AVINE	Locator Collect Date:	
	R8730003			R8730005		Î	RFA Sediment Data R8730006 RFADATA	Ē		R8730004	i ••	Leb Semple Mumber:	
							NAVSTA MAYPORT						

ERE GENERATED FROM THE SVOC (8270) ANALYTICAL RUN.

ave week (2240411)					
		570 7 v5			
	ш 6 /69	_			t R ug/kg
BLOWCHE (UNIO.		×	14 13 U 18/kg		f R ug/kg
Viryt chloride	- 49/Kg	-	13 0 00/60		k R ug/kg
Chicogethane		7 0	7 6 U wg/kg	kg -	7 R UG/Kg
		22 0	84/41 11 7 27 27 27		2 R ug/kg
Carbon disulfide		7 D 09/kg	7 6 C 19/80	5 (7 R ug/kg
1,1-Dichloroethane		7.0	7 6 U Wg/kg	3	7 R ug/kg
1 1-0 chi orostnena			7 6 U Ug/kg		7 R ug/kg
2000 v	- 10/Kg	77	7		7 R Ug/kg
1,2-Dichloroethane		16 R (19/kg			4 mg/kg
2-9ct1550		70	5 U	3	7 R ug/kg
				50/20	7 0 25/kg
#Fonodich Locone (hono	-	7 U U9/kg	7 6 U Ug/kg		7 R ug/kg
1,2:Dichloropropane	> =	7 0	7 6 U wa/kg	6	7 R ug/kg
CIGT 2700 France Constitution of the Constitut	⊂. Se ² Se3	7 U	7 6 U \u0/kg		7 R 19/kg
Dibromochionethera	-	7 U U9/R9			7 R ug/kg
		7 0	~ C	ug/kg 6	7 R ug/kg
rene-1 3-Dichloropene	_	7 U			7 R Ug/kg
07030f073		13 14 U Ug/kg		5/6	4 R U9/kg
3-Harrone Delicatore	E 25/20	, E		10/10 10	7 R 19/kg
Tetrachloroethene	6 C 6/kg	6 7 U ug/kg	7 60	5/kg	7 R ug/kg
	6 U Wa/ka	_	7	200	7 R ug/kg
Chilorobenzene		6 7 U ug/kg	~: ~:		7 R ug/kg
Ethyloenzene	- (7 0	7 6 8		7 R Ug/kg
Hylenes (total)	dudi Raji	7 = 00/kg	7. 6:1	60/10	7 R ug/kg
[rich lorof Luoromethalive		7 U	. 6 U	•	2 0
Acrotein	u wyka	30 140 U U9/kg			14 R ug/kg
I odcare thene		7 0	0 U		7
Acrylonitrile		140 U ug/kg			7 R ug/kg
D I be companied themse	4 - 187 - 5				

NAVSTA MAYPORT RFA Sediment Data

35 (A)	
	y - 4,00000-0000000000
22:	
- :::::::E#!	
	3
23 % *	-
⋥	
#C	
	<u> </u>
	<u> </u>
~~	=
29	
- ************************************	
	*: 2.89 0 0.0000000000000000000000000000000000
	50-00 988888 ARE 1888
- XXXXXX	
	1994 Wassers
- W	.,
==	
= 5	į.
독크	!
80	
8	
a	
92	
_ 2	
ZX	
E Z	
SE SE SE SE SE SE SE SE SE SE SE SE SE S	
WERE WERE	
WERE !	
EHZE: WERE GI	
ENZE WERE GEN	
ENZE: WERE GENE	
ENZE WERE GENER	
ENZENT WERE GENERAL	
ENZE WERE GENERATE	
A-DICHLOROBENZE VERE GENERATED	
WERE GENERATED	
ENZE GENERATED FI	
WERE GENERATED FRO	
ENZE: VERE GENERATED FROM	
WERE GENERATED FROM	
ENZE: VERE GENERATED FROM TO	
WERE GENERATED FROM THE	
ENZE: WERE GENERATED FROM THE	
WERE GENERATED FROM THE S	
ENZE: WERE GENERATED FROM THE SW	
ENZE VERE GENERATED FROM THE SYOT	
D FROM THE SVOC	
D FROM THE SVOC	
D FROM THE SYOC (B	
D FROM THE SYOC (8270) ANA	
D FROM THE SYDOC (8270) AMA	
D FROM THE SYDOC (8270) AMALY	
D FROM THE SYOC (8270) MIALY	
D FROM THE SYDOC (8270) AMALY	
D FROM THE SYDOC (8270) AMALY	
D FROM THE SYDOC (8270) AMALY	
D FROM THE SYDOC (8270) AMALY	
D FROM THE SYDOC (8270) AMALY	
D FROM THE SYDOC (8270) AMA	
D FROM THE SYOC (8276) AMALY	
D FROM THE SYDOC (8270) AMALY	

Lab Sample Number:	PATECAL PATECAL REAL PATECAL PATECAL PATECAL PATECAL PATECAL PALUE QUAL UNITS CALL PATECAL PAT	#7645009 #FADATA 4980011 02-ANG-94 498011 23 13 U U9/kg 13 450 260 U U9/kg 260 45 26 U U9/kg 26 45 26 U U9/kg 26 45 26 U U9/kg 26 45 26 U U9/kg 26 45 26 U U9/kg 26 45 26 U U9/kg 26 45 26 U U9/kg 26 45 26 U U9/kg 26	W7645008 RFADATA 4950012 02-AUG-94 02-AUG-94 17 U ug/kg 330 17 U ug/kg 17 18 U ug/kg 17 33 U ug/kg 33 33 U ug/kg 33 33 U ug/kg 33 33 U ug/kg 33 33 U ug/kg 33 33 U ug/kg 33
--------------------	--	--	---

	NA RFA		N7645008
Lab Sample Number: Site Locator Collect Date:	#7645007 #7645006 #FADATA #FADATA ### 495D009 #95D010 ### 02-AUG-94 #95D010 ### O2-AUG-94 #95D010 #### VALUE QUAL UNITS DL VALUE QUAL UNITS	M7645009 RFADATA 49SD011 02-AUG-94 DL VALUE QUAL UNITS DL	M7645008 RFADATA 49SD012 49SD012 02-AUG-94 VALUE QUAL UNITS DL
VDCs (8240+11) ug/kg	32 U)/64/ 32 45 U	63/6m ni 92	33 U vg/kg 33
romomethere tryt chloride hloroethere	n n n	45 26 U ug/kg 45 26 U ug/kg 23 22 U ug/kg	
etmylene chiorium	240 J 56 16 23 U	98 U 49/kg 18 U9/kg	:c •
1-Dichloroethene (total)	10 16 23 U	23 13 U Vg/kg 23 13 U Vg/kg	u ug/kg
	U ug/kg 16 23 U U ug/kg 16 23 U J ug/kg 33 J	23 13 U 19/kg	17 U Ug/kg 17 64 J Ug/kg 17
1.1 richloroethane	2	idde idde	17 U ug/kg 17
- 2-Dichtoropropene	U 49/kg 16 23 U	8888 8888 8888	17 U ug/kg 17
Dromoch orome thane	16 U 149/kg 16 23 U 18/kg 16 23 U 18/kg 16 23 U 18/kg	23 13 U 19/kg	17 U ug/kg 17 17 U ug/kg 17 17 U ug/kg 17
rans-1,3-bichioropropene Bromoform	16 U 49/kg 16 23 U 49/kg 16 23 U 49/kg 32 45 U 49/kg	: 5 22 : 5 25 : 5 25 : 5 25	17 U ug/kg 17 33 U ug/kg 33
2 Heart or cethere	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	22.5	17 U ug/kg 17
Toluene Chlorobenzene			17 U 19/kg 17
Riyrama (total)	16 U 19/kg 16 23 U 19/kg 16 23 U 19/kg 16 23 U 19/kg 16 23 U 19/kg	23 25 46/46 23 25 46/46	
Trichloroftuoromethema 1,3-pichlorobenzene Acrolein	U ug/kg 13000 23 U U ug/kg 320 450 U	450 14,000 U	17 U 49/kg 17 330 U 49/kg 330 33 U 49/kg 33
lodomethane 1,4-0 ich lorobenzene Acrylonitrile	U 19/kg 320 450 U	11000 13 U	
Dibromomethane 1,2-Dichioroberzene 2-chioroathylyinylether	11000 1500	11000 13:0	5 C C
Ethyl methacrylate 1,2,3-Trichloropropers 1,2,4-Trichloropropers	19/10 16 23 U	(BB)	= = =
# 12 1 Tas	340 U 149/kg 340 490 U 149/kg 340 U 149/kg 340 23 U 149/kg 340 23 U 149/kg 16 23 U 149/kg	23 13 U 44/kg 480 270 U 44/kg 23 13 U 44/kg	* = = =
1,6-Dioxana			

	. mg/l			ng/t	,			ng/(•			mg/l	•	1/6w	TOTAL PETROLEUM HYDROCARBONS Total petroleum hydrocarbon
	.4 units	8.4		units	8.5			units	8.2			S ite	7.8	uni ts	P#
	70 АРНА	•••		APHA	70			APHA	70			APHA	100	APHA	COLOR
	2.3 mg/l	'n		1/6w 1/6w	. 106			mg/l	3.2			1/6w 1/6w 1/6w	2.6		Total Dissolved Solids Total Kjeldahl Nitrogen Total Organic Carbon
_	34 mg/1	.34 61.8 1		16 mg mg	55.8 → U	44			.22 65.1 1 U	_		70 mg/	.31 57.7 24.7		Oil and Grease Phosphorous-P, Total Sulfate Sulfide
-		. <u>w</u>	•	6 6 6 5 C	308 .1 u	<u>.</u>		7,0m 1,0m 1,0m	525 288 .1 U	_		232	525 317 .1 U		Chloride Hardness as CaCO3 Nitrate/Nitrite-N
i.	146 mg/t	 I. *		1/8m 1/8m	150 150	iu .		1/6w	150 .3 U			1/6w	166	mg/l	GROUND WATER QUALITY Alkalinity &s Caco3 Ammonia-W
P	N7646003 RFADATA 49SW012 02-AUG-94 QUAL UNITS	VALUE	P	M7646004 RFADATA 49SW011 02-AUG-94 QUAL UNITS	_	SUTVA	문	M7646001 RFADATA 49SWD10 02-AUG-94 QUAL UNITS		VALUE	5	M7646002 RFADATA 495W009 02-AUG-94 QUAL UNITS	M764 RF 49: VALUE QUAI		Lab Sample Number: Site Locator Collect Date

U = NOT DETECTED R = RESULT IS REJECTED
J = ESTIMATED VALUE UJ = REPORTED QUANTITATION LIMIT IS ESTIMATED
TO DOITIONAL LISTINGS OF RESULTS FOR 1.2-; 1,3-; AND 1,4-DICHLOROBENZE VERE GENERATED FROM THE SVOC (D270) AMALYTICAL RUN.

	19/1 7:5 6 U	9.4 9.4 U	1.3 C 1.3 C	ug/1 2.1 2.1 U	ug/t 7.3 U	.16 .16 u		· ·	.32	0 19/1 2 2 2.7 UJ	9/1 · · · · · · · · · · · · · · · · · · ·	99/1 .18 .18 U	2.6 J ug/1 2.2 U ug/1 1.4 J ug/1	
	18/1 7.5	9.4	16/C	2.1	5// 1.3	16/1 16				u ug/l	ug/[ug/1		
	S S	8		S	5,6	5 ,5				5 6/1 5/1/2	5 5/	2 5/1 2/1		
	rrii avalii il 1954 (1964) Sapararii					1. mg	5		32 U vg/	25	: :			
		9.4		2.1		- -	10 10 10 10 10 10 10 10 10 10 10 10 10 1		.32 C	2.7 C			NN OD	
		9.4	- 	2.1	ដ ់		and Table 1					7 (1) 7 (2) (1) 13 (1) (2) (1)		
	1/6 1/6	5 /	<u> </u>	E	<u> </u>	£ 5	5	5.5	<u> </u>	<u> </u>	£ &	<u> </u>	£ 5	
	£ 29	9.4.0	1.3 4	2.1 U	17.6 J 1.3 U	23 ·		ر د د	. 33 J	14. t 2.7 us	. 6	. 88 .	6.8 1	
		9		N.		5			%			5	N.	
	yii la		Segin			la in					el. Jehl	. 1 1.1 _1 1.4	§§	
	بر س ص ج	• • • • • • • • • • • • • • • • • • •		2.1	70.6				12. A	 	• 👱		- 2 - 2 - 2 - 2 - 2	
							ente di Maria Maria							5
Baran														2
								13 28, 3	, Alfr	91 Jajus	juana y Kanabar			
	TRACTION OF THE PROPERTY OF TH	15 i	Sodium	Silver	Sickel.	Manganese Marcury	Magnes i Lin	1707	Copper	Cobelt	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Beryl Lium	Antimory Arsenic	RKG LATER SET

NAVSTA MAYPORT RFA Surface Water Data

Lab Sample Number:

Collect Date: Site

¥ALLK

모

VALUE

몯

W7645001 RFADATA 49SW010 02-AUG-94 QUAL UNITS

N7645004 RFADATA 49SH011 02-AUG-94 QUAL UNITS

N7645003 RFADATA 49SW012 02-AUG-94 QUAL UNITS

욛

ALLIE

호

M7645002 RFADATA 49SM009 02-AUG-94 QUAL UNITS

| PESTICIDES/PCBs (SN-846,0000) a tphs-BHC bets-BHC detts-BHC localitis foldrin 4,4-DND 4,4-DND 4,4-DND 4,4-DND 4,4-DND 6,4-DND |
|--|--------------------|
| Site Locator Collect Date: | Lab Sample Number: |
| × | |
| | |
| RFADATA 495H010 02-AUG-94 00AL U 49/1 .02 U 49/1 .02 U 49/1 .02 U 49/1 .02 U 49/1 .02 U 49/1 .02 U 49/1 .02 U 49/1 .04 U 49/1 .05 U 49/1 .06 U 49/1 .07 U 49/1 .08 U 49/1 .08 U 49/1 .09 U 49/1 | M7645001 |
| # # # # # # # # # # # # # # # # # # # | |
| 2 CANCOTA 2 CANC | M7645004 |
| VALUE 02-AUG-94 VALUE 02-AUG-94 VALUE 02-AUG-94 02-AUG-94 02-AUG-94 02-AUG-94 02-AUG-94 02-AUG-94 02-AUG-94 02-AUG-94 02-AUG-94 02-AUG-94 02-AUG-94 02-AUG-94 02-AUG-94 02-AUG-94 03-AUG-94 03-A | H7645003 |
| ## ## ## ## ## ## ## ## ## ## ## ## ## | Į. |

NAVSTA MAYPORT
RFA Surface Water Data

ATION LIMIT IS ESTIMATED ANALYTICAL RUM. 2-; 1,3-; AND 14-DICHLOROBENZENE WERE GENERATED FROM THE SVOC (0270) ANALYTICAL RUM.

Mathapyritere 3,3'-bisethytbenzidins Hexachiorophens 2-chlorophens 3-& 4-Mathytphens 4-Mathytphens Diphenylamine Hexachioropropens 2-Acetylaminofluorens 2-Acetylaminofluorens		
	Lab Sample Number: Site Locator Collect Date:	
55. 555555	AALUE	
E E C = C E E E E E E E E E E E E E E E	M7645002 RFADAYA 49SWOO9 02-AUG-94 QUAL UNITS	
88 888 92	타	
50 C F C C C C C C C C C C C C C C C C C	AVLUE	RFA S
1/8n n6/1 1/8n n6/1 1/8n n6/1 1/8n n6/1 1/8n n6/1	M7645001 RFADATA 495W010 02-AUG-94 QUAL UNITS	RFA Surrace water pata
	ρ.	836
50 50 50 50 50 50 50 50 50 50 50 50 50 5	VALUE	
\$	M7645004 RFADATA 49SW011 02-AUG-94 QUAL UNITS	
55 555 5 <u>5</u>	면	
UT	VALUE	
55,,555555 cc cccacc	#7645003 RFADATA 495W012 02-AUG-94 QUAL UNITS	
64/1 64/1 64/1 64/1 64/1 64/1	17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	
150 1150 1150 1150 1150	DC .	

NAVSTA MAYPORT
RFA Surface Water Data

RFA	
Surface !	5
Vater	MATPORT.
Data	

Anthracere pli-in-Butylphthelate Fluoranthere Pyrene Butylbenzylphthelate 3,3 - pickidrocenzidine Benzo(a) anthracere Chrysere bis(2-Ethylhezyl)phthalate bis(2-Ethylhezyl)phthalate bis(2-Ethylhezyl)phthalate bis(2-Ethylhezyl)phthalate bis(2-Ethylhezyl)phthalate bis(2-Ethylhezyl)phthalate bis(2-Ethylhezyl)prene benzo(a) prene benzo(a) prene benzo(a) prene benzo(a) prene benzo(a) prenidine bistryl asthanasul forate chall trospore idine phenyl tert-butylasine 2-picol ine Hall trospoperol idina benzidine 1,2,4,5-Terrachlorophenol is itrospoperol idina benzidine 1,2,4,5-Terrachlorophenol chalnolphenyl pentachlorophenol chalnolphenyl pentachlorophenol chalnolphenyl pentachlorophenol chalnolphenyl pentachlorophenol chalnolphenyl pentachlorophenol chalnolphenyl pentachlorophenol chalnolphenyl pentachloropheno chalnolphenyl pentachloropheno chalnolphenyl pentachloropheno chalnolphenyl pentachloropheno chalnolphenyl pentachloropheno chalnolphenyl pentachloropheno chalnolphenyl pentachloropheno chalnolphenyl pentachloropheno chalnolphenyl pentachloropheno chalnolphenyl pentachloropheno chalnolphenyl pentachloropheno chalnolphenyl pentachloropheno chalnolphenyl pentachloropheno chalnolphenyl pentachloropheno chalnolphenyl pentachloropheno chalnolphenyl pentachloropheno chalnolphenyl pentachloropheno chalnolphenyl chalnolph	Lab Sample Number: Site Locator Collect Date:
	RFADATA RFADATA 49SN009 02-AUG-94 VALUE QUAL UNITS DL
2000	M7645001 RFADATA 49SM010 02-AUG-94 VALUE QUAL UNITS
	W7645004 RFADATA 49SW011 02-AUG-94 DL VALUE QUAL UNITS
	DL VALUE
	N7645003 RFADATA 495N012 02-AUG-94 QUAL UNITS DL

RFA	
Surface	NICAUNI
Water	
Dota	

		ATT OF TOCK BOOK TO	Ġ	
Lab Sample Number: Site Locator Collect Date:	M7645002 RFADATA 49SNO09 02-AUG-94 VALUE QUAL UNITS DL	M7645001 RFADATA 4954010 02-AUG-94 VALUE QUAL UNITS D	M7645004 RFADATA 49SW011 02-AUG-94 02-AUG-94	W7645003 RFADATA 495W012 02-AUG-94 VALUE GUAL LINITS DI
oc (8270+24) Prosodimethy(amina ug/1	555	10 U ug/t	1/m n 01 1/m n 01 1/m n 01	10gu 11/gu 11 10 11 11 11 11 11 11 11 11 11 11 11
2-Chloroethyl) ether ichlorobenzene ichlorobenzene / Alcohoi	 1855 200	5555 ====		
ichi orobenzene hylphenol Chi orol socroov i sether		555; = c c ;	555 565 [4 8]	===
roso-di-n-propylesine Nioroethare		333; = c c c		
Troplerot	: e = :	555		= = = =
ic acid -Chloroethoxy)methane ichlorocherol	= c * \$ 8 8 9	5 6 5 = c 2		三 C 为 (
-Trichlorobenzene halene oroaniline		10 U Ug/1		
hiprobutediene oro-3-methylphenol hylpaphthelene	5 5 5 	555 ccc	CCE	
hiorocyclopentadiena - Trichlorophenol hylohthalate	10 JJ Lg/1 10 J Lg/1 10 J Lg/1	555 c c g	66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 tu wg/1
Trichloropherol oronaphthalene troaniline	5 5 5	555 ccc	5	= c c
phthylene Interotolume		555 : e c		===
phthene Initrophenol	. E E	555 cc	50 U W/I	
rofineror refuran initrotoluena		558 cee	10 U S	
y iphinelete or ophenyl - phenyl ether ene	= = = = = = = = = = = = = = = = = = =	555 ccc	10 C 4/.	10 U Ug/1
	E E	 	50 U Ug/1	
) ipheny lhydraz ine modieny l pheny lether		ಕಕ	5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	= = c
hiordeisene Ichlordeisenol Inthrena	CCE	555 ccc	~ {{{	ccc

3-Chloropropens Acetonitrile Acetonitrile Chloroprene Nethscrylonitrile Nethyl methscrylate Pentachloroethans Propionitrile Propionitrile Vinyl acetate	Lab Sampi
	Lab Sample Number: Site Locator Collect Date:
191135 181135 UEEUU	VALUE
\$\$ \$ \$ \$ \$ \$ \$ ccccc	M7645002 RFADATA 49SM009 02-AUG-94 QUAL UNITS
58 55 4 84	Dt.
100000	REJ
5 U Ug/1 100 U Ug/1 5 U Ug/1 10 U Ug/1 10 U Ug/1 10 U Ug/1 10 U Ug/1	WAVSTA MAYPORT RFA Sediment Data M7645001 RFADATA 495W010 02-AUG-94 QUAL UNITS
	Dr.
100 100 100 100 100 100 100 100 100 100	AVL
5455555 5455555	M7645004 RFADATA 495M011 02-AUG-94 QUAL UNITS
5855 S.	P
12115	VALUE
CCECE CE	M7645003 RFADATA 49SH012 02-AUG-94 QUAL UNITS
25577777 266777777	"
5855 S.	DL .
]

	Lab Sample Mumber: Site Locator Collect Date:	Number: Site Locator t Date:	VALUE	N7645002 RFADATA 49SW009 02-AUG-9 QUAL UNI	N7645002 RFADATA 4PSH009 02-AUG-94 QUAL UNITS	2	<	ALUE	N7645001 RFADATA 495W010 02-AUG-94	0010 0010 0010 010 010 010	2		S		M7645004 RFADATA 49SW011 02-AUG-94	,	2	:	5	02.50 02.50	W7645003 RFADATA 49SH012 02-AUG-94	!
Chioromethane Browmethane Browmethane Winyl chiorida Chioromethane Winyl chiorida Chioromethane Pethylene chiorida Chioromethane Lobin organic Lobin coethane Lobin organic Lobin coethane			ອີທວິທ8ິທທຫວ່ວິທີຂີ່ວ່ວີຂຶ້ນທຸກທຸກທຸກຫວັວທຸກທຸກທຸກທຸກທຸກທຸກຫວັນສຸກຫວັນວ່ວວ່ວ ການທຸກທຸກສຸກຫວັນພຸກສຸກຫວັນຄຸກສຸກຫວັນຄຸກສຸກຫວັນຄຸກສຸກຫວັນຄຸກສຸກຫວັນຄຸກສຸກຫວັນຄຸກສຸກຫວັນຄຸກສຸກສຸກຫວັນຄຸກສຸກສຸກຫວັ	# # # # # # # # # # # # # # # # # # #	######################################	(1) 1) (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 2 2 3 3 4 5 5 7	**************************************	1/8			ALE WALLES	845484446466666666666666666666666666666	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		, , , , , , , , , , , , , , , , , , ,		20 5 6 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	#CCC¢CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	## ## ## ## ## ## ## ## ## ## ## ## ##	, , , , , , , , , , , , , , , , , , ,
) 1888 1888					1,375					11	71.6 24.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6		4)			,				

NAVS.A MAYPORT RFA Sediment Data

RFA	
Ground	277
Water	3
Det	=

GROUND WATER CUMITY Alkalinity as CaCCCC Alkalinity as CaCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
Collect I	Lab Sample Number:
VALU	
RFADATA 02MA0098 21-JUN-94 24-JUN-94 30 Maj/1 11:2 Maj/1 14:8 Maj/1 14:8 Maj/1 14:8 Maj/1 14:8 Maj/1 16:1 Maj/	R8230001
₽ 20 35	
VALUE 028 19.6 4840 1615 10.6 9180 20.2 36	3
READATA 02MA010S 16-JUN-94 QUAL UNITS 04-JUN-94 QUAL UNITS 16-JUN-94 QUAL UNITS 16-JUN-94 RAG/1	R8217001
PL	6
7. 35 -12 -23 -3 -13 -23 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	
1889-1888-1888-1888-1888-1888-1888-1888	R8607003

THE GENERATED FROM THE SVOC (8270) ANALYTICAL RUN.

In Inc	nodlyer (egnes ium enganese	Chronius Cobait Copper Copper Cyanida		: WIEL ME
					IALS
					1/gu
5°00		207080 85.33 C	62. 42 53.79-16 46066	ECFE 89-7720 80 80	th ös
55 5	£5 <u>5</u> 5		<u> </u>	<u> </u>	j/m
	2		2, 9-6 2, 9-6	-ia -	
n 9.7 1.6.8	30 UJ 2010000 30 UJ	19000 86.5 J	55.2 £ C C		. 50 20
ह ह ह	£ £ £ £ £	\$ \$ \$ \$	£ § § § §	£ 5 5 5 5	5
•	2.1 1760		3.	i_	
	2.1 2.1 U 2.1 1750000 8 8 U	5.96 -4.6 -2.5 -2.5 -3.5 -4.6 -4.6 -4.6 -4.6 -4.6 -4.6 -4.6 -4.6	- C C	¥	ou - C
\$ N.S.	2.1 2.1 U 2.1 1750000 8 8 U	110000 G	3.1 2.3 2.4 2.7 3.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2	¥	5 U S /L

NAVSTA NAVPORT RFA Ground Water Data

Leb Sample Number: Site Locator Collect Date:

R8229001 RFADATA OZWAOD9S 21-JUN-94 QUAL UNITS

무

VALUE

무

R8218001 RFADATA 02MJO10S 16-JUN-94 QUAL UNITS

RB609004 RFADATA 02MA013S 24-AUG-94 QUAL UNITS

욷

		TTCJDES/PCB+ (SV-8		Service SHC (Linders)	Aldrin	Endosulten I Dieldrin	Endrin		4,4-001	Endrin eldehyde Endrin ketone	Chlordene Chlorobenzilate Dimilate	Taxephena Taxephena	7.7.7	Araclar-1242 Araclar-1248 Araclar-1254	Aractor-1260
	Leb Sample Number: Site Locator Collect Date:	1/6n (0800'978·AS)	 Н. 7 (б.)												
, ;	VALUE	***************	828 EEE	 222	2.2.3 E E E	 22. E	RR	221	22	22	-VI	.02	~~~		•
	RB228001 RFADATA G2MA009S 21-JUN-94 QUAL UNITS		Alley and			 {{		 §§!	 &&:	<u> </u>	£€8	£ 5 5	~ ~	588	J 1971
	DL VALUE	3	828		88		228	2 2	82	, e e	, — , 8 i	- R-	NN-	nia	•
NAVSTA MAYPORT RFA Ground Water Date		3	 222 ====	 22 C	 22		225	-	 		in i			, v	į
NAVSTA MAYPORT Ground Water Data	RB215001 RFADATA RFADATA 02MAD10S 16-JUN-94 GUAL UNITS DL	2	<u> </u>	- - - - - - - - - - - - - - - - - - -	<u> </u>	86	E 6/2	& & S	<u>*</u>	4	<u> </u>	<u> </u>	<u> </u>	<u> </u>	g,
	VALUE VALUE		828 			6.8		ŖŖ	: 2	ģ		.02	- ~ ~ .	a b	
	R8608003 RFADATA 029A013S 24-AUG-94 QUAL UNITS	=	222 555		==	===	- - (1 5	28.R :	 	; :==	- 2 E E	 	 ::::::::::::::::::::::::::::::::::	į
	Pr S		er Err								:	· 222 . 家	-22 -22	232. 464.	
		31 10 000	· /- /- ·				.e	**************************************				manan##	— . — — (, p = 2)	ara Til	M. Educations

TION LIMIT IS ESTIMATED
1. 1.3-; AND 1.4-DICHLOROBENZENE WERE GENERATED FROM THE SVOC (5270) ANALYTICAL RUM.

	Lab Sample Number: Site Site Locator Collect Date: Wathapyrilere J.3'-Dimethylbenzidire Haxachlorophere Armite Armite 2-Chioropherol 3- 8.4-Methylphenol (2) 4-Mathylphenol	R6228 RFAD 028400 21-JU VALUE QUAL I 50 U 50 R 50 R	RFA Ground Water Data R8215001 RFADATA 02MA010S 16-JUN-94 VALUE QUAL UNITS D 10 U US/1 50 U US/1 50 U US/1 10 U US/1 10 U US/1 10 U US/1 10 U US/1 10 U US/1 10 U US/1	R8228004 RFADATA RFADATA D2MA010S 21-JUN-94 DL VALUE QUAL UNITS DL 10	R8608003 RFADATA 02MA0138 24-AUG-94 VALUE QUAL UNITS DE 50 U ug/1 10 500 R ug/1 10 500 R ug/1 10 10 U ug/1 10 10 U ug/1 10 10 U ug/1 10
10		10 th 100/1	50 u ug/t	50 - 49/1 10 • 49/1	1/6n ± 005 1/6n n 01 1/6n n 05
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hexach Loropherse Arasi te 2 - Chiorophersol	500 R vg/1 50		50 · · · · · · · · · · · · · · · · · · ·	
	5- 6 4-metnytimenos (6) 6-Methytiphenol Diphenytiasine Hexachtoropropene	50 W// 50			10 m m m m m m m m m m m m m m m m m m m

NAVSTA MAYPORT

BKG SVC. (8270-26) B-Witroscolimathylamine phenol Aniline bis (2-chloropethyl) sther j.3-bishlorobenzene erzyl Alcohol 1,2-bishlorobenzene 2-ksthylphenol bis(2-chlorolopropyl)isther Hitroscoli-r-propylamine Nitroscoli-r-propylamine Nitroscoli-r-propylamine Nitroscoli-r-propylamine Nitroscoli-r-propylamine Nitroscoli-r-propylamine Nitroscoli-r-propylamine Nitroscoli-r-propylamine Nitroscoli-r-propylamine 2,4-prichloroethoxy)methane 2,4-prichloroethoxy)methane 2,4-prichloroethoxy)methane 2,4-prichloroethoxy)methane 2,4-prichloroethoxy)methane 2,4-prichloroethoxy)methane 2,4-prichloroethoxy beachloroethoxy beachloroethoxy beachloroethoxy methane 4-chloro-senthylphenol 2-methylphenol 3-mitroscilime Acenaphthene 2-mitroscilime 3-mitroscilime 3-mitroscilime 3-mitroscilime 3-mitroscilime 3-mitroscilime 3-mitroscilime 4-mitroscilime 4-mitroscilime 4-mitroscilime 4-mitroscilime 4-mitroscilime 5-mitroscilime 6-mitroscilime 6-mitros	Lab Sample Number: Site Locator Collect Date:	
10 c c c c c c c c c c c c c c c c c c c	R8228001 RFADATA 02MM009S 21-JUN-94 VALUE QUAL UNITS DL	
100 100 100 100 100 100 100 100 100 100	R8215001 RFADATA 02MA010S 16-JUN-94 VALUE QUAL UNITS DL	NAVSTA HAYPORT RFA Ground Water Data
	R8228004 RFADATA OZMADIOS 21-JUN-94 VALUE QUAL UNITS DL	
10 C C C C C C C C C C C C C C C C C C C	RB608003 RFADATA 02MA013S 24-AUG-94 VALUE QUAL UNITS	
a8aaaa88aaaaa 8a8aa8888aaaaaaaaaa68aaaaaaa6	6 4	

HIT IS ESTIMATED WERE GENERATED FROM THE SVOC (8270) ANALYTICAL RUN.

			NAVSTA MAYPORT RFA Ground Water Data			
	Lab Sample Number: Site Locator Collect Date:	R8228001 RFADATA 02MM009S 21-JUN-94 VALUE QUAL UNITS DL	R8215001 RFADATA 02MA010S 16-JUN-94 VALUE QUAL UNITS DL	RB228004 RFADATA 02MA010S 21-JUN-94 VALUE QUAL UNITS DL	R8608003 RFADATA 02MJ013S 24-AUG-94 VALUE QUAL UNITS DL	
3-Chiteropropens Acetonitrile		Top u	1/8n - 1/8n -	001 1/87 ft 201 5 1/87 ft 201 5 1/87 ft 5	1/8n - 1/8n rn 001 1/8n n S	5
Anto-operate Nethacrylonitrile Nethyl methacrylate Pantachilorpatharm		5 U W/L 5	 		199 E E E E E E E E E E E E E E E E E E	
Propionitrile Vimyl acetate		10 U Ug/1 100 10 U Ug/1 100	1 / gu	100 C 48/7	10 C	10

Ŗ	
Ground	NA ACIO
Hater	PATE OF
Data	2

Lab Sample Number: Site Locator Collect Date:	e 9 g :: Valu	R8228001 RFADATA 02MJ009S 21-JUN-94 QUAL UNITS	2	VALUE	R8215001 RFADATA 02MA010S 16-JUN-94 QUAL UNITS	몬	VALUE	RB228004 RFADATA 02MA010S 21-JUN-94 QUAL UNITS	P	VALUE OF RE	R8608003 RFADATA 02MW013S 24-AUG-94 QUAL UNITS	P.
VDCs (8240+11) ug/l loromethane reprisheration chiorida		50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5		 8/12 8/12		3535	8 6 6 6 8 6 6 6 8 7 7 7 8	888		48/1 18/1 18/1	
ethylene chioride cetone cetone arbon disulfide 1-Dickloroethene 1-Dickloroethene (totel) 2-Dickloroethene (totel)		<u> </u>	พพพพพลัง		1/69/1/69/1/69/1/69/1/69/1/69/1/69/1/69			\$\$\$\$\$\$	งหนหหอืเ			nunununun i
2-0 ich loroethane -Butenore 1, 1-Trich loroethane arbon tetrachloride romodich loromethane		25555 25555 25555 25555	on and an an					EEEE#5 88888		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
is-1,3-Dichloropropene richloroethene ibromothloromethene 1,2-Trichloroethene lenzene rans-1,3-Dichloropropene		22.5 2.5 2.5 2.5 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			\$ \$ \$ \$ \$, www.	<u> </u>	, W. W. W. W. W.
-Nethyl-2-pentanons -Nethyl-2-pentanons -Nexanons etrachloroethers -1,2,2-Tetrachloroethers oluens		4845 4845 4845 4845 4845 4845 4845 4845	ww.55		1/8 1/8 1/8 1/8 1/8 1/8 1/8			\$ 6 \$8	,www.di	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\$ \$ \$ \$ \$	ภงงงสธี
		6 6666		_		.		EEEEE	anana.	3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*	35556t
crolein lodomethane l_A-Dichlorobenzene l_A-michlorobenzene				-,, <u>-</u>		=	.	<u> </u>	๛ฮี๛ฮ	~8~58	£ 5 5 5 5	, 10 s a s
2-bichloroberzere 2-chloroethylvinylether Ethyl methecrylete 1-2.3-frichloropropere		E EEEE	ษหลีส	· · · · · · · · · · · · · · · · · · ·		걸		\$555 \$555	พหลัง	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	£ 6 6 6 8	www5
trains) a victorio con consensitative alcohol cohol con consensitative alcohol consensitative alc	žu avš	5.5.5.6.E.6.E.6.E.6.E.6.E.6.E.6.E.6.E.6.			55555 55555		22 - 15 - 29 - 15 - 29	# C C E E E E E E E E E E E E E E E E E	หลัง	200 30 50 70 50 50 70 50 50 70 70 70 70 70 70 70 70 70 70 70 70 70		LA.
				4 1 14 44 P					3.			

U = NOT DETECTED R = RESULT 18 REJECTED

1 = ESTINATED VALUE UJ = REPORTED QUANTITATION LIMIT IS ESTIMATED

TO OPTITIONAL LISTINGS OF RESULTS FOR 1.2-; 1,3-; AND 1,4-DICHLOROBENZE** VERE GENERATED FROM THE SVOC (8270) ANALYTICAL RUN.

3 4.885

	mg/t	•		mg/l			mg/l		mg/t	TOTAL PETROLEUM HYDROCARBONS Total petroleum hydrocarbon
	units	10.4		units	7		S it	6.9	units	PH PH
	APHA	50		АРНА	50		AHAA	70	АРНА	COLOR
5000 5000		866000 69000 5660000 1890000 1000 5000 960 87200 18500 9810000 9810000 9700 20000	1000 ·	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	780000 13700 6740000 2030000 1000 u 5800 1730 1000 u 1000 1630000 1630000 28200	5000	6/1 6/1 6/1 6/1 6/1 6/1 6/1 6/1 6/1 6/1	95000 6200 3470000 1530000 1530000 10000 181000 181000 3500 6310000 9700 20600	٤	Alkalinity as CaCO3 Ammonie-N Chtoride Hardness as CaCO3 Hitrate/Witrite-N Oil and Grease Phosphorous-P, Total Sulfate Sulfide Total Dissolved Solids Total Kjeldahl Witrogen Total Organic Carbon
DL	H7492007 RFADATA 26MH004S 10-JUL-94 QUAL UNITS	AVIA	<u>P</u>	M7515002 RFADATA 26MJ003S 13-JUL-94 QUAL UNITS	VALUE	₽L	M7505007 RFADATA 26MH001S 12-JUL-94 QUAL UNITS	H75 RI 269 12- VALUE QUI		

KG WAT	
WATER It lacony	
	_
	.
	Softe subjective subje
49/	Sample Number: Site Locator Collect Date:
2	Number: Site Locator t Date:
	WALUE WALLE
	듀
<u> </u>	264 264 264
	RB811004 RFADATA 26MM004S 26-SEP-94 QUAL UNITS
EEEEEEEEEEEEEEEEEEEE	S118
	P

		IALE						
	Lab Sample Humber: Situ Locato Collect Date							
	ample Number: Site Locator Collect Date:	1/Bn		9875878CF	\$10 73 8 3 s.c	11 to 11 to 1885 to 1	8-180 W.T.	881 mellaus
	VALUE	2.2 2.1 2.1.2	24.6000 24.6000		89.8 4.7	7. 8. 2. 8. 5.	N.G	9-0
	W7504011 RFADATA 26MW001S 12-JUL-94 QUAL UNITS) (Br. 1 (Br. 1 (Br. 1)	 5585	ec [88]			E 56/1	# # # # # # # # # # # # # # # # # # #
	몬		N E us	2.7		7. 28	-	•
RFA	VALUE			N	, di se e lle ccore		26.8 11.21 2020	i se a leger
Ground Water Data	RBB20014 RFADATA 26MH001S 28-SEP-94 QUAL UNITS	1/8n 1/8n 1/8n	1/6n 1/6n	.7 55 18/1 18/1		8/1 8/1		1/gu
ata	F							
	VALUE	N N	267000 2.34	. N.	324 6.2 180000	7:20	162 2.1 2.1	
	M7504012 RFADATA 26MA001SD 12-JUL-94 QUAL UNITS		 - 	 	- 555	E E E	un Radi aunus S errikagas	€ E
) P	N	, N	7.		7.8	N	
	VALUE		•:					
	2 NN 2			2.7 W				
	R8820015 RFADATA 26MA001SD 28-SEP-94 QUAL UNITS	54 <u>6</u> 4	<u> </u>		5 5 5 5 5 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 7 6 5 6 7 6 7 7 7 6 7 7 7 7	£ 5 5	<u> </u>	§ §§

ETTICIDES/PCEs (SN-346,5080) alpha-BHC delta-BHC delta-BHC limbers (Lindens) Reptachlor Aldrin Reptachlor sported Endoultien I 1,4-PDE Endrin Endoultien II 4,4-PDE Endrin sulfate Chlorotens Chlorotens Chlorotens Chlorotens Chlorotens Isodrin Kepone Aroclor-1232 Aroclor-1234 Aroclor-1246 Aroclor-1254 Aroclor-1256 Aroclor-1260	
Lect I	Leb Sample Number: Site
VALUE 00045 10-JUL-94	97490009 8FADATA
Bullnuli Linipraparakakakaka	

PESTICIPES/PCBs (SW-846,0000) elphs:BHC elphs:BHC delta-	Lab s	
	Lab Somple Number: Site Site Locator Collect Date: VALUE	
	M7503009 RFADATA 26MN001S 12-JUL-94 OUAL UNITS DL	
.02 U Ug/(.02 U Ug/(.02 U Ug/(.02 U Ug/(.02 U Ug/(.04 U Ug/(.04 U Ug/(.04 U Ug/(.05 U Ug/(.06 U Ug/(.07 U Ug/(.08 U Ug/(.09 U Ug/(M7503010 RFADATA 26MA001SD 25-JUL-94 VALUE QUAL UNITS	NAVSTA MAYPORT RFA Ground Water Data
	N7 R 26 12 OL VALUE QU	Tota
<u> </u>	N7503011 RFADATA RFADATA 26MN002S 12-JUL-94 QUAL UNITS DL VA	
.02 U ug/1 .02 U ug/1 .02 U ug/1 .02 U ug/1 .02 U ug/1 .02 U ug/1 .04 U ug/1 .05 U ug/1 .05 U ug/1 .06 U ug/1 .07 U ug/1 .08 U ug/1 .09 U ug/1 .09 U ug/1 .09 U ug/1 .09 U ug/1 .09 U ug/1 .09 U ug/1 .09 U ug/1 .09 U ug/1 .09 U ug/1 .09 U ug/1 .09 U ug/1 .09 U ug/1 .09 U ug/1 .09 U ug/1 .09 U ug/1 .09 U ug/1 .09 U ug/1 .09 U ug/1 .09 U ug/1	N7513002 RFADATA 26M4003S 13-JUL-94 VALUE QUAL UNITS I	
	D L	

ERE GENERATED FROM THE SPOC (8270) AMALYTICAL RUN

ATION LIMIT IS ESTIMATED
2-; 1,3-; AND 1,4-DICHLOROBENZ

NAVSTA MAYPORT
RFA Ground Water Data

Lab Sample Number:

Site Locator Collect Date:

-Toluiding exachlaropropene -Phenylanadiaming

PACADOS READATA 26M0048 10 U U4/1 10 U4/1 1	Pronunt de Promet de p. (Dimethylamino) azobanzene p. (Dimethylamino) azobanzene 7, 12- Dimethylamino) azobanzene 3- Hathylaholanthrana Pyridine H-Hitrosomethylathylamino H-Hitrosomotpholine	W-Mitrosodistrylamins W-Mitrosopyrrolidins W-Mitrosopyrrolidins W-Mitrosopyrrolidins 1, 2, 4, 5-fetrachlorobenzers 1, 2, 4, 5-fetrachlorobenzers Petrachlorobenzers 1-Naphthylamins 2-Naphthylamins 2-Naphthylamins 2-3, 4, 6-fetrachlorophenol Phonacetin 4-Aminobiphenyl 4-Aminobiphenyl	Renzodd h. 1) perylene 2-Picoline 2-Picoline Rethyl methanesulforate Ethyl methanesulforate Ethyl methanesulforate Acetophenor I-Nitrosopiparidine Phenyl-tert-burylamine 2-6-Dichlorophenol 1-8-Birgoo-di-n-burylamine	Benzo(a) anthracere Chrysere bis(2-Ethylhexyl) phthalate bi-n-octylphthalate Benzo(b) fluoranthere Benzo(b) fluoranthere Benzo(k) fluoranthere Benzo(k) fluoranthere lindano(1,23-od)pyrere lindano(1,23-od)pyrere	- Bromoghery: pherylether - Bromoghery: pherylether Hexachlorophero! Pheranthrene Anthrecene Di-n-Butylphthelate Fluoranthere Pyrene Butylbenzylphthelate Butylbenzylphthelate	Lab Sample Number: Site Locator Locator Collect Date: 4-Chioropheryl-pharylather fluorena 4-Witrosofilme 4,6-Dinitro-Z-methylphanol N-Witrosodipherylamine (1)
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	668655 CCCCCC	225555 <u>25</u> 55		.65555555 .525555555	835555555 ccccccc	W7490 RFAD 26MN0 10-JU VALUE QUAL 10 U 50 U 10 U
						2-2-2-1 W

Collect Detr. Collec
--

Mathapyrilisme 3.3:-0 imethylbenzidine A sanite A sanite A cetylamino Diphenylamino Hezschloropheno 2.4cetylaminofluorene 2.4cetylaminofluorene U. MOT DETECTED R = RESUL J. MOT DETECTED R = RESUL J. MOT DETECTED R = RESUL J. MOT DETECTED R = RESUL J. MOT DETECTED R = RESUL J. MOT DETECTED R = RESUL J. MOT DETECTED R = RESUL J. MOT DETECTED R = RESUL J. MOT DETECTED R = RESUL	
REDUCTS 228M001S 228M001S 12-JUL-94 10 UJ U9/1 50 UJ U9/1 50 UJ U9/1 10 U U9/1 10 U U9/1 10 U U9/1 10 U U9/1 10 U U9/1 11 U9/1 12 U9/1 13 REJECTED RESULTS FOR 1,2+; 1,3+; A-; A-; A-; A-; A-; A-; A-; A-; A-; A-	
READATA 26MA001SD 12-JUL-94 19-101-94 10 U U9/1 10 50 U U9/1 10 10 U U9/1 10 10 U U9/1 10 10 U U9/1 10 10 U U9/1 10 10 U U9/1 10 10 U U9/1 10 10 U U9/1 10 10 U U9/1 10 10 U U9/1 10 10 U U9/1 10 10 U U9/1 10 10 U U9/1 10	NAVSTA MAYPORT RFA Ground Water Data M7503010
	M7503011
RFADATA 2684,003\$ 13-UL-94 50 U ug/1 50 R ug/1 10 U ug/1 10 U ug/1 10 U ug/1 10 U ug/1 10 U ug/1 10 U ug/1 10 U ug/1	# <i>7</i> 513002
후 65 중65 65 -	

RFA	
Ground	NAVO IX
Water	
Date	-

		REA GEOGRA MOLES you		
Lab Sample Number: Site Locator Collect Date:	M7503009 RFADATA 26MM001S 12-JUL-94	M7503010 READATA 26MN001SD 12-JUL-94	M7503011 RFADATA 26MN0025 12-JUL-94	RFADATA 26MN003S 13-JUL-94
Anthraceria Di-m-Butylphthalate	10 HJ 49/1		10 10 UJ Ug/1 10 U 10 UJ 10 10 U U UJ/1	10 U
Fluorenthere	EE		10 52	
Buty: benzy (price) exce 3,3'-Dich (probenziding	EES	- -	58 E	
Benzoca) anthrecers		c c	10 10 EL 49/1	10 U ug/L 10
bie(2-etnytnexyt)prichesere	E	= =	10 10 13 18/1	10 0 09/1 10
Benzo(b) fluorentheme	٤E	C	E	3 3 6
Bears(a) pyrena	55 52 5/-/		10 10 10 10 10 10 10 10 10 10 10 10 10 1	
Dibenz(a,h)anthracene	23	10 U ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	ug/1
2-Picoline	586	c c	50 50 UJ Ug/1	10 U Ug/1 10
Ethyl methenesulfonate			10 10 15 15 15 15 15 15 15 15 15 15 15 15 15	10 Lag/
N-Mitrosopipecidine	56: E:	50 50 50 50	1/87 FO 05	.
2,6-Dichlorophenal	= 5	33 c c	10 L 0/4 TO 10 L 00 L	10 0 49/1 11
H-Mitrosodiethylamine		c c :	10 10 U W/L	100 49/1
2 =	EES	c c	50 50 UJ Ug/1	50 U ug/(50
Pentach(probenzere		c <	50 50 UJ Lg/1	50 U 49/1 51
2-Hophthylamine		50 U ug/l	50 50 uJ ug/t 1	10 0 49/1
Phenice (n	EE'	e c	20 50 UJ 1971	50 U Ug/1 50
Pantachi uroni trobanzana	EE	50 c cg/1	10 10 W W/1	70 C 19/1
p-(Dimethylamino)azobanzana		10 c ug/t		10 c ug/.
3-Methylcholanthrene		50 c 49/1	20 20 W/1 W/1	50 U ug/1 51
# Witrosomethylethylamine	EE	10 to to to 10/1	10 10 11 140/1	
g-Toluiding Hexachloropropens	50 LJ . wg/1	50 - 50		500 U ug/1 500 500 U ug/1 500 U u
p-Phanylenadiesine Safrole	EE	= = :	38 EE	E 6/1
1 4-Haph thogaings	EES		188 E E	10 U Ug/L 10
5-Nitro-o-talvidine 1,3,5-Trinitrobenzere	55 E 46/1	10 0 0 00/1	500 500 LL 49/1	5-6
4-Mitroquination: 1-mita				

BIG. SVDC. (8270+24) Bi-Witroscodisethyla estire phenol Anilline bis (2-chloroethyla ether) 1,2-0 ichlorobenzene 2-nethylphenol bis(2-chloroscopy) tether 1,2-0 ichlorobenzene 2-nethylphenol bis(2-chloroscopy) tether 3-nitroscodi-n-propy tesine Hauschloroschory mether 1,2-1 introdenzene 2-nitrophenol 2,4-0 instrylphenol 2,4-0 instrylphenol bis(2-chloroschory) methere 2,4-0 ichlorobenzene bis(2-chloroschory) methere 2,4-0 ichlorobenzene 4-chloroschory methere 2,4-0 ichlorobenzene bis(2-chloroschory) methere 2,4-0 ichlorobenzene 4-chloroschiline 4-chloroschiline 4-chloroschiline 2,4,5-1 richlorophenol 2-isthylonehthalene 2,4,5-1 richlorophenol 2-istrylphithalene 2,4-0 initroschusene 2,4-0 initro	Lab Sample Number: Site Locator Coilect Date:	
10	W7503009 W7503010 RFADATA RFADATA 26MN001S 26MN001S0 12-JUL-94 12-JUL-94 VALUE QUAL UNITS DL VALUE QUAL UNITS DL	RFA Ground Water Data
######################################	N7503011 N7513002 RFADATA RFADATA 26MN002S 26M003S 12-JUL-94 13-JUL-94 VALUE QUAL UNITS DL VALUE QUAL UNITS DL	

TITIONAL LISTINGS OF RESUL	STIMATED VALUE UJ - REPORTE	NOT DETECTED R - RESULT 18 4
THICKAL LISTINGS OF RESULTS FOR 1,2: 1,3-1 AND 1,4-DICHLONDBENCE THE GENERAL EN PROPERTY	DOLLAR TOTAL CHARLES AND LINES	
CAL CONTROL OF		
CONTROL OF THE PARTY OF THE PAR	COM THE SAME (8270) AMALYTICAL RUN.	

1,2.3-Trichtoropopere trame 1,4-Dichtoro-2-butere socketyl slochol 1,1-1,2-Tetrachloroethane 1,2-Dibromo-3-chloropropere 1,2-Dibromo-3-chloropropere 1,2-Dibromo-1-chloropropere 1,2-Dibromo-1-chloropropere 1,2-Dibromo-1-chloropropere 1,2-Dibromo-1-chloropropere 1,2-Dibromo-1-chloropropere 1,1-1,2-Tetrachloropropere 1,2-Dibromo-1-chloropropere 1,1-Dibromo-1-chloropropere 1,2-Dibromo-1-chloropropere 1,1-Dibromo-1-chloropropere 1,2-Dibromo-1-chloropropere 1,2-Dibromo-1-chloropr	Lab Sample Number: Site Locator Collect Date: 1,2-Dichlorobenzene 2-Chlorocthylvinylether
	W74900 RFADJ 2644400 10-JUI VALUE QUAL 1 10 UJ 5 UJ
â av nav vu	J

WCG (8240+11) hipromethane commethane inv(eligide hipromethane inv(eligide 1-pichiorothere 2-pichiorothere 2-pichiorothere 3-1-irichiorothere 3-pichiorothere	
Collect Date: VALUE Collect Date: VALUE (total) (total) (total) perme per	
# 10-Jul-94 ###################################	

Ξ.	_	•
	8	
Z.	m	
2	4	2
Ξ	Ξ	Z
=	₹	٦
ē	Ξ	Ξ
Ę	8	F
	Ξ	Ξ
_	₹	Ë
5	Ξ	-
≒	m	
Ξ	_	
亞	Ę	2
•		ü
읔	-	, 5
░	Ξ	-
高	8	
2	2	×
₹	12	2
-		2
_	9	ķ
ö	5	::
•	Ξ	ł
_	Ξ	Ů.
N	÷	
1	Ξ	
70	ø	
	-	
٠	Ē	ď
•	3	ŝ
	_	
3	Ξ	
5	- /	
5	_	
5	7	,
5	1001	
10-1, G		
NO 1,4-DICH		
NO 1,4-DICHLO		
TO 1,4-DICHLORG	ESTIMIED	
NO 1,4-DICHLOROS	ESTIMIED	
NO 1,4-DICHLOROBER	ESITINIEU	
NO 1,4-DICHLOROBENZ	E ESTERNIEU	
NO 1,4-DICHLOROBENZE	ESILIMIEU	
NO 1,4-DICHLOROBENZENS	ESTINATED	300000000000000000000000000000000000000
NO 1,4-DICHLOROBENZEME W	ESTENIEU	301.2.17
NO 1,4-DICHLOROBENZEME WER		304-12-17
NO 1,4-DICHLOROBENZEM WERE	ESILIBATED	
NO 1,4-DICHLOROBENZEME WERE G		
NO. 1, 4-DICHLOROBENZEN WERE GEN		304.22.77
NO 1,4-DICHLOROBENZEME WERE GENEL		
NO: 1,4-DICHLOROBENZENE VERE GENERA		
NO:1,4-DICHLOROBENZEME WERE GENERALE		
NO 1,4-DICHLOROBENZENE WERE GENERATED		
NO 1,4-DICHLOROBENZENE WERE GENERATED T		
NO 1,4-DICHLOROBENZEN WERE GENERATED FAL		
NO 1,4-DICHLOROBENZEN WERE GENERATED FRUM		
NO 1,4-DICHLOROBENZENE WERE GENERATED TRUM I		
NO 1,4-DICHLOROSENZEEF WERE GENERATED FRANT THE		
NO 1,4-DICHLOROBENZEME WERE GENERALED FROM THE		
NO 1,4-DICHLOROSENZENE VERE GENERATED FROM THE WY		
NO 1,4-DICHLOROSENZEN VERE GENERATED FROM THE WYON		
TO 1,4-DICHLOROBENZEN WARE GENERALED FROM THE WYON.		
MINISTRUCTURE OF RESULTS FOR 1 2 - 1 3 - AND 1 4 DICHLOROBERZED VERE GENERALED FILM THE WOLL OF		
1,4-DICHLOROSENZEES WARE GENERALED FROM THE WYOL COL		
NO 1.4-DICHLOROBENZENE VERRE GERERATED FROM THE WYOU (DC/O		
67.70		
67.70	THE STATE OF THE S	
67.70		
67.70		
67.70		
NO 1,4-DICHLOROSENZAME VERRE GENERATED FROM THE MYOU (DAYO) AMALTICAL		

												ene (1.4)			
5		ಕಕೆಕಕ	3 2		A.C. 14 (1809)	5 6	<u> </u>	5855 E C E C	8 8	\$555	\$ \$ \$ \$	_		Tie Chara	Methyl metha Pentachloros Propionitril Vinyi mcetat
św. v			Su v			in u			Sur u			-		5	3-Chloropro Acetonitril Chloroprene Rethacrylon
, P	F 5 6 5 3	VALUE 2	된	7 - 5 5 5 5	VALUE _	P		_	AVLUE	12 Dt	AL U FA5A	AVINE B:	Lab Sample Number: Site Locator Collect Date:	l st	
					,	T	NAVSTA MAYPORT RFA Ground Water Date	NAVST							

## ATOSONO REPORT PATE AND THE	### Chi cromethare Ch	Leb Sample Number: M7503009 Site RFADATA Locator 26MA0015 Collect Date: VALUE QUAL UNITS	
WALLE STANDALY WHERE STANDALY WALLE STANDALY	20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	M7503010 RFADATA 26MW001SD 12-JUL-94 VALUE QUAL UNITS	NAVSIA NAVPORT RFA Ground Water Data
l É	#45446666666666666666666666666666666666	M7503011 RFADATA 26MA002S 12-JUL-94 QUAL UNITS	

U # NOT DETECTED R = RESULT IS REJECTED
J = RESTINATED VALUE UJ = REPORTED GUANTITATION LIMIT IS ESTIMATED
THE ADDITIONAL LISTINGS OF RESULTS FOR 1,2-; 1,3-; AND 1,4-DICHLOROBENZENS WERE GENERATED FROM THE SVOC (8270) ANALYTICAL RUN.

				,							
)/B			ng/t	•		- -	ng/1		HS mg/l	TOTAL PETROLEUM HYDROCARBONS Total petroleum hydrocarbon
	units	7.47		units	6.2		Ψ,	7 units	. 7	units	PH PH
	АРНА	15		APHA	70		-	APHA	25	АРНА	COLOR Color
)/B	•		mg/1	3990		•		4.6		Total Organic Carbon
	7. 2.	387 1.3		3 3	14500 15-2	i.		=	1980		Total Dissolved Solids
_	10	<u>,</u>	ē	mg/.	15.1			- ag/:	_ _ _		Sulfate Sulfide
	3 2 2 2	۶. 88.	i	<u></u>	26				.21		Phosphorous-P, Total
v	1/6w	5 0	s	mg∕l	5 4	5		-	5		Oil and Grease
	7.0g	3.69		7. - 	. 38 . 38		. •		. 524 . 52		Hardness as CaCO3
	. J.	29.6		1/gm	3790				8		Chloride
ü	3	 		3	7.6	i.		mg/			Amonia-M
	2	238		2	1100				3	1/6w	GROUND WATER QUALITY
, i										•	
DL	R8708001 RFADATA 08MJ010S 09-SEP-94 QUAL UNITS	VALUE QU	P.	R8626003 RFADATA DBMLOOPS 26-AUG-94 QUAL UNITS		VALUE	면	N7492004 RFADATA 08HW008S 09-JUL-94 QUAL UNITS	VALUE	Lab Sample Number: Site Locator Collect Date:	Leb

NAVSTA MAYPORT
RFA Ground Water Data

RB626003 RFADATA 08ML009S 26-AUG-94

-,680		۰
90.00	E	
	568	
30000		
	그루유	
256960	올해류	
	₹ 02	į
	_<=	
30.00	≒ E.	
	<u>≅</u> ™.	
	<u> </u>	
	8-6	
	0.8	
1000000000		
	23 -	
100000	23	
1888	二四:	
- (1)	w _ :	
30000	±€:	
	35,	
4800		
	NZ	:
- 944	70	;
- 37 Y X		١
1	. T	
1	E	į
	75	
13077	- m	
	£ 51	
	55	
	6-DICE	
	PLINATED	
	P-DICHTORI	
	6-DICHLOROBI	
	6-DICHLOROBEN	
	6-DICHLOROBENZE	
	6-DICHLOROBENZENE STIMATED	
	6-DICHLOROBENZENE N	
	f-DICHLOROBENZENE WER	
	STIMATED 6-DICHLOROBENZENE WERE	
	6-DICHLOROBENZENE WERE GE	
	STIMATED 6-DICHLOROBENZENE WERE GENE	
	STIMATED 6-DICHLOROBENZENE WERE GENER/	
	STIMATED 6-DICHLOROBENZENE WERE GENERATI	
	STIMATED	
100000	STIMATED 6-DICHLOROBENZENE WERE GENERATED FI	
	STIMATED 6-DICHLOROBENZENE WERE GENERATED FROM	
	STIMATED S-DICHLOROBENZENE WERE GENERATED FROM	
	C-DICHLOROBENZENE WERE GEWERATED FROM TH	
	STIMATED STIMATED FROM THE	
	STIMATED	
	STIMATED SERVE WERE GENERATED FROM THE SPOC	
	C-DICHLOROBENZENE WERE GENERATED FROM THE SVOC.	
	STIMATED -DICHLOROBENZENE WERE GENERATED FROM THE SVOC (02	
	Ŕ	
	STIMATED STORENZENE WERE GENERATED FROM THE SVOC (8270)	
	Ŕ	
	Ŕ	
	Ŕ	

ilm.		Sodius		anganese			ronica	Barius Barius Baryiiius	WATER METALS	
	9.4 C	675000 1.3 u.			28.J .97.U 28100		33800 2.09 U		m/L 2,2,0	
5.8 To.)	ug/1 9.4 8.3		N W	78	1,000 0 1,000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	112 108/ 108/ 108/	.60 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	
Ę		<u>ج</u> ج	_ <u>_</u>	c <u>c</u>					ے ج	
§	55				E 6/8/			J 49/1 U 48/1 .3	_	
		Wg/1 24100	ug/1 2.1 2.1 U	19/1 19/1 5.9 5.9	17100 Ug/1	ug/l .9 .9 u ug/l .9/l .7 2.7 u ug/l	ug/l 79600 ug/l ug/l 2.6 79600 ug/l ug/l 3.1 3.1 U ug/l	ug/1 .3 .3 .4 .49/1 .3 .4 .49/1 .1 .1 .49/1 .1 .49/1	ug/l 55 U	
	201		ug/t 2.1 2.1 ug/t 2.1	ug/l 5.9 5.9 u ug/l 5.9 5.9 u	17100 Ug/1	ug/l .9 .9 ug/l .9 .9 Ug/l 2.7 2.7 Ug/l 2.7 Ug/l 2.7 2.7 Ug/l 2.7 Ug/l 2.7 2.7 Ug/l 2.7 U	ug/t 79600 ug/t 7.60 7.100 ug/t 2.6 2.6 U ug/t 2.6 2.6 U ug/t 3.1 3.1 U	ug/1 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	ug/L 5 1 ug/L 5 1.1 J	

NAVSTA MAYPORT RFA Ground Water Data

Lab Sample Mumber: Site Locator Collect Date:

N7491005 RFADATA OBMNOOBS 09-JUL-94 QUAL UNITS

R8628003 RFADATA OBMADO9S 26-AUG-94 QUAL UNITS

RB710001 RFADATA 08MM010S 09-SEP-94 QUAL UNITS

RB710002 RFADATA OBMMO10SD 09-SEP-94 QUAL UNITS

몯

오

NAVSTA MAYPORT RFA Sediment Data

Lab Sample Number: Site Locator Collect Date:

R8730004 RFADATA 49SD013 12-SEP-94 QUAL UNITS

R8730006 RFADATA 49SD014 12-SEP-94 QUAL UNITS

AVLUE

2

VALUE

욷

ALLE

무

VALUE

물

.57

Ŗ

R8730005 RFADATA 49SD015 12-SEP-94 QUAL UNITS

RB730003 RFADATA 49SD016 12-SEP-94 QUAL UNITS

7.4 mg/kg 7.3 J mg/kg 6.5 J mg/kg 7.4 mg/kg 7.4 mg/kg 7.4 mg/kg 7.4 mg/kg 7.4 mg/kg 7.4 mg/kg 7.4 mg/kg 7.4 mg/kg 7.4 mg/kg 7.4 mg/kg 7.4 mg/kg 7.4 mg/kg 7.4 mg/kg 7.4 mg/kg 7.4 mg/kg 7.4 mg/kg 7.4 mg/kg 7.4 mg/kg 7.5 mg/kg 7.6 mg/kg 7.7 mg/kg 7.8 mg/kg 7.	Lab Sample Number: M7645007 M7645006 Site RFADATA RFADATA Locator 495009 495010 Collect Date: 02-AUG-94 02-AUG-94 VALUE QUAL UNITS Di VALUE QUAL UNITS
10.2 J 70/40 10.8 70/40 10.8 70/40 10.8 70/40 2.3 J 70/40 2.3 J 70/40 2.7 J 70	H7645009 RFADATA 49SD011 02-AUG-94 DL VALUE QUAL UNITS DL
1.7 J mg/kg 6.9 J mg/kg 18.1 J mg/kg 2.3 U mg/kg 2.3 U mg/kg 3.6 J mg/kg 11.9 J mg/kg 11.9 J mg/kg 2.9 J mg/kg 2.9 J mg/kg 2.9 J mg/kg 1.6 U mg/kg 1.6 U mg/kg 1.6 U mg/kg 1.6 U mg/kg 1.6 U mg/kg 1.6 J mg/kg 26.6 J mg/kg 57.5 mg/kg 57.5 mg/kg	M7645008 RFADATA 49SD012 02-AUG-94 VALUE QUAL UNITS DL

NAVSTA MAYPORT RFA Sediment Data U = NOT DETECTED R = RESULT IS REJECTED

J. ESTIMATED VALUE UJ = REPORTED QUANTITATION LIMIT IS ESTIMATED

NOTITIONAL LISTINGS OF RESULTS FOR 1,2-; 1,3-; AND 1,4-DICHLOROBENZEMS WERE GENERATED FROM THE SVOC (8270) ANALYTICAL RUN.

TOTAL PETROLEUM HYDROCARBONS Total petroleum hydrocarbon	Total Organic Carbon		
RBONS mg/kg carbon	m9/k9		Lab Sample Number: Site Locator Coilect Date:
mg/kg	44500 mg/kg		M7645007 RFADATA 495009 02-AUG-94 VALUE GUAL UNITS
, mg/kg	31200 mg/kg		NAVSTA HAYPORT RFA Sediment Data M7645006 RFADATA 49SD010 02-AUG-94 VALUE QUAL UNITS D
- mg/kg	55500 mg/kg	7.	H7645009 RFADATA 49SD011 02-AUG-94 VALUE QUAL UNITS DL
- mg/kg	53200 mg/kg		M7645008 RFADATA 49SD012 02-AUG-94 VALUE QUAL UNITS DE

mg/kg 1.6 1.6 U mg/kg 1.6 37.7 mg/kg 37.7 mg/kg 10.3 U mg/kg 10.3 U	.74 J mg/kg .89 J mg/kg .52 U mg/kg .52 .51 U mg/kg .52 .51 U mg/kg .52 .51 U mg/kg .52 .51 U mg/kg .52 .6 U mg/kg .52 .33.3 mg/kg .52 J mg/kg .37.7 mg/kg .37.7 mg/kg .37.0 mg/kg .37.0 mg/kg .37.0 mg/kg .37.0 mg/kg .37.1 mg/kg .07 J mg/kg .07 J mg/kg .07 J mg/kg .07 J mg/kg	17.5 U 37.7 10.3 U	10.9 0.7 1	
mg/kg 1.6 33.3 1.6 1.6 U	mg/kg .52 .89 J mg/kg .52 .51 U mg/kg 1.6 33.3 mg/kg 1.6 1.6 1.6	7.6 		
	70/kg .89 J	7 7 7	31.5 1.6 1.6	

NAVSTA MAYPORT
RFA Sediment Data

Lab Sample Number:

Site Locator Collect Date:

R8730001 RFADATA 49SD017 12-SEP-94 QUAL UNITS

AVIOR

2

VALUE

STIND TYPE

몯

R8730002 RFADATA 49SD017D 12-SEP-94

#STINATED VALUE UJ = REPORTED QUANTITATION LIMIT IS ESTIMATED

3-Chloropropens Acstomitrils Chloroprens Hethacrylonitrils Hethyl methacrylate Hethyl methacrylate Pantachlorosthams Propionitrils Vinyl scetate	
	Lab Sample Number: Site Locator Collect Date:
1312v.15v	VALUE O ST. R
488888 888888 888888	R8665001 RFADATA 568800101 01-SEP-94
11 150	DL VA
1865 1865 187 187 187	NAVSTA MAYPORT RFA SURface Soil Data R6665002 RFADATA 568500101b 01-SEP-94 VALUE QUAL UNITS D
ug/kg ug/kg ug/kg ug/kg ug/kg	MAYPORT Soil Data 002 ATA 101b P-94 UNITS DL
100 10 10 10 11 11	VALUE
49/46 49/46 49/46 49/46 49/46	R8665004 RFADATA 56SS00201 01-SEP-94 QUAL UNITS
a 8	D
10114.10.	RB66 RFJ 56SS 01-5
	R8665006 RFADATA 565S00301 01-SEP-94 QUAL UNITS DI
1 18	ř
	t .

or the college bearing the set of these

Lab Sample Number: Site Locator	R8665001 RFADATA 568800101	NAVSTA MAYPORT RFA Surface Soil Data R8665002 RFADATA 565S00101D	R8665004 RFADATA 568800201	R8665006 RFADATA 568800301	
BKG YOCS (8240+11) ug/kg Chioromethane	11 U ug/kg 11	10 U ug/kg	_	11 U ug/kg	=
Promome thans Vinyl chlorida Chioroethans		10 U ug/kg 10 U ug/kg 10 U ug/kg	10 10 U UB/Kg	.=== :ccc	.===
Rethylene chipride Acetone Carbon disulfide	5 U 49/kg 5 5 U 49/kg 11	5 U ug/kg 8 J ug/kg 5 U ug/kg	5 5 U U9/kg	50 11 0 19/kg	տ=տ
1,1:Dichloroethane	27/8 27/8 27/8 27/8 27/8		5 5 5 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	5 C C C C C C C C C C C C C C C C C C C	.
1,2-Dichiaroethern (total)	CE		19/kg	5 C Ug/kg	. UT UT 1
1, 2-0 (ch liproe thane 2-But enone	11 By/80 11 20 mg/80 5	5 U ug/kg 10 U ug/kg	5 9/kg	5 5 U ug/kg	,=,
Carbon tetrachtoride		5 U Ug/kg		5 0 09/kg	A UI U
3	55 - 56/2 55/2 55/2	5 U ug/kg 5 U ug/kg	55, 55, 55, 55, 55, 55, 55, 55, 55, 55,	55 56 66 66 66 66 66 66 66 66 66 66 66 6	uu
Trich a roethere Dibrosoch Lorose thane	15 U Ug/kg	5 U ug/kg 5 U ug/kg	5 U 49/kg	5 U ug/kg	w w
Gentere		5 U Ug/kg		5 - 19/kg	, U, U
Dromo form	5	5 U ug/kg		50 49/6	i u c
Z: Hazanore Tetrachloroethene	5 C V6/kg 11	10 U ug/kg	5 70 W/Kg	10 11 U Ug/kg	" ⊐ :
1,1;2,2-TetrachLoroethane	- 5/6 - 5/6 - 5/6 - 5/6	5 U ug/kg 5 U ug/kg	5 5 U Ug/kg	5 C CO/kg	i u n un
Styphoniana Styphoniana Coloniania		5 U Ug/kg	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 C CO/kg	
Xylenes (total) In chilorof (woromethere	5 C 8/6	5 U ug/kg	55 55 55 55 55 55 55 55 55 55 55 55 55	S C 49/49	
1, 3-8 ich lorabenzene Acrolein	110 U wg/kg 110		100 6	50 50 ug/kg	110
lodomethane least orobenzana		. C	5 U	5-1 5-C	G=
ACTYLORIET LUB Dibromomathere 1 2-bickbrokenzene	50 vg/kg 110	5 U Ug/kg 5 U Ug/kg		100 110 U Ug/kg	700 5
2-Chlorgethylvinylether Ethyl methacrylate	11 U Ug/kg 11	- E	5 U Ug/kg	C C	" З
trains-1, 4.0 ichtoro-2-butern	• = =	• = =		5 0 0 00/kg	UN U
some stone	50 mg/kg	5 U ug/kg	5 5 U 49/Kg	5 50 vg/kg	5
	> E	≈ €!	210 m 02/kg		

BOT DETECTED R = RESULT IS RESULTS FOR 1,2:, 1,3-; AND 1,4-DICHLOROBENZEF VERE GENERATED FROM THE SVOC (82) DITIONAL LISTINGS OF RESULTS FOR 1,2:, 1,3-; AND 1,4-DICHLOROBENZEF VERE GENERATED FROM THE SVOC (82)
`` <u>∓</u>
2 <u>2</u> 2
\$85
_≶6
~55*
==:
854
0.5
- <u>- </u>
25 £
Fa.
7 Z
255
7=(
.75
· ur
· •• 🗷
ੇ ਛੋ 📑
Z.E.
₽⊒
ᅙ
28
8
8
<u> </u>
7
Æ
2
£
蓋
\$
 .
~
. 5
蕭
2
<u>्र</u> ह्न
~
Z E
(8270) ANALI
₹
₹
Š
C (8270) AMALYTICAL RUN.
Ĩ

1.2-Dichlorobenzene 2-Chloroethylvimylether Ethyl methacrylete 1.2.3-Trichloropropene 1.2.3-Trichloropropene 1.3-Trichloropropene 1.4-Dichloro-Z-butene 1.2-Dibromo-3-chloropropene 1.4-Diokare 3-Chloropropene Acetonitrile Methacrylonitrile Methacrylonitrile Pentachloroethane Propionitrile Propionitrile Propionitrile Propionitrile Propionitrile Propionitrile Propionitrile Propionitrile Propionitrile Propionitrile Propionitrile Propionitrile Propionitrile	Lab Sample Number: Site Locator Collect Date:
100 U 49/69 100 U	Number: R8665008 Site RFADATA Locator 56SS00401 t Date: 01-SEP-94 VALUE QUAL UNITS DL

RFA	
Surface	HAVSTA P
Soil D	MAYPORT
)ata	

Lab Sample Number: Site Locator Collect Date:

R8665008 RFADATA 56SS00401 01-SEP-94 QUAL UNITS

2

Ethylbenzers Styrens Styrens Xylenss (total) Irichlorofluoromethars 1,3-0ichlorobenzers Acrolein Iodomethans 1,4-Dichlorobenzers Acrylonitrils Dibromomethans	Trichlorgethene Dibromochlorgethene 1, 2-Trichlorgethene Benzene trans-1,3-Dichlorgeropene trans-1,3-Dichlorgeropene Bromofors A-Hethyl-2-pentarione 2-Hexarone Tetrachlorgethene 1, 2,2-Tatrachlorgethene Tollene Chlorgemizene	1, 1-Dichtoroethere (total) 1, 2-Dichtoroethere (total) thtoroform 1, 2-Dichtoroethere 2-Butanome 1, 1, 1-Frichtoroethere Carbon Tetrachtoride Bromodichtoromethere 1, 2-Dichtoropropere	
100 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			

Lab Sample Number: Site Site Locator Collect Date: Pyrene Butylbenzylphthalate 3.3:-Dichlorobenzidine Benzo(a)ainthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene 2-Picoline Methyl methanesulfonate Ethyl methanesulfonate A-Nitrosopiperidine Phenyl-tert-butylamine N-Nitrosopiperidine N-Nitrosodiethylamine N-Nitrosodiethylamine N-Nitrosodiethylamine N-Nitrosodiethylamine N-Nitrosodiethylamine N-Nitrosodiethylamine N-Nitrosodiethylamine N-Nitrosodiethylamine N-Nitrosodiethylamine N-Nitrosodyrrolidine	VALUE R86 PALUE QUA 710 U 710 U	R8665001 RFADATA 56SS00101 01-SEP-94 QUAL UNITS U	PL 710 710 710 710 710 710 710 710 710 710	SECTED TO COLUMN	0002 0002 0010	· 14	·	6651	DL 590 590 590 590 590 590 590 590 590 590	XALUE VALUE 88650 97- SER OCCUPATION OF THE PROPERTY OF T	5	
iutylbenzylphthalate ,3:-Dichlorobenzidine enzo(a)anthracene	710 U 710 U	ug/kg ug/kg	710 710 710	ccc	59/kg 6/kg	869 869 869 869 869 869 869 869 869 869		8/8 8/8 8/8	690 690	700 700		<u> </u>
ois(2-Ethylhexyl)phthalate)i-n-octylphthalate		63/69 63/69	220		5 6 6 6 6 6	\$ % &		5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	69 89 89 89	700 700	e e e	<u> </u>
3enzo(b)fluoranthene 8enzo(k)fluoranthene	710 u	ug/kg	:25		64/60 64/60	690		: 69/kg	696	70	= = = : 5 & !	55?
Benzo(a)pyrene	710 U	19/kg	710 710	c c	64/kg	690	090 u	54/6n	990	700	C C	至三
Indeno(1,2,3-cd)pyrene Dibenz(s,h)anthracene	710 U	09/kg	710	= 0	19/kg	690	690 U	ug/kg	069 069	700 700	= =	~ ~
Benzo(g,h,i)perylene	710 U	رو/ ورارو الرو/	3500 3500	c	59/kg	3400	3400 u	ug/kg	3400	3500	_ (* * * *
Methyl methanesulfonate	710 u	ug/kg	710	: C	63/6n	690		19/kg	\$ 6	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	= =	ᇫ
Ethyl methanesulfonate	710 U	63/69 63/89	710	C (ug/kg	690		ug/kg		5	: C	SÆ.
N-Nitrosopiperidine			710	= =	19/kg	690		_	070	3500	۶۹	EZ
Phenyl-tert-butylamine 2.6-Dichiorophenol		n9/kg	710	- 1	ug/kg	88			88	25	= =	52
N-Nitroso-di-n-butylamine		ug/kg	710 710	c =	ug/kg	69 90 90		84/8n 84/8n	690	700	C C	52
N-Nitrosopyfrolidine		64/kg	1 500	= 5	19/kg	100A			3400		- E	エエ
Benzidine 1.2.4.5-Tetrachtorobenzene	3500 U	ug/kg	3500	: C (ug/kg	3400		09/kg	3400		= =	5.5
Pentachlorobenzene	3500 U	ug/kg	3500	3400 U	ug/kg 6/kg	3400 3400	7400 E	03/80 03/80	3400		ug/kg	5 2
1-Naphthylamine 2-Naphthylamine	3500 U	ug/kg	3500		09/kg	3400		-6/kg	34,00		= =	: 조
2, 3, 4, 6-Tetrachlorophenol	710 u	5/kg	710 710	690 U	2/g/ 2/g	69 90 90	690 U	ug/kg	690	700	U ug/kg	55
Phenacetin 4-Aminobiphenyl	3500 U	u9/kg	3500	=	يو/ و//و	3400		19/kg	3400	3500 3500	= =	55
Pentachtoronitrobenzene	3500 U	19/kg	35UU 710	069 2500 0	6/kg	690	0 069 0 0045	63/60 53/60	690	700	U ug/kg	조 2
p-(Dimethylamino)azobenzene	710 U	ug/kg	710	=	-9/kg	90	_	5/g	2	700	= =	5 <u>5</u>
7, 12-Dimethylbenz (A)Anthracene	710 U	6/6/20 6/20	710 710	690 C	56/kg	690	090 U	ug/kg	690	700	C	조 3
3-Metaytonotantarene Pyridine	7500 LJ	ug/kg			ug/kg	ĝ	3400 U.	_	.	3500 700		ᅐᅎ
N-Mitrasomethylethylenine	710 U	64/69 F9/k9	72	690 U	6/6 6/6	692	690 U	6/kg	690		_ (조
n-witrosomorphotine o-Tatuidine		24/60 10/40	710		6/6	7 690 069	7.690 U 000	Ug/kg	1004 1004 1004 1004 1004 1004 1004 1004	3500	- -	ᅎᄚ
Hexachtoropropene	71 0005k	54/kg	9000	rn 0007£	2/c4	ş		_			٤	Ξ.
p-Phenylenedianine	7500 U	6/kg	3500		4 / 6 ·	3400		_	3400		= =	55.
	3500 U		70000	7000 E	6 /6 / 6	0000 0040 0040	000099 0056	5 §	68000 68000	69000	U vg/kg	Σ^{2}
1_4-Naphthoquinone 1_3-bisitrobenzene	710 U	2/6 6/8	710	900 U	5	8	690 U	- 6/G	88		= =	SE.
S-Eigro-o-rolaidine	710 U	ve/kg	710	690 U	u g/kg √kg	696 696 696		ug/kg	690	700	: c c	5 2
4-Nitroguinaline 1-oxide	35000 U	ug/kg	35000	34000 U	ug/kg	24000	34000 U	ug/Kg	34000	35000	o og/kg	-
			:		!							

RFA	
Surface	
Soil	MAYPORT
Data	•

Lab Sample Number: Site Locator Collect Date:

R8665001 RFADATA 56SS00101 01-SEP-94 QUAL UNITS

R8665002 RFADATA 56SS00101D 01-SEP-94 QUAL UNITS

R8665004 RFADATA 56SS00201 01-SEP-94 QUAL UNITS

R8665006 RFADATA 56SS00301 01-SEP-94 QUAL UNITS

무

Phenanthrene	Pentachi orocheooi	#-ar ondeneny (-prietry) etner	1, 2-Diphenythydrazine	H-Nitrosodiphenylamine (1)	4,6-Dinitro-2-methylphenol	4-Mitrosniline	Fluorene	6-Chiorophenyl-phenylether	Diethylphthalate	2,4-Dinitrotoluena	Dibenzofuran	4-Nitrophenol	2,4-Dinitrophenol	Acenaphthene	3-Mitroaniline	2,6-Dinitrotaluene	Acenaphthylene	2-Kitroaniline	2-Chloronaphthalene	2,4,5-Trichlorophenol	Dimethylphthalate	2,4,6-Trichtorophenol	Hexachlorocyclopentadiene	2-Methylnaphthalene	4-Chloro-3-methylphenol	Hexach lorobutadiene	4-Ehloroaniline	Naphthalene	1,2,4-Trichtorobenzene	2,4-Dichlorophenol	bis(2-Chloroethoxy)methane	Benzoic acid	2.4-Dimethy(phenol	2-Nitrophenni	Witropenzene	Hexachloroethane	N-Mitroso-di-n-propylamine	bis(2-Chloroisopropyl)ether	2-Methylphenol	1,2-Dichlorobenzene	Benzyl Alcohol	1,4-Dichlorobenzene	1,3-Dichlorobenzene	bis (2-Chloroethyl) ether	Aniline	Phenol	M-Nitrosod methy lanine	BKG SVOC (8270+24)	
710 1	1 0032	710 1	70	710 L	3500 0	3500 L	710 L	710 L	710 (710 L	710 1	3500 L	3500 L	710 L	3500 L	710 L	710 1	3500 L	710 L	3500 t	710 t	710 t	710 t	710 t	710 i	710 L	710 L	710 L	710 ι	710 L			710 U	710	710 1	710 (ו פוק	710 (710 (<u>.</u>	710 (5	·U1	710 (710 (710 1	710 1	ug/kg	리마를 구하셨습니다.
49/kg	5/5	-0/kg	ug/kg	ug/kg	ug/kg	ug/kg	- 19/kg		ug/kg	- 	- 49/kg	ug/kg	ug/kg	ug/kg	- 59/kg	- W9/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	Lg/kg	ug/kg	Lg/kg	ug/kg	ug/kg	ug/kg	ug/kg		_	10/kg		ug/kg	ug/kg	ug/kg	ug/kg	J ug/kg	l ug/kg	ug/kg	J ug/kg		- 49/kg	Lg/kg	ug/kg	l ug/kg	:	1.0000
710	1505	710	710	710	3500	3500	710	710	710	710	710	3500	3500	710	3500	710	710	3500	710	3500	710	710	710	710	710	710	710	710	710	710	710	;	710	710	710	710	710	710	710	5	710	5	5	710	710	710	710		
690 0	7 00 0	\$ 2 2	690 -	090 U	3400 U		069 0	- 069 -	u 069	ь 1000 1	₽ 069 1	3400 U	3400 U	690 U	3400 U	40 O	690 U	3400 U	690 U	3400 U	090 U	0 069	0 069	069 U	090 U	090 U	090 U	069 U	090 U	090 U		7400 UJ	690 = 0	600	690	690 и	090 U	069 0	U 069	5 C	090 u	5	ح د	n 069	690 u	690 U	069 U		
6/kg	19/kg	V9/K9	ug/kg	ug/kg	mg/kg	ug/kg	ug/kg	ug/kg	- 24/gr	6x/8n	94/kg	9/kg	ug/kg	ug/kg	2 9/k0	ug/kg	64/Br	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	94/g	ug/kg	ug/kg	ra/kg	ug/kg	ug/kg	uq/kg	ug/ka	19/kg	19/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ey/kg	ug/kg	ug/kg	19/kg	ug/kg		
88	200	38	8	690	3400	3400	690	89	690	69	69 8	3400	3400	690	3400	690	690	3400	690	3400	690	690	690	690	690	690	690	690	690	690	690	Ç	666	900	8	690	690	690	690	u	690	ۍ.	ر.	690	690	690	690		
690 E	100	3	690	069 U	3400 U	3400 u	0690 L	690 E	690 C	690 c	69 =	3400 U	3400 C	690 U	3400 u	069 □	690 U	3400 U	- 069 -	3400 U	069 □	690 U	069 U	690 U	090 U	690 u	069 0	069 0	₩ 069	090 U	00 U	7400 ILI	9 5	960	690	090 U	069 0	690 U	₽ 069	5 C	690 U	.s	.; _	690 U	990 u	490 U	₩ 1069		
19/kg	ug/kg	ON/RO	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	بو/ka	19/kg	29/kg	29/Kg	ug/kg	ug/kg	64/8n	24/g	04/go	ug/kg	ug/kg	19/kg	L9/kg	19/kg	63/Bn	- Pa/kg	S 9/kg	ug/kg	ug/kg	ug/kg	U9/kg	ug/kg	ug/kg	ug/ka	re/ka	5/kg	ug/kg	ug/kg	ug/kg	B¥/Bn	ug/kg	ng/kg	ug/kg	ug/kg	ug/kg	ug/kg	Da/kg	ug/kg	u ()	La/ka), (* .	Section 1
% S	7,00	696	690	690	3400	3400	690	690	690	690	690	3400	34 00	690	3400	690	69 26	3400	690	3400	690	690	069	690	690	690	690	690	690	690	8	9	8	8	690	690	690	690	690	ۍ.	690	U1	u	069	690	690	00%		.:
700 U	700	700 000 000 000 000 000 000 000 000 000	700 U	700 u	3500 U	3500 U	700 U	700 u	700 u	700 U	700 u	3500 U	3500 U	700 U	3500 U	700 U	700 U	3500 U	700 U	3500 U	700 U	700 U	700 U	700 U	700 U	700 U	700 U	700 U	700 U	700 u	700 u	75 00 5F	700	700	700 u	700 u	700 u	700 U	700 U	7 00 U	700 U	5	5 F	700 U	700 U	700 4	700 H		
∪9/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	بور دوران	ug/kg	63/65	ug/kg	ug/kg	ug/kg	⊔9/kg	ng/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	- Ko	ر الم الم	- 10/kg	19/kg	- 64/kg	19/kg	63/6n	ug/kg	ug/kg	ug/kg	ug/kg	19/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	19/kg	00/kg	(10/ka		
700	.	70	8	700	3500	3500	700	700	700	300	700	3500	3500	700	3500	700	700	3500	700	3500	700	700	700	700	70	700	700	700	700	700	700		7 8	Zè	76	700	700	7	700	700	700	ر.	ۍ.	700	76	700	700		

Lab Sample Number: Site Locator Collect Date:

R8665008 RFADATA 56SS00401 01-SEP-94 QUAL UNITS

· · · · · · · · · · · · · · · · · · ·	Diethylphthelate	2,4-Dinitrotoluene	Dibenzofuran	4-Mitrophenol	2,4-Dinitrophenol	Acenaphthene	3-Witrosmiline	2,6-Dinitrotoluene	Acenaphthylene	2-Witroeniline	2-Chloronaphthalene	2,4,5-Irichlorophenol	Dimethylphtholate	2,4,6-Trichlorophenol	Hexachlorocyclopentadiene	2-Methylnaphthalene	4-Chloro-3-methylphenol	Hexachtorobutadiene	4-Chloroaniline	Naphthalene	1,2,4-Trichlorobenzene	2,4-Dichlorophenol	bis(2-Chloroethoxy)methane	Benzoic acid	2,4-Dimethylphenol	2-Nitrophenol	Isophorone	Nitrobenzene	Hexachloroethane	N-Witroso-di-n-propylamine	bis(2-Chloroisopropyl)ether	2-Methylphenol	1.2-Dichtorobenzene	Benzyl Alcohol	1.4-Dichlorobenzene		bis (2-Chloroethyl) ether	Aniline	Phenot	HICO	BKG SVOC (8270+24)	
																																									ug/kg	
		700 U											7.00				700			260			700 0						_	700 U		700 U		700 u		700 U	700 U		700 U			
	6x/6n	ug/kg	ug/Kg	03/kg	By /60	A /Bn	64.78v	R / R			18/18 18/18	6/kg	64/6a	19/kg	6x/8n	ex/en	ug/kg	ey/eu	5/29	L9/K9	ey/en	ug/kg	ug/kg	ug/kg	Py/Bn	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	6y/Bn	ug/kg	ug/kg	ug/kg	ug/kg	Pa/kg	ug/kg		٠.
	è	į	É	1400	1 4	7.00	700	7 8	700	700	000 7.00	700	7 60 7	700	700	700	700	700	7 6	700	700	200	žè		è	700	10	ě	įè	è	700	700		700		700	700	700	ě	ě	}	٠

Lab Sample Number: Site Locator Collect Date:	VALUE	R8665001 RFADATA S6SS00101 01-SEP-94 QUAL UNITS	ᆮ	R8 56S VALUE QU	R8665002 RFADATA 56SS00101D 01-SEP-94 QUAL UNITS	2	RE OLIVE OLIVE	R8665004 RFADATA S6SS00201 01-SEP-94 QUAL UNITS	무	VACUE TO SERVICE TO SE	R8665006 RFADATA 56SS00301 01-SEP-94 QUAL UNITS	۶
Methapyrilene 3,3:-Dimethylbenzidine	3500 U. 710 U	ug/kg	710	บ 069 กก 085	ug/kg ug/kg	690	3400 U	J ug/kg ug/kg	690	3500 U 700 U	ນ ug/kg ບ ug/kg	700
Hexachtorophere	35000 R	ug/kg		34000 R	ug/kg		34000 R	ug/kg		35000 1		
Aramite	3500 U	J ug/kg	į	3400 UJ	ug/kg	; }	3400 U	l wg/kg)	3500 1	Ξ	1
2-Chlorophenot	710 U	0/kg	710	069 0 069	ug/kg	6 69	069	. <u>.</u>	8	700		7 2 3 3 3
6-Methylphenol		67√63 1975	;		ug/kg	;	• (8/g	•	• ;		
Diphenylamine Hexachloropropene	3500 U	ug/kg ug/kg	3500	3400 U	ug/kg	3400	3400 U		3400	3500 L	_	3500
2-Acetylaminofluorene	710 U	ug/kg	710	490 U	ug/kg	690	090 U		690	700 1	_	700

U = MOI DETECTED R = RESULT IS REJECTED QUANTITATION LIMIT IS ESTIMATED

THE ADDITIONAL LISTINGS OF RESULTS FOR 1,2-; 1,3-; AND 1,4-DICHLOROBENZENE WERE GENERATED FROM THE SVOC (8270) ANALYTICAL RUN.

4-Methylphenol 0 iphenylanine Nexachloropropene 2-Acetylaninofluorene	Hexachlorophene Aramite 2-Chlorophenol 3- & 4-Methylphenol (2)	4-Nitroquinoline-1-oxide Methapyrilene Methapyrilene 3,3'-Dimethylbenzidine	1,4-Naphthoquinone 1,3-Dinitrobenzene 5-Nitro-o-toluidine	o-Toluidine Hexachloropropene p-Phenylenediamine Safrole Isosafrole	Lab Sample Number: Site Locator Collect Oate:
3400 U 700 U	3400 700 700 700	34000 34000 700	69000 700 700 700	700 3400 3400 3400	VALUE
e e	6652		c c c c	ccEcc	7866 RFF 01-10
49/kg 49/kg	66/kg	6/kg	6/kg	09/kg 09/kg 09/kg	R8665008 RFADATA 56SS00401 01-SEP-94 QUAL UNITS
3400 700	700 700	34000 700	69000 700 700	3400 3400	P

U = NOT DETECTED R = RESULT IS REJECTED

J = ESTIMATED VALUE UJ = REPORTED QUANTITATION LIMIT IS ESTIMATED

TO TOTTOMAL LISTINGS OF RESULTS FOR 1,2-; 1,3-; AND 1,4-DICHLOROBENZEUS VERE GENERATED FROM THE SVOC (8270) ANALYTICAL RUN.

#-Witrosomery: Groy Lowerty	Pyridine	3-Hethylcholanthrame	7 12-DimethylbenicA)Anthrecane	7: Originativi sa ino laz obenzene		4-Million Direct	Phenacetin	2,3,6,6-Tetrachtorophenol	2-Naphthylanine	1-Naphthylamine	Pentachlorobenzene	1,2,4,5-Tetrachlorobenzene	Benzidine	M-Nitrosopyrrolidine	N-Nitrosodiethylamine	E-Birroso-di-D-butylamine	2 Audichiorophenoi	N-Nitrosopiperioine	Acetophenone	Ethyl methonesulfonate	Methyl methanesulfonate	2-Picoline	Renzo(a_h_i)Rerytene	Dibooy/e hlanthracene	Benzo(a)pyrene	Benzo(k)fluoranthene	Benzo(b)fluoranthene	Di-n-octylphthalate	Chrysene Chrysene	Benzo(a)anthracene	3,3'-Dichlorobenzidine	Butylbenzylphthalate	Fluorantnene	Di-n-Butylphthalate	Anthracene	Phenanthrene	Rexact Cropherol	4-Bromophenyl-phenyletner	1,2-Diphenythydrazine	W-Witrosodiphenylamine (1)	methylpho	4-Mitrosniline	# - Introduction of the second			Collect Date:	Locator	Lab Sample #unber:	
=		=	=	_	_	- 1	= 0		: <	= =	: <	=	: =	٤	_	_	= ;	٤'	700 U Ug/kg	: C	: C	_	_	_	700 U ug/kg	= =	=	_	- (700 ti ug/kg	= =	-	- (700 0 09/kg	: =	=	C 1	700 U ug/kg	£ C	= =	-	-	- '	700	VALUE QUAL UNITS	01-SE	·		B0037784
	100/kg 700	19/kg /vu					Ug/kg 3400			/Kg 2400			7Kg 3400		/kg 700	/kg 700	/kg 700			700				kg 700		700			-		Kg 1400	7			700		LAI		700		,	_		(g 700	S DC	, -			

	17 U Ug/kg		Arocior-1254 Arocior-1260
			9.5
			Aroctor 1232
	 5		7
10 A2			I podrin
			Disliate
	C 6		Chiordena Late
	5		Endrin Recone
2.0	.0 Ug/kg	- N	Methonychlor
			Endosul fan sul fata
	==		Endosultan II
	E		
- G			Dieldrin
66			Heptachior epoxide
76	7 0 19/4		Aldrin
16			garma - BHC (Lindane)
	ξĘ	-	5040 - 0 H C
	7 u ug/k	-6/KB	PESTICIDES/PCBs (SV-046,0000) G
			¥ , 3

Lab Sample Number: Site Locator Collect Date:

R8665008 RFADATA 56SS00401 01-SEP-94 QUAL UNITS

VALUE

2

pha-BHC delta-BHC lindare endrin endosulfan II d.4-DD0 endrin aldehyde endrin lagoria lago	
ICLIDES/PCBs (SM-846,8080) ug/kg pha-BHC tra-BHC tra-BHC tra-BHC tra-BHC tra-BHC tra-BHC tra-BHC trin drin frachlor eldrin eldrin eldrin eldrin eldrin eldrin eldrin eldrin fracultan tl 4-DDD dosultan tl 4-DDD dosultan tl trin eldrin	Lab Sample Number: Site Locator Collect Date:
17 U 48/68 17 U 48/68 17 U 48/68 17 U 48/68 17 U 48/68 17 U 48/68 17 U 48/68 17 U 48/68 17 U 48/68 17 U 48/68 17 U 48/68 17 U 48/68 18/68 18/68 18/68 18/68 18/68 18/68 18/68 18/68 18/68 18/68 18/68 18/68 18/68 18/68 18/68	R8665001 RFADATA 568800101 01-8EP-94 VALUE QUAL UNITS
によれれれれれた ははははないにはなるに おんれまめにに はんれれれれた はいしょう はいい はい はい はい はい はい はい はい はい はい はい はい はい	DL VALUE
U U U U U U U U U U U U U U U U U U U	RB665002 RFADATA 56SS001010 01-SEP-94 QUAL UNITS DL
13.0 U 48/6 13.0	R8665004 RFADATA 56SS00201 01-SEP-94 VALUE QUAL UNITS
aarkssk skergiiliiiiiiiisssssssiis	DL VALUE
7 U U9/K9 7 U U9/K9	R8665006 RFADATA 568800301 01-8EP-94 QUAL UNITS DL
たんごうこうこうとうとうとものはいいいちょ ひののちちにけ	

Zingdin	Silver Thaillum	Cyanida Cyanida	Cedmium Chromium Cobelt	Arsenic Barius	6 SOILS 1
					rials.
»-	_, N -		> 7.5 8 2.5 E C C	-7.9. 	#8/kg
33 22	8/6 8/6 13 13				
	1 1.72				<u>-</u>
	J mg/kg mg/kg mg/kg mg/kg				mg/kg
			mg/kg mg/kg mg/kg		1 80/kg
mg/kg		mg/kg .14 ,26 U mg/kg .04 ;2.7 J mg/kg .04 ;04 U	mg/kg 3.7 J mg/kg .65 2.4 J	mg/kg .16 .09:U	
mg/kg mg/kg 8.4.3 mg/kg	mg/kg 12 UJ mg/kg 43 mg/kg 44 43 UJ mg/kg 43 mg/kg 12 UJ mg/kg 12 mg/kg 12 mg/kg 12 mg/kg 1.7 1.7 U mg/kg 1.7	mg/kg .14 .26 U mg/kg .26 mg/kg .04 .2.7 J mg/kg .04 mg/kg .04	mg/kg .65 3.7 J mg/kg .64 mg/kg .65 2.4 J mg/kg .64 mg/kg .64	mg/kg .62 J mg/kg .09 mg/kg .16 .09 U mg/kg .09	1 U mg/kg
mg/kg 2.9 1 mg/kg 15.9 1 mg/kg 15.9 1	mg/kg 12 UJ mg/kg mg/kg 44 43 U mg/kg mg/kg 12 U mg/kg mg/kg 12 12 U mg/kg mg/kg 12 17 U mg/kg	mg/kg .14 ,26 U mg/kg .26 .14 U mg/kg .27 J mg/kg .04 .04 U mg/kg .04 .04 U	mg/kg .65 3.7 3 mg/kg .64 7.2 3 mg/kg .65 .66 U mg/kg .64 .71 3 mg/kg .64 .71 3 mg/kg .64 .71 3	mg/kg .62 J mg/kg .71 J mg/kg .71 J mg/kg .16 .09 U mg/kg .09 .13 U	1 1 U #6/kg

Lab Sample Number:

Locator Collect Onte:

R8665001 RFADATA 56SS00101 01-SEP-94 QUAL UNITS

ALLIE

무

VALUE

QUAL UNITS

몯

VALUE

BATH ONLL S

p

R8665002 RFADATA 5688001010 01-8EP-94

R8665004 RFADATA 56SS00201 01-SEP-94

R8665006 RFADATA 56SS00301 01-SEP-94 QUAL UNITS

무

AND 1,4-DICHLOROBENZ

ERE GENERATED FROM THE SVOC (8270) ANALYTICAL RUN

NAVSTA MAYPORT
RFA Soit Boring Data

higropropens tonitriis oroprens hacrylonitriis hacrylonitriis hal mathacryla tachioroetham pionitriis yi acetats	
	Lab Sample Number: Site Locator Collect Date:
న 8ేవ⊽⊶. సం	VALUE
U 49/kg U 49/kg U 49/kg U 49/kg U 49/kg	RFADATA 568S00104 01-SEP-94 QUAL UNITS DL
126 126 120 C 120 C 120 C 120 C	RB R 564 01 VALUE QU
09/kg 09/kg 09/kg 09/kg 09/kg	RFADATA FFADATA 568S00204 01-SEP-94 QUAL UNITS DL
120 110 W	R8 R 56 D1
11 67/60 67/60 67/60 67/60 77/60 77/60 77/60 77/60 77/60	18665007 RFADATA 66850304 11-SEP-94 NJAL UNITS DL
7 W 130 U 13 W 13 W 13 U	R866500 RFADATI \$685004 901-SEP-
49/kg 49/kg 49/kg 49/kg	065009 07ADATA 08S00405 1-SEP-94

130

									ing filt				1, 4-D loxene
	ug/kg	260 R		200	₩.		u 9/kg u 9/kg	230 8 5			- £		1, 2-Dibromosthane
	5 6/6	7 IS	:	10/Kg	, 11 E		6/2	٤ -		5 5	EF		1,2-Tetrachloroethan
7	∟9/kg	260 R 7 U			230 E P 		6/6	. 70 C		76/2 2/6/2			trans-1,4-Dichloro-2-buters
7	υg/kg	70	~~	\$ \$	٥٥ د د د			===	•	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	c		Ethyl methacrylate
- i	69/kg	70	•==	5/6 24/6	6 = =	ۍ ب	19/kg	= =			Έ,		
1 3 ~	5/6 6	17: = = :		\$ \$ \$	9 0 C E	786	5 5/6 6	c¢			= = ;		Acrylonitrile Dibromomethere
7 7	6/kg	130 U	, ä.	\ \{\{\}\}	. 5 . 	120	49/kg	120 0 1	•				1,4-01chlorobenzene
73	ug/kg	73 U	, =	8	. .	12	ug/kg	1200	120		c =		Acrolein
150	40/kg	980 U	- -			100 G	6/6	===			9//pu u 4//g		Trichloroft words them
77	6/6 6/8	7 U	~ ^			> 0 (6/kg		D.0	55	CE		Styrene forth
177	پو/لو او/لاؤ	7 U	~ ~			> 0 . 9	U9/kg		0.0	68	cc		Chlorobenzene
77	₩9/kg	7 T U	o		> 	>	ug/kg		00	26	6 U Ug/kg		1,1,2,2-Tetrachloroethane
~ ~	19/kg	7 C	•	3 3 3 3 3 3 3 3 3 3		. 0. 7	ug/kg	12 C	<u>0 N</u>	\$ &	12 U US/KG	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	2-Hexanone
ದದ	υg/kg 09/kg	ದ ದ 	.		(((((- (- (-	\$ 7 6	ug/kg		₩	<u>e</u> e			Bromoform
i	ug/kg	7 U	••	\$ & \$ &	5 6 E E E E		19/64 16/64	==	. O O	66	6 U ug/kg		
٠	69/kg	70	* •	5 <u>5</u> 2	5 E E E	00	19/kg	= =	,	64	: c c		
~~	6/2	77	· • •	€ € 2 2	00 ==	00	ug/kg	<u>-</u> -	> .		== (cis-1,3-Dichloropropene
7 7	6 6 6 6	77: = U	. (). (\$ (\$) 6 2	5 S		59/kg 69/kg	5.5 5.5	0.0		6 U Ug/kg		1,2-Dichloropropare
~~	ug/kg 6	7 U	>		- -		63/6n	- -	000	66	C.E		Carbon tetrechloride
. ~ -	₩ 10/kg	7 U	o- o-	19/kg	00 CC SS		5/kg	==		66	6 U 49/kg		2-But anone
, ដ	5/6	, II .	وقت	49/Kg	o	ಸ್ಕ	ug/kg 19/kg	= c	.				Chloroform 1 2-0 (chloroethene
77	6/kg	77: 40:	,	5/62	 		ug/kg	2 E	•				1,2-Dichioroethera (total)
~~	¥6/kg	7 U	~ ~	(A)	. C.	· o (49/kg	cc	₽ .0				1-1-Dichloroethene
	ور وزرو وزرو	7 0	~ ~	19/kg	25 25	> 0	ug/kg	= •	. ; 		6 II 19/kg		ACE TO THE TOTAL
, a.	49/kg	3 -		5/6 6	5.5 5.5	6	ug/kg	_ = (6 L 6/kg		Chloroethere Hethylene chloride
, #	ug/kg	.ជី: ==		\$ \\ \tilde{S} \\	_	12	19/kg	= =			=		Vinyl chlorida
ជជ	46/kg	###	33:	- S		10 N	ug/kg ug/kg	Ç C			12 U ug/kg	2	ij
ಮ	ua/ka	‡ =										5	
	-		***************************************	-	ONI ONLIN	VALUE	L S S L	QUAL UNITS	VALUE .	S	QUAL UNITS	AVLNE	Collect bares
2	N F U			•	RFADATA 56BS00304 01-SEP-94		\$	R8665005 RFADATA 56BS00204 01-SEP-94			R8665003 RFADATA 568800104 01-SEP-94	Number: Site Locator	Leb Sample Number: Site Locator
	ingo O	D8445000		•			ing Data	RFA Soil Boring Data	RFA				
							PORT	NAVSTA MAYPORT					

1de 41000 u	-	830 U	840	82000 H	190 E	Cenedianine 7100 II	\$1000 E	- CO - C			840	73 OCT 100 CT	830 L	830 ti	830 H		200	trachtorophenot and u		4100 U	4100 U	etrachtorobenzene 4100 U	- 9	N-Nitrosocietnytamine 270 III 10/kg	ylamine 830 U	830 U	ine 4100 UJ	eridine 830 u	- (830	310 H	830 U	e 830 U	830 u	830 U		230 0	thalate 830 U	830 U	830 0	ne 1600 U	enzylphthalate 830 U	830 U	830 U	Anthracene 830 U vg/kg		VALUE QUAL UNITS	\$69000000	
41000 38000				_		4100 1800	000 PF				A30 780	LAS						4100 3800	930 780 780	4100 S000				4100 3800	780	A30 780			-			930 780 780						830 780	930 780							830 780		Dt VALUE	
U ug/kg	U ug/kg	- Lo/kg	ug/kg		E (6/kg	E 19/kg	Ē	= 0	= (= (= ;	٤	_	_	–	C	-		= 0	= =	: =	-	_	- ;	٤	l lo/ka	= =	5	_	= 1	= 1	uo/ka	# ⊂	: c	C	_	-	U 09/kg	= c	= =	= =	: =	-	D ng/kg	Œ	U U9/kg	=	01-SEP-94 QUAL UNITS DL	568S0UZU4
30000 00000	780 770 U						لما	3900 J. 500 L		780 770 U	780 770 u			•						780 770 11				w		780 770 u	790 770 0	<u>.</u>				780 770 U				780 770 U	780 770 u	780 770 U		780 770 11			780 770 U	780 770 U	780 770 U	780 770 U		VALUE	20
ug/kg sauu	ug/kg 770	_	_	_	ug/kg 3800			و ا			va/kg 770					_	ug/kg 3800	9	16/kg	10/kg 3000		. 🕳				ug/kg 770			ug/kg 770				19/kg 3800					ug/kg 770	19/kg 77			19/KB 370			•	ug/kg 770	• :-	01-SEP-94 QUAL UNITS DL	708SUU3U4
43000 0	880 U	880 U	880 U	87000 U	4300 U	4300 U	43000 UJ	4300 u	980 u	880 u	880 U	rn 00£7	880 U	880 u	- 880 u	880 U	4300 U	4300 U	280 U	880	700 C	\$300 U	4300 U	4300 U	FD 088	880 c	2000	#500 C	780 U	880 4	- 088	980 U	13 0054 10 080		880	880 C	880 u	880 t	880 c c		BB0 C	980 1	. BBO	880 C	880 U	880 U	SIRO II	VALUE QUAL UNITS	
19/Kg 45000	ug/kg 880				ug/kg 4300					ug/kg 880					ug/kg 680		ug/kg 4300		ug/kg 880	1300 A300				ug/kg 4300		ug/kg 880	19/kg 590		ug/kg B80				ug/kg 4300		_			ug/kg 880		187kg 880			_			ug/kg 880		N118 DT	£5

		7.7	Capital Bot 118 April				
Lab Sample Number: Site Locator Collect Date:	R8665003 RFADATA 568500104 01-SEP-94 VALUE QUAL UNITS	Dt VALUE	R8665005 RFADATA \$68500204 01-SEP-94 QUAL UNITS	DL VALUE O	R8665007 RFADATA 56BS00304 01-SEP-94 QUAL UNITS DL	R86 R1 568 01 VALUE 043	R8665009 RFADATA S68S00405 01-SEP-94 O1-SEP-94
		4646 1886 1886 19					
BKG SVDC (8270+24) ug/kg	i de		=			770 RAO 11	in/ka AA
X-X-trosodinethylamine	830 U ug/kg	830	780 U ug/kg	780 770 1		770 880 U	ug/kg 880
Anitine	⊂ .		_	780 770 1			
bis (2-Chloroethyl) ether	: =		780 U ug/kg	780 770 1	LQ/K9	880 0	ug/kg oc
1,3-Dichlorobenzene		o- 0	6U ug/kg	6.0	53/kg	6 7 U	
Benzyl Alcohol	= 1		780 U ug/kg	780 770 L	ug/kg	770 880 U	
1,2-Dichtorobenzene	C		=	780 770 1		776 RRD C	
2-Methylphenol	830 U Ug/kg	B30 7	780 u ug/kg	780 770 (Lg/kg		ug/kg 880
N-Mitroso-di-n-propylamine	_ (=			_	
Hexachloroethane	_		=			770 880 U	
Nitrobenzene	830 W ug/kg	830 /A	780 u ug/kg	780 770 1	ug/kg		ug/kg 88
2-Nitrophenol	830 U ug/kg		_ (770 880 U	
2,4-Dimethylphenol	_	830 7	=				ug/kg bbu
Benzoic acid	630 U 19/kg	630 780	780 U ug/kg	780 770 1	- 50/kg	686	ug/kg 880
2.4-Dichlorophenol	- 1		_				
1,2,4-Trichlorobenzene	830 U ug/kg	830 70	780 U ug/kg	780 770 1	ug/kg	770 880 U	ug/kg 880
4-Chloroaniline	830 U ug/kg		C				
Hexachlorobutadiene	830 U ug/kg	830 7	780 U ug/kg	780 770 I	ug/kg	770 880 U	79/kg 68
2-Methylnachthalene	830 U ug/kg		=				
Hexachlorocyclopentadiene	830 tr ug/kg	830 7.	780 U ug/kg	780 770 L	- 10/kg	770 686 U	ug/kg 880
Dimethylphthalate	830 U ug/kg		= (
2,4,5-Trichlorophenol	: c	Last S	: =	Lil.			19/kg 4500
2-Chloronaphthalene 2-Mitroaniline	4100 U ug/kg	4100 3800	1800 U ug/kg	3800 3800 1	ug/kg 3		
Acenaphthylene	-		: =			770 880 0	
2,6-Dinitrotoluene	4100 tr ug/kg	4100 3800	1800 U ug/kg	3800 3800 1	ug/kg 3	3800 4300 U	ug/kg 4300
Acenaphthene	=		: Œ		-		_
2,4-Dinitrophenol	6100 U U9/kg	4100 3800 3800	00 U ug/kg		09/kg 3	800 4300 U	ug/kg 430
Dibenzofuran			_		. –	770 BB0 U	
2,4-Dinitrotoluene	==		= =				59/kg 58
4-Chiorophenyi-phenylether	830 U ug/kg		_	780 770			
Fluorena	=	•	: c			1 0057 008	
A-Mitrophilipe	4100 U Ug/kg	4100 3800	OD U Ug/kg	3800 3800	\$/\$6	3800 4300 U	ug/kg 430
a-Aitrosodiphenylasine (1)	, C		=			_	
1,2-Diphenylhydrazine	830 U ug/kg	830 7	780 U ug/kg	780		770 B80 u	ug/kg 86
Hexachi orobenzene	530 U 49/Kg		=			_	
Pentachlorophenol	4100 U Ug/kg	4100 3800 790	790 U ug/kg	3800 3800 1 780 770 1	1 09/kg	770 880 U	09/kg 68
		•	•				

Lab Sample Number: Site Locator Collect Date:	R8665003 Site RFADATA Sator 568500104 Date: 01-SEP-94 VALUE QUAL UNITS DL	R8665005 RFADATA 568500204 01-SEP-94 VALUE QUAL UNITS DL	R8665007 RFADATA 56BS00304 01-SEP-94 L VALUE QUAL UNITS DL	R8665009 RFADATA 568800405 01-SEP-94 UNITS	DE .
PESTICIDES/PCBe (SU-846,8080) ug/kg		}			
elphe+BHC	.84 U .09/kg .84 1.6 U .09/kg 1.6 84 U .09/kg .84	. 78 U ug/kg 5 1.5 U ug/kg . 78 U ug/kg	.78 .77 U 49/kg 1.5 1.5 U 49/kg .78 .77 U 49/kg	1.5 1.7 U ug/kg	25 - 7 - 88
genna-88C (Lindare)	ve/ke		.77	. 88 U	22
ACATO		. 78 U	 	 26 66 C C	2 2
Endosul fan I	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -			 8 88 = =	 8 8
**************************************	- u9/kg	1.5 U	1.5 2.4 49/kg	1.5 1.7 U ug/kg	1.7
Endosul fan 11		 	1.5 U 49/kg	1.5 1.7 U ug/kg	1.7
Endosulfan sulfate		1.5	1.5 1.5 2 Lg/kg	1.5 1.7 U ug/kg	1:7
Rethoxychior	- 4/kg	- 3.1 - 5 C	- W - S = C	3.6 U	1.6 1.7
3 5	C 49/kg		1.5	1.7 U	
Chlordena Late	U ug/kg	23,	= c	26	: 20
Toxephene	~ ~	38 U	38 38 U 40/kg	C C	65
	E	. 78 U Lu 7,	.7 E	5.08 C	2 . 2 .
Arcclof: 1016	41 C ug/kg	= =	3 5	3 2 2	26
	: = 0	= = =	[7]: 	282	386
			35 C S		26:
Arocior-1260	20 U wa/kg 20	19 U	18.0	21 U	2
		P-02		100	

U # NOT DETECTED R = RESULT IS REJECTED

J # ESTIMATED VALUE UJ = REPORTED QUANTITATION LIMIT IS ESTIMATED

THE ADDITIONAL LISTINGS OF RESULTS FOR 1,2-; 1,3-; AND 1,4-DICHLOROBENZENE WERE GENERATED FROM THE SVOC (8270) ANALYTICAL RUN.

		3 - Ye	Hercury Hickel	v opp	Argel La	eryllium	G SOILS METALS		
							řis	Lab Sample Number Sitt Locator Collect Date	
		gerit. Lietig					8 /6	,	
	ы. Б. Ф. М.	55 Ki	 		720		i.	VALUE	
	223 226	Wales						R8665003 RFADATA 568S00104 01-SEP-94 QUAL UNITS	
	ю м ы			4.	3 <u>2</u> 5	:	ī.	몬	
	5 9 9		 	. 1.3 163	. 1.2 2.7 5	2.5 2.5	-	AVTOE.	777
		< c 5		- C C		C	C	R8665005 RFADAYA 568S00204 01-SEP-94 QUAL UNITS	CTA SOIL BOTTING DATA
i a		 64:-	7.2	.1.3	7.7.	ا ن ے	1.2	₽	918
	u _					8. £		VALUE	
			20/6 20/6	2 (8 E			u 1400/±	RB665007 RFADATA 56BS00304 01-SEP-94 QUAL UNITS	
	e per a l'an	54.5 ·	Jakas.					ν ·	
		78		्र इ	3 ² 5	. N	9	5	
		. 55						ŀ	
	1.8 2.1 U mg/kg 1.4 J mg/kg 6.7 J mg/kg		.05 U mg/kg	-5'		. 42 J),2 1.3 U	ρĹ	
	8888			mg/kg		.42 J ng/kg 3.2 J ng/kg .08 U ng/kg),2 1.3 U	DL VALUE	

NAVSTA MAYPORT
RFA Ground Water Data

Leb Sample Number: Site Locator Collect Date:	VALUE	REATZSOOS READATA 56MNOOTS 10-SEP-94 QUAL UNITS
3-Chloropropens Acetonitriis Chloroprens Hethacrytonitriis	10	
Hethyl methacrylate Pantachloroethana Propionitrile Vinyl acetate	5 8 56	£888

몯

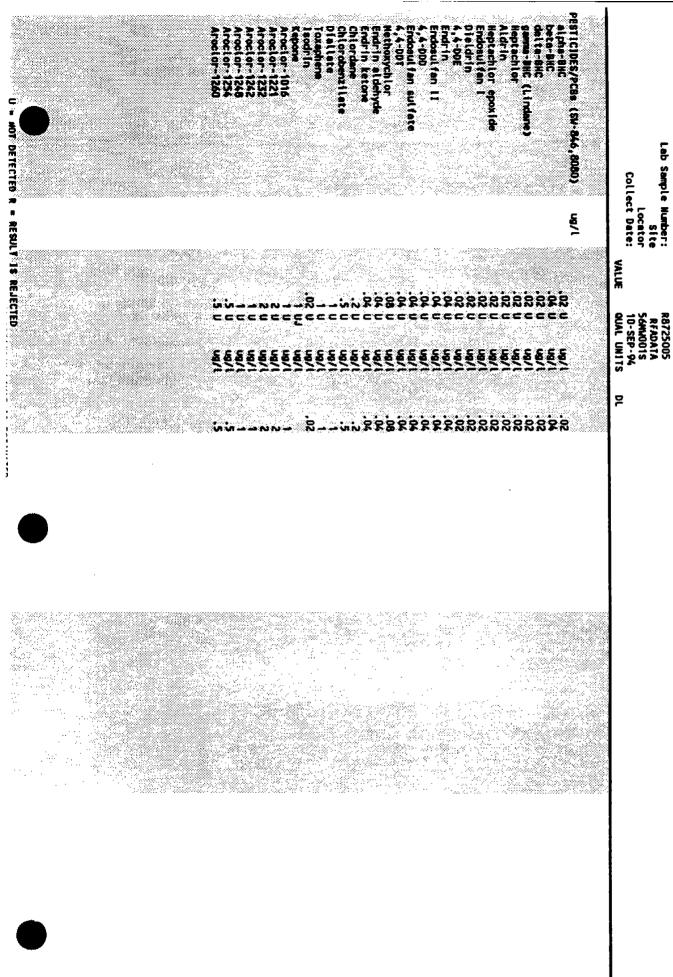
U = NOT DETECTED R = RESULT IS REJECTED

L STIMATED VALUE UJ = REPORTED QUANTITATION LIMIT IS ESTIMATED

DOITIONAL LISTINGS OF RESULTS FOR 1,2-; 1,3-; AND 1,4-DICHLOROBENZ

WERE GENERATED FROM THE SVOC (8270) ANALYTICAL RUN.

BKG VOCs. (8240+11) Chlorogethers Broscomathers Viry! chloride Chlorogethers (1, 1-0) ichlorogethers (1, 2-0) ichlorogethers (1, 1-1) ichlorogethers (1, 1-1) ichlorogethers (1, 1-1) ichlorogethers (1, 1-1) ichlorogethers (1, 1-1) ichlorogethers (2, 1-1) ichlorogethers (3, 1-1) ichlorogethers (4, 1, 2-1) ichlorogethers (1, 1, 1-1) ichlorogethers (1, 1, 1-1) ichlorogethers (1, 1, 1-1) ichlorogethers (1, 1, 1-1) ichlorogethers (1, 1, 1-1) ichlorogethers (1, 1, 1-1) ichlorogethers (1, 1, 1-1) ichlorogethers (1, 1, 1-1) ichlorogethers (1, 1, 1-1) ichlorogethers (1, 1, 1-1) ichlorogethers (1, 1, 1, 1-1) ichlorogethers (1, 1, 1, 1-1) ichlorogethers (1, 1, 1, 1-1) ichlorogethers (1, 1, 1-1) ichlorogethers (1, 1-1) ichloroget	Lab Sample Number: Site Locator Collect Date:
20000000000000000000000000000000000000	R8725005 RFADATA F 56MH001S T 10-SEP-94 VALUE QUAL UNITS DL


Lab Sampie Number: Site Locator Collect Date:	ber: Site site: VALUE	R8725005 RFADATA S6MA0018 10-SEP-94 QUAL UNITS	DL
Anthracese Dj-n-butylphthelate Fluorantheme		1000	
37			; 23 5 5
Benzo(a) anthrateme Chrysens bis(2+Ethylhexyl)phthalate		ccc	5 55
phthelate wranthere		:cc	\$ 8 5
Coranthena		-=-	582
Dibent(a, h)anthracera Benzo(g, h, i)perylena		===	566
Hethyl methanasulfonate Ethyl methanasulfonate			363
H-Mitrosopiperidine Phenyl-tert-butylasine 2.6-Dichlorophenol		CEC	- 45 E
M-Nitroso-di-n-butylamine N-Nitrosopyrrolidina		CCC	555
Benzidine 1,2,4,5-Tetrachlorabenzene		CEE	
1-Haph thy Leading 2-Kaph thy Leading 2-Kaph thy Leading 2-3-4-5-1 at rach lorocharol		ece	- 556 - 556
<u>.</u>		ccc	. 55 10 6 6 6
p-(D) sethyl asino) azobarzene 7, 12-b i sethyl beru (A) Anthrocese 3-techyl chol anthroces		cec	ಕಕಕಣ
Pyridina a:Witroscomethylethylemina W:Witroscomorpholina			S558
o-Toluidine Hesechloropene Hesechloropene Phonylenediselne		===	5882
legest role 1, 4-lieghthoguingre 1, 3-bini trobensene Cultifor- or roll uiding	-		44 8 8
1,3,5-Trinitrabenzere 4:Nitroquinoting-1-mide			Ē

RFA	
_	NAVSTA
Water	MAYPOR
Dete	7

Lab Sample Number: Site Locator Collect Date:

R8725005 RFADATA 56MJ001S 10-SEP-94 QUAL UNITS

Planarithrana	Hexacht or obentene	4-Bromophenyt-phenylether	1 2-5 inhany hydraxing	4,6-9 initro-2-methylphenol	4-Microsoftime	4-Chiprophenyl-phenylecher	Diethylphthalate	Diberzofuran		Acenaphthene	3-Hitrogni Line	2.6-Dinftrotolume	2-Hitroentline			3	Hexach Lorocyc Lopented and	A-Chloro-3-methylphenot	#exact producted and	Hephthelene	12.4-Trichlorobenzene	bie(2-Chtoroethoxy)methare	2-E-11-OCT-8-TO-1	I somerone	Hexachioroethane	B-H-(Cross-di-n-propy) onine	2-Mathy(phenol	1,2-Dichiorobenzers	1,4-Dichlorobenzene	1,3-Dichlarobenzene	Aniline Aniline bis (2-Chloroethyl) ether	Phenoi		
			• •				. c	در (ه)	= C			5.	5.5	: c	E .				10 C	S 8	10 c	~ {	 	C		5,		<u> </u>	5 i	5.5 	= 9		5,1	A 1990 Company of the

NAVSTA NAYPORT RFA Ground Water Data

|--|

HIT IS ESTIMATED ANALYTICAL RUN HIT IS ESTIMATED FROM THE SYDC (8270) ANALYTICAL RUN

NAVSTA MAYPORT RFA Ground Water Data

Lab Sample Number: Site Locator Collect Date:

Collect Date:	Locator	Site	Lab Sample Number:	
10-SEP-94	56MW001S	READATA	R8724005	

VALUE

SILIND TYPE

무

TOTAL PETROLEUM HYDROCARBONS Total petroleum hydrocarbon	P [±]	COLOR Color	GROURD WATER QUALITY Alkalinity as CaCO3 Ammonia-N Chloride Hardness as CaCO3 Nitrate/Nitrite-N Oil and Grease Phosphorous-P, Total Sulfate Sulfate Total Dissolved Solids Total Organic Carbon
mg/t	units	APHA	19 / L
•	6.71	120	283 44.3 300 .48 .50 50 2.4 2.2 2.2
)/Bw	units	APHA	1/8w 1/8w 1/8w 1/8w 1/8w 1/8w 1/8w 1/8w

 $\lambda_{ij} \max_{i \in \mathcal{I}_{ij}} (1 + \lambda_{ij} \omega_{ij}) \lambda_{ij} + \lambda_{ij} \omega_{ij}$

Lab Sample Number: Site Locator Collect Date: VALUE	G WATER METALS US/1 Arcisory Arasnic Barlum Bervil ium	Cadalium Cale Ium Chronitum	Conso		Notice!	solium 240	
R8726005 RFADATA S6MM001S 10-SEP-94 ALUE QUAL UNITS DL	9.7 ± 49/1 19/1 - 19/1			36100 ug/l	2 8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	240000 Ug/1 1/8/4 U 00002	3.8 L 49/1

) R = RESULT 18 REJECTED
LINE UJ = REPORTED QUANTITATION LINIT IS ESTIMATED
LISTINGS OF RESULTS FOR 1.2-; 1,3-; AND 1,4-DICHLOROBENZENE WERE GENERATED FRO

SVOC (8270) ANALYTICAL RUN.

		RFA Surface Soil Data		
Lab Sample Mumber: Site Locator Collect Date:	RB271001 RFADATA F 1955001 T 30-JUN-94 VALUE QUAL UNITS DL	R8271002 RFADATA 19850010 30-JUN-94 VALUE QUAL UNITS DI	RB271003 RFADATA 19SS002 30-JUM-94 VALUE QUAL UNITS DL	R8271004 RFADATA 195S003 30-JUN-94 VALUE QUAL UNITS DL
3-Chioropropene Acetonitrile	ខ្លីភ	5 UJ ug/kg 100 U ug/kg	100 100 U 100/kg 100	5 U ug/kg 5
Chioropreme Methachylonitrile Methyl methacrylate		10 U Ug/kg	5 5 U 16/kg 5	5 U ug/kg 5
Pantachloroethama Propionitrile Vinyl acetate	10 U. 48/Kg 10 10 U. 48/Kg 10	10 UJ Ug/kg 10 U Ug/kg	10 U 48/49 10 10 U 48/49 10 U 48/	100 U ug/kg 100

NAVSTA MAYPORT

RFA	
Surface	NASOLV
Soil	3
Date	-

Lab	Lab Sample Number: Site Locator Collect Date:	R8271001 RFADATA 1955001 30-JUN-94 VALUE OKAL UNITS DL	R8271002 RFADATA 1985001D 30-JUN-94 VALUE QUAL UNITS	R8271003 RFADATA 1985002 30-JUH-9 DL VALUE QUAL UNI	TS P	R8271004 RFADATA 1988003 30-JUN-94 VALUE QUAL UNITS	۶
	i						
Chi orome thans	9/4	10 U 46/kg	10 10 U ug/kg	10 10 10 10 10		10 U ug/kg 10 U ug/kg	5 5
Viryl chloride		5 5 6	5 5 c c	10 10 10 10 10 10	49/kg 10	10 U Ug/kg	= =
Hethylene chipride		5 U 49/kg	- - - -		16/kg	5 U ug/kg	≐ ∽
Carbon disulfide		5 C 49/kg			19/kg	5 C 49/kg	n un d
1,1-Dichtoroethene		2 U 19/19	5	 	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5 U ug/kg	UT U
1, 2-Dichlaroetherne (tatel)				л (л л (л г С	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 U ug/kg	. ·
1,2-Dichloroethane		2 (4/6)	C (С.	5 × 5	C 6	y.
2-Butanone		10 UJ Ug/kg	5 10 UJ Ug/kg	5 5 10 10 10	5 × 5	5 U ug/kg	5
Carbon tetrachloride		5 - 50/6	5 = ug/6	n un	8	5 U ug/kg	ر د د
1,2-Dichtoropropane	Property of the second	S C S / Kg	S C Ug/kg		52	5 C C C C C C C C C C C C C C C C C C C	n (J) (
Trichloroethere		5 U 10/76	5 U ug/kg	. G.	5 Kg 2	5 U ug/kg	, (, ,
Dibramoch Lorgane thene			5 U ug/kg			5 U ug/kg	.
	111 (1) 20 (10) - 200 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		5 U Ug/kg	7 (7) 7 (7)			<i>,</i> , ,
Brosofors - Landropt opens		500	-	y.		5 U ug/kg	; u,
4-Wethyl-Z-pentahone			10 10 0 09/kg	10 C		10 E ug/kg	5 6
Tetrachloroethene		5 U V9/kg	SU ug/kg	5 5 9 4 5 5		5 U ug/kg	
Toluene		S D 18/2	5 Ug/kg	5 S		5 U vg/kg	yı vı
Ethylbenzera		5 0 16/2	5 U ug/kg		50	5 li ug/kg	
Styrene (total)		5 U vg/kg	5 U 49/kg	VA U	5/66 6/66	5 U ug/kg	. .
Trichlorofluoromethane		5 L W/G	5 U ug/kg	55 S		5 C ug/kg	u, u
Acrolein			100 U ug/kg	100 100 0	196/Kg 198	100 UJ ug/kg	
1,4-Dichlorobenzene			18 s	190 5 490 U		690 U Ug/kg	5 8
Dibramathane		C 49/69	, U.		5	= ⊄	ĝ.,
?_Z-Dichlorobenzene Z-Chiorbethylvinylether		10 U up/kg	10 U Ug/kg	10 10 U	10	10 U Ug/kg	. = 5
Ethyl methocrylate 1,2,3-frichloropropume		5 U 49/kg	~ ~		19/kg	5 U ug/kg	, U, U
	3	20 P 10/6	210 P ug/kg		19/xg	210 R ug/kg	Ų
1,1,1,2-Tetrachioroethere		-	= ;		5	5 U Ug/kg	5 U7
77	3	5 U 49/kg	· c g		10/kg	55 C Ug/kg	∽ ē
T. S. C. C. C. C. C. C. C. C. C. C. C. C. C.							
			et e	#00 d	:		

	* *	

	20	10000
	==	
	5.5	
· · · · · · · · · · · · · · · · · · ·	7	
- ₩	00	
1000	≤ 2	
	\in	
ST	~ ~	•
2	- "	
8		,
		į
	2	
	· 😇	
	35	
	₽.	
		1
	, 2:	N. Pil
- Mariana S	ιΞ:	1
	= =	
	-	
	3	Pro Asses Shirikasa
	6	
- :::::::::: '		
•	.	ğılın
	,	
	٠,	
- 1000 j	· (G) ·	94.0
Ž	,=	
1	₹.	
È	E	
Ġ	ŞΘ	
ĉ	ž	
7	7	
	5	
	Ď	
	i	
ž	Ë	
	E CRUEDATE	
<u> </u>	2	
7	F	
3	•	
	#	
ji mar	٠, ر	
	3	
	2	
	-	
3	En la constante de la constant	
	.	
14/0		3.00
.	5.0	Waji
7 - 200 - 10		
	٠ <u>.</u>	
	3	
	5 8:	
	Ē	
	5 ::	ď.
	ાં	
	5	÷.
	=	
	AVAI YTICAL BUN.	
•	ı	

25 Zu Šu u3u uvu58		58 34 84 454 44454 	49/kg 49/kg 49/kg 49/kg 49/kg 49/kg	5555w. 8w8w6w8ww6w ccccc ccaccaccac	۸ ۸ ب ب	======================================	\$6666666666666666666666666666666666666	15114, 508414844414 CEEEC CORCCORCCEC		1,2-Dichlorodenzene 2-Chloroethylvimylether Ethyl methacrylate 1,2,3-Trichloropropene 1,2,3-Trichloropropene 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,2-Dibromo-3-chloropropene 1,2-Dibromo-1-chloropropene 1,2-Dibromo-1-chloropropene 1,2-Dibromo-1-chloropropene 1,4-Dioxane 1-chloropropene	The second secon
DL	R8271007 RFADATA 1988006 30-JUN-94 VALUE QUAL UNITS	DL V	71-94 1-94 1-94	R8271006 RFADATA 19SS005 30-JUN-94 QUAL UNITS	VALUE	P.	R8271005 RFADATA 19SS004 30-JUN-94 QUAL UNITS		AVTRE	Lab Sample Number: Site Locator Collect Date:	
		ta	AYPORT Soil De	NAVSIA MAYPORI RFA Surface Soil Data	RFA						1

11) ug/k	Lab Sample Number: Site Locator Collect Date:	
	AVINE	
11 Jug/kg	RB271005 RFADATA 19SS004 30-JUN-94 QUAL UNITS	
.	ĐL	
	VALUE	RFA
10 u ug/kg	R8271006 RFADATA 19SS005 30-JUN-94 QUAL UNITS	NAVSTA MAYPORT RFA Surface Soil Data
	P.	eta
	VALU€	
io u va/ka	R8271007 RFADATA 19SS006 30-JUN-94 QUAL UNITS	
	٥٢	

	4		ų.	Dibrossathers
	= =		110	Acrylonitrile
2 U 49/49	10 UJ Ug/kg	56/20		Indomethers
	100 UJ Ug/kg	5/6	10 5	1,3-01chlarobentame
55	: = 0		.uy C C	Xylenea (total) Trichlorof(uoromethere
S U W/19	5 U Ug/kg	6/2		Ethyl benzena Styrena
	5 U Ug/kg		9 G	Chiorobenzene
5 6 / 6	5 U ug/kg		7 Un (1,1,2,2-Tetrachloroethere
2/44 200 = 18/48	c			2-Hexarona
10 m 19/49	5 U ug/kg	60/kg		
5 4/4	- -	50/66 50/66		Benzene
	5 C ug/kg	59/69 151		1.1.2 Trickloromethere
		50/2		cia-1,3-0)chloropropens Trichloroethene
2			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,2.0 ichioropropane
5 C ug/kg				
10 LL 19/kg	=	9 (-) 	9	2-Butanone
25 U U9/10		6/kg		Chloroform
2 U 49/60			V V V	1 - Dichloroethene
50/E				Cerbon disulfide
	10 U Ug/kg	56/66 11.5	100	Methylene chloride
	: = =	U9/kg		Vinyl chloride Chloroethame
10 U 40/40 10	10 U Ug/kg	11 11 11 11 11 11 11 11 11 11 11 11 11		Chi or arrecthans
	.			BKG VOCA (8240+11)

Anthracena Di-n-Butylphthalate	=											
- 重量的放射的控制的 医眼球 经股份股份 医多克里氏 医多克里氏 医多克里氏 医多克里氏	260€	& & & &	68 88 80	989 u	ug/kg ug/kg	68	0 000 0 000 0 000	₩/kg	690 990	บ 069 ก 069	ug/kg	88
Pyrene	==	₹ 8 8	& &	680 U	بو/دو 19/دو	& &	690 E	5 5 2 3	696 696 696	690 - C	بور و/جو	%
autylbenzylphthelete		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- - - - - - - - - - - - - - - - - - -	1 680 2 U	6/6 6/6	.	38 ==	3	38	. 690 - 690		88
Benzo(a)anthracane	= =	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	& £	- 083 - 083	ug/kg	680 680	690 C	₽ 26	8	969 146 146 146	يو/يو مو/يو	696 660
7700794978 (77794978	260 = C) 8	280 	6/kg	680	^66 660 	. 6/6 6/6	28	690 - C		88
Di-n-octylphthalate	= •	<u> </u>	88	088 7	6/6 6/2	&	\$ 2 C	5/ <u>5</u>	697 697	690	و و م	% 3
Benzo(b) (Lucrenthene	-		88	686 - C	-6/kg	88	38	6/kg	38	ž V	-6/kg	Ì
86720(8)/C416	& & E = E	\$ \$	& 6 & 6 & 6	686 U	50/kg	& &	698 200	5 5 5	\$ 50 60 70	69 8 E C	5 6/kg	8 8
Indeno(1,2,3-cd)pyrame	-	15/Kg	8	086 U	پو/kg	8	690 L	<u>چ</u>	69	690 U	19/kg	690
Dibenz(a,h)enthrecene	} &		} &	686 686 686 686	5 6 6		2	E	32	690 = ==	ج الم	8
2.Picoline	= (\$ { }	3300 3300	3300 U	49/kg	3300	3300 0	\$ { 2.2	33 S	3300 U	5/6 6/2	3300
Mathy L mathemasul formite		S	8 8	680 2 E	5	8	3 3 3 5 5	₩ 6	33	\$ 6	4 0/kg	8
Ace combenance	= (52	왕		بر مراجع	& (3	8	\$/kg	\$	88	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6
Prendictory but Classics	71 008. 71 080		33 8	3300	5 4 /s	3300	73 696 2 696 2 5	2 2 3	38	7 696 2 96 2 96		1100
2,6-Dichlarophenal	=	9/kg	8	680 U	ug/kg	680	69 U	6/6 6/6	8	090 U	6/kg	690
W-Nitrosociethylanine	& & & & & & & & & & & & & & & & & & &	5 & 5 &	& £	66 66 C	₩ ₩ ₩	& &	88 88		} } }	690 - C	40/kg	88
W-Witrosopyrrolidine	:=	£	<u>&</u>		ug/kg	&	8	\$/ 2	3	690	-9/kg	690
1,2,6,5-Tetrachlorobenzere	3300 0	\$ & &	33 8	3300 U	-9/kg	3300	3300 U	5 5 2 2	5	3300 C		3300
Pentach Lorobenzene	3300 W			3300 0 00 1 0	5/kg	138 88	738 200 =		35 88	130 200 200 200 200 200 200 200 200 200 2	<u>د</u> د د د	3300
2-Haphthylemine	-	\$	3300	3300 U	ug/kg	330	3300 U	\$ { \$ { \$ { \$ { \$ { \$ { \$ { \$ { \$ { \$ {	21.08	3300 U	Ug/kg	3300
Phenacetin	680 4	2 <u>2</u>	& & &	680 C	رور ورازو ورازو	88		5 & 2 &	\$ <u>\$</u>	698 = C	يو/ والمراجع	\$ 8
4-Animobiphenyi	==	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		3300 U	ج وراور	330	3300 U	\$: H	138 200 200	-6/g	300
		& &	& &	680 U	۵/ج م	& č			3 5	696 C C	5/6/20	968 200
p-(Dimethy) an (no) azobanzana		2	8	686 - C	P4/kg	8	\$ 3	E	3	88 88 E	-0/kg	8
3-Methylcholanthrame	680 E	€ € 5 &	6 2	680 U	ور مراجع مراجع	& &	\$ 3 S	5 <u>5</u>	23 23	\$ %	₩ 19/kg	% %
RYTIGES AND THE STATE OF THE ST	2300 E			3300 U	5 4 /kg	338		5 7.6) 3308	3300 U	ug/kg	3300
		\$!	8	680 U	ug/kg	8	690 U		8	690	F9/kg	8
o-Totulgine Hexachtoropropena	3300 U	\$ & \$ &	38 88	3300 U	5 5 2 2	3300			# . 2 2	3300 U	5/6 6/6	3500 0000
p-Phenyl enedicatine	Ę	E	3			1	3308 -	S / S	33000	73000 F	49/kg	3
laceafrois			3308	3300 U	6/kg	338	3300 1	£ &	338 88	3300 U	6/2 2	3300
1,4-Heathcheguinene	==	(E	68000	68000 U	6	6000	\$8 = =		\$ 8	69000 U	5 6 6	6906 8006
W-Eigro-o-toluidine	\$8 CC	E E	8 8	600 C	6/kg	& 8	2 2 2	£ {	3 3	690 C	و اوران اوران	§ §
1.3,5-Trinitrobergers 4-Witroculostine-1-oxide	22	6 6 2 6		rn 0005£ rn 089	5 6/kg	ir gester	표 2008 도도	£ &		33000 LT	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
												•

RF	
Surfa	MAYVIA
BCe :	3
Soit	3
0	2

Collections 195001 19500						X7A	SUPTRICE SOLE L	919						
	Lab		ALUE	R8271001 RFADATA 19SS001 30-JUN-94 QUAL UNITS	2	ŠĀ.	R6271002 RFADATA 19SS001D 30-JUN-94	2	<u>\$</u>	R8271003 RFADATA 1988002 30-JUN-94	2		R8271004 RFADATA 1988003 30-JUN-94	2
	: \$40C (8270+24)						:	- 100 - schools						}
Colored Colo	henot		388		& &	2 2 2		68	\$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50		<u>\$</u>		'	690 690
Color Colo	. 42.539		88	- 49/49 - 49/49	<u>\$</u>	& &	- 5	&	8 8		.		_	À
Contraction Cold	3-Dichiorobenzene		, a va		a un		= =	7 (5)		5/2				
Committed Comm	enzyl Alcohol			U (6)/kg	& ,	&	= (66,	88	ر 19/4	%	690	~ vg/kg	\$ 8
Descriptivistics COO	-Methylphenol		<u>&</u> ,		8.,	&	= =	2	<u> </u>	=	38	868	0/\Q	88
Color Colo	ois(2-Chloroisopropyl)e	3	.	\$ 2	88	8	=	680	8	c 49/69	\$	690	ug/kg	690
Second S	exachlorpethane		&	2/2 2/2	6	& &	C	88			\$ \$	6 8	ue/kg	\$ \$
Second Companies Second Comp	trobenzene		2		} } }	<u></u>	= =	3		Ţ	38	88	ug/kg	69
Second Commercial Co	Nitrophenol		8	- S	8	68	==	8	9	0 (g) (g)	28	698		690
The problements of the control waying send send waying se	enzoic acid		3300	\$ \f	3300	330	_ (3300	3300	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	# 88	3300	5 LQ/kg	3500
Second S	4-01chlorophenol		& 8 8 8	- 12/2 - 12/2 - 12/2	& &	& &	= =	& &) 200) 2	690	10/kg	3 8
Friend Holden Control	,2,6-Trichtorobenzene		2 2 2 2	14/g) (8)	2	= =	8	8	ug/kg	3	8	- Le / kg	696
Thy priminal series source way're way're source way're source way're source way're source way're source way're source way're source way're source way're source way're source way're source way're source way're source way're source way're source way're source way're source way're way're way're way're way're way're way're way're way're way're way're way	Chioroanii ine		88	19/kg		6	Έ'	Za pi	<u>\$</u>		3		_	940
Commonications	Chiore-3-methylphenol		8	- 6/Kg	& &	66	C C	<u>&</u> &	\$	C 49/Kg	\$ \$	\$ \$	U9/kg	<u>\$</u>
Continue Continue	phthalene cyclopented		& &		& &	<u> </u>	= C	3	28		.	88	بر ورا	8
Same Same	.+.6-Irichlorophemol		<u> </u>	- up/kg	<u>&</u>	2	= =	8	3	- E	.	690	ue/ka	8
1300 U US/Kg	4,5-Trichtorophenol		3300	- vg/kg	3300	3300	=	3300	3300		3300	3300 (- vg/kg	3300
Lumina	Hitrani Line		3300	19/kg	3300	3300	c c	3300	3300	5 46/26 26/26	و و و	3300 1	ug/kg	26 68 68 68
3300	6-Dinitrotolume		8 8	~ ~ ~	£	680	c c	& &	28 28		. 28			\$ 6
### ### ### ### ### ### ### ### ### ##	- Mitroanilina		27.7		È	3300	= E	.						: 8
1. 1. 1. 1. 1. 1. 1. 1.	.4-0 ini trophenol					3300	5	Ę	3300	E 5/6	Ş		_	950
Color Colo	benzofuren		8	5 £	82	680	- -	6 86	٠ 82	5 <u>5</u> 5	28	%90 C	- ug/kg	& 53 80 80 80 80 80 80 80 80 80 80 80 80 80
phenylether 650 U ug/kg 680 680 U ug/kg 680 690 U ug/kg 680 680 U ug/kg 680 680 U ug/kg 680 680 U ug/kg 680 680 U ug/kg 680 680 U ug/kg 680 680 U ug/kg 680 680 U ug/kg 690 690 U ug/kg 690 690 U ug/kg 690 690 U ug/kg 690 690 U ug/kg 690 690 U ug/kg 690 690 U ug/kg 680 680 U ug/kg 680 680 U ug/kg 680 680 U ug/kg 680 680 U ug/kg 680 680 U ug/kg 690 690 U ug/kg 690 690 U ug/kg 680 680 U ug/kg 680 680 U ug/kg 690 69	lethylphthelete		&		&	6 g	- -	2 6	23		<u> </u>	8		\$ 8
100 100	-Chierophenyl-phanyleti Luorene	3	88	5.5	22	26	= =	3	38) (8)	690	6/6	\$
iodipherylasine (1) 650 U ug/kg 650 650 U ug/kg	70.2	3	358 885		3300	3300	E =	3300	3000		3300		•	3300
### 1 ### 1 ### 1 ### 1 ### 1 ### 1 ### 1 ### 1 ### 1 #### 1 #### 1 #### 1 #### 1 ##### 1 ##### 1 ######	-Mitrosodiphenylesine	3	8		§	686	: ⊂	&	8	- S/S	696	690	ug/kg	690
14 3300 U 149/kg 680 680 U 149/kg 680 690 U 149/kg 690 690 U 149/kg 1300 3300 U 149/kg 3300 U 149/kg 3300 U 149/kg 3300 U 149/kg 3300 U 149/kg 3300 U 149/kg 680 680 U 149/kg 690 690 U 149/kg	-Bromophenyl-phenylethu		8		£8	688	C C	& &	\$ 2	- € 8	**************************************	690 L	50/kg	§ §
U 49/Kg 680 U 49/kg 680 €90 U 49/kg 690 690 U 49/kg	entachtorophenot		36 8	2/g	3300	3300	C C	3300	3300 (_ & & & &	56 56 56 56 56 56 56 56 56 56 56 56 56 5	3300 U	5 6/kg	3300 690
					9	900	e /g/	3	2	- Ug/Kg	690	690 U	ug/kg	690

			RFA Surface Soil Data	Data		
Leb Semple Number: Site Locator Collect Date:	R8271005 RFADATA 1955004 30-JUN-94 VALUE QUAL UNITS	P	R8271006 RFADATA 1988005 30-JUN-94 VALUE QUAL UNITS	DL VALUE	RB271007 RFADATA 1988006 30-JUN-94 UE QUAL UNITS	D C
					7.154) 4.1578	
BKG SVOC (8270+24) ug/kg			=			
N·Witrasodimethylamine Phenoi		\$90 600 600 600 600 600 600 600 600 600 6		690	680 U ug/kg	88
Aniline bis (2-Chlorpethyl) ether	69/ UJ Ug/kg	690	690 U Ug/kg		۲į	
	. c		= =			
1,4-Dichlorobenzene	690 u ug/kg		690 U ug/kg		= •	
1, 2-Dichlorobenzera	=		: =	3 5	- -	
bis(2-Chloroisopropyl)ether	69/ U U U 09/ Kg		690 U ug/kg	698	- c	
E-Eltroso-di-n-propylemine			= =	698	= =	
Mitrobenzena	690 U 197/kg	698	C	690	= :	
1 sophorone	690 U 09746		690 U ug/kg	690		2000 1943 1955
2,4-0 inethylphenol			= = :	690	==:	
beazore acid	_ =	690 690	- (690		60
2.4-pichtorophenol	690 U Ug/kg		690 U ug/kg	690	==	200
2-prime land	==		= =	88	ce :	200
Hexachlorobutadiene	= 5		690 U ug/kg	38	==	£ £
		690	= =	88		38
2,4,6-If ich (or ophera)	- (: - (690		8
03methylphthetete		1 (4) 26 (2)	C C	3300	C 6	3300
2: Chiloroyaph the lene			690 U ug/kg 3300 U ug/kg		- -	
Acenaphthylario			= =			.
3-Nitrogniline	3300 UJ 49/kg	v s d s	C C	3300	:=(
Acenaph there	25	<u>8</u> 8	3300 UJ Ug/kg		= -	8
6-11 (copherol		3300	= = ;	. — \	3300 U ug/kg	
A 4-Dinitrotolumn			690 U Ug/kg	\$ 690 6 00 6 00		3 88
Diethylphthelate	Jan n nee	77G	ta/fin n nka	70		1
				8.877 7.83 8.83		

Lab Sample Kumber: Site Locator Collect Date:	VALUE	READATA READATA 19SS001 30-JUN-94 QUAL UNITS DL	VALUE	R8271002 RFADATA 19SS001D 30-JUN-94 QUAL UNITS	OL VALUE	R8271003 RFADATA 19SS002 30-JUN-94 QUAL UNITS	9	RB.	R8271004 RFADATA 19SS003 30-JUN-94 QUAL UNITS	P.
thepyrílene 3'-ùimethylbenzidine	3300 U 080 U	₩9/kg	3300 330 680 68	, c c	3300 33 60 6	, U	690	3300 U 690 U		3300 690
xachlorophene smite Chlorophenol	3300 U 686 U	\$ \$ \$	3300 3300 680 680	0 C 49/kg	3300 3300 680 690	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	30E 00E	3300 U	668 668	3300 690 690
# 6-Methylphenol (2) Methylphenol	, 2			c			\$		6/kg	•
phenylamine xachloropropene Acetylaminofluoreme	7300 U		3300 3300 I 680 680 I	~C E	3300 33 680 6	00 L mg/kg	698	3300 U	₩ ₩ ₩	3300 690

RESULT 18 REJECTED J = REPORTED QUANTITATION LIMIT IS ESTIMATED GS OF RESULTS FOR 1,2-; 1,3-; AND 1,4-DICHLOROBENZENE WERE GENERATED FROM THE SVOC (8270) ANALYTICAL RUN.

TION LIMIT IS ESTIMATED HERE GENERATED FROM THE SVOC (8270) ANALYTICAL RUN.

Lab Sample Number: Site Locator Collect Date:	R8271005 RFADATA 1988004 30-JUN-94 VALUE QUAL UNITS	DL VALUE 0	R8271006 RFADATA 1955005 30-JUN-94 QUAL UNITS DE	R827 RFA 19S 30-J VALUE QUAL	R8271007 RFADATA 1955006 30-JUN-94 QUAL UNITS DL
o-Toluidine Nexachioropropene D-Phenylenediamine	690 U vg/kg 3300 U vg/kg 33000 UJ vg/kg	. 690 33000 U 3000 3300 U	ug/kg 690 ug/kg 3300 ug/kg 33000	90 33000 U 00 3300 U 00 300 U	.ug/kg 53000 .ug/kg 3300
Sefroie Jeografiole	3300 U 19/kg	3300 3300 L			
1,4-Maghthoquinona	69000 U 49/kg			e die Gebe	
5-Nicro-o-toluidine	690 W W2/kg				
4-Nitroguinoline-1-oxide Methapyriland	33000 UJ			rn 00055 rn 00055	
3,3*	33000 R Vg/kg	690 33000 L			
Aramite 2-Chlorophenol	3300 U ug/kg	3300 3300 U		300 3300 U	
3- & 4-Hethylphenol (2)	690 U vg/kg				
Hexashi oropropene 2-Acety Laminof Lucrene	3300 U 49/kg	3300 3300 U 690 0	ug/kg 3	300 3300 U	

NAVSTA MAYPORT
RFA Surface Soil Data

Cold Cold	Color Colo	Lab Sample Number: Site Locator Collect Date:	AVINE 3 - 15	RB271005 RFADATA 19SS004 30-JUN-94 QUAL UNITS	٤	R82 RI 15 30- VALUE QUJ	R8271006 RFADATA 19SS005 30-JUN-94 QUAL UNITS	DL VI	VALUE 90.	RBZ71007 RFADATA 19SS006 30-JUN-94 QUAL UNITS	D.
Comparison Com	Color Colo	4-Chigrophenyl-phenylether fluorene	1.00 000 000		069 069		ug/kg ug/kg	3300 3300	330 680 60 60 60 60 60 60 60 60 60 60 60 60 60	64/64 64/64	3300 3300
Comparison Control C	Transition (1) 600 U	A-Mitroeniline	المراكلاتين	•			49/kg		3300 L	- - - -	
Color Colo	Trine 3000 U 42/42 5000 U 42	S-Nitropodiphenylamine (1)	W 10		8			3	2 2 2 2 2 2	- 46/62 6/62	<u> </u>
Trickeler	### 1500 U ##### 1500 U ##### 1500 U ##################################	1.2-0 phony hydrax ine	26,25) 198	700 C	- 5/kg	690 000	<u>8</u>	5/6	& !
1000	1300	4-Bromophenyt-phenylether	, (NA)		\$ 6	690 c	63/63 63/63	690	680 U	Fa/kg	2
### SECOLUL WAYES ### SECOLUL W	Color Colo	Hexacht orobenzene			3300		py/kg	3300	3300 U	\$/\$	3300
\$00 U	\$500 U Walking \$500 U Walking \$500 U Walking \$500 U Walking \$500 U Walking \$500 U Walking \$500 U Walking \$500 U Walking \$500 U Walking \$500 U Walking \$500 U Walking \$500 U Walking \$500 U Walking \$500 U Walking \$500 U Walking \$500 U Walking \$500 U	Phenanthrene			690	-	. ug/kg) 00	2 8 2 8 2 5	6 %	& 6 & 6
\$500 U 44/Kg \$500 \$500 U 44/Kg	\$60 U	Anthrece's) 8	50/20) 92		ug/kg	690	& (C	- E	686
1000	\$600 U \$\frac{1}{2}\text{in}{\tint{in}{\text{in}{\text{in}{\text{in}{\text{in}{\text{in}{i	Di-n-Butylphthalata		: 2) } }		ug/kg	690	680 L	9/G	88
1,000 1,00	1,000 1,00	Fluoranthane	690		<u></u>		ug/kg	690	580 E	ug/kg) (2)
1,000	\$50 U Wayka	TYTOTA	690 L	- 19/Kg	690	690 U	₩ 6	690	86 96 97	5/2	100
#### 600 600 ##### 600 600 ##########	1000	3.3'-Dichlorobenzidine	1,00 (8	1400 0	6/kg	<u> </u>	290 E	50/kg	6 6
\$500 U	#### 600 600 ##### 600 600 ##### 600 600 ##########		690	- S - S - S - S - S - S - S - S - S - S	38	690	6/kg	690	6 6	٤ 2	660
\$500 U	600 U 44/Kg 600 U	COTYGGO	690		6	n 069	ug/kg	690	66 68 =	ug/kg	.
### 690 U Walke 690 690 U Walk	### 600 U Wa/kg 600 600 U Wa/k	Disprocrytohenelere	1 069	- 40/kg	698	1 069 1 069	ug/kg	96			<u>}</u>
### 690 U USA/RE 690 690 U USA/RE 690 680 U USA/RE 690 69	### 650 U Wa/kg 650 650 U Wa/kg 650 650 U Wa/kg 650 650 U Wa/kg 650 650 U Wa/kg 650 650 U Wa/kg 650 650 U Wa/kg 650 650 U Wa/kg 650 650 U Wa/kg 650 650 U Wa/kg 650 650 U Wa/kg 650 650 U Wa/kg 650 650 U Wa/kg 650 650 U Wa/kg 650 650 U Wa/kg 650 650 U Wa/kg 650 650 U Wa/kg 650 0 Wa/kg 650 U Wa/kg 650 0 Wa/kg 650 U Wa/kg 650 0 Wa/kg 650 U Wa/kg 650 0 Wa/kg 650 U Wa/k	Benzo(b) (Lucrentheme	690	- 5/kg) }) 	- 6/kg	690	& & &		68
Impress	Impress 650 1	Benzo(k)fluoranthene	88	- (g/kg	200	090 U	6/kg	690	680 U	<u>چ</u>	686
######################################	### ### ### ### ######################	Benzo(a) pyrena	690	- 40/kg	690	090 u	ug/kg	690	£	\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	E
300 U 44/kg 3300 3300 U 44/kg 690 680 U 44/kg 690 690 U 44/kg	3300 U UA/KB 3300 3300 U UA/KB 500 580 U UA/KB 600 600 U UA/KB	Diberta(a, 7) entronenana	690	by/fdn	38	690 = =	5/6 6/4	> %		5 & 6 &	_ & §
# T	### ### ##############################		Som	- LO/KG	330	3300 U	ر الاوران الاوران	3300	3300 U	E	3308
### Committee	Sulfremate Soo U Ua/kg			- 10/E	690	690 U	ug/kg	%	8		
International Color	100 100		5 86	ار م	` ``	690 □ 000	5/6	88	2 8		2
3300 U 49/kg 590 490 U 49/kg 590 680 U 49/kg 690 690 U 49/kg 690 690 U 49/kg 690 690 U 49/kg 690 680 U 49/kg 690 690 U 49/kg 690 680 U 49/kg 690 690 U 49/kg 690 680 U 49/kg 690 680 U 49/kg 690 680 U 49/kg 690 690 U 49/kg 3300 U 49/kg 690 690 U 49/kg 3300 U 49/kg 690 690 U 49/kg 690 690 U 49/kg 690 690 U 49/kg 690 690 U 49/kg 690 680 U 4	10mm	Acetophenone	Signa	10 V9/K9	- 10 - 10 - 10	690 U	ج الم	690	8	5 5	500
Image:	10mm 690 U U9/Kg 690 U U9/Kg 690 U U9/Kg 690 690 U U9/Kg 690 690 U U9/Kg 690 690 U U9/Kg 690 690 U U9/Kg 690 690 U U9/Kg 690 690 U U9/Kg 690 690 U U9/Kg 690 690 U U9/Kg 690 690 U U9/Kg 3300 U U9/Kg	E-E-H-0500 Derical Tag	3300	- 49/kg	3300	3300 U	ug/kg	3300	3300 U	5	5000
	Complete	2.6.Dichlorophenol		U ug/kg	3 %	. 000 1000	(a) (b) (c)	\$ 92 92	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5 4 6 4	£
3300 U	3300 U	N-Mitroso-di-n-butylamine	3 38	U 19/Kg	66 68	690 U	ور الم	690	686 L	E	8
3300 UJ Ug/kg 3300 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 3300 U Ug/kg 3300 U	3300 UJ Ug/kg 3300 3300 U Ug/kg 3300 3300 U Ug/kg 3300 3300 U Ug/kg 3300 3300 U Ug/kg 3300 3300 U Ug/kg 3300 3300 U Ug/kg 3300 3300 U Ug/kg 3300 3300 U Ug/kg 3300 3300 U Ug/kg 3300 3300 U Ug/kg 3300 U	M-Retained Control (dista	8	ر وراور	\$		<u>پو/</u>	690			8
3300 U Ug/kg 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 680 U Ug/kg 690 690 U Ug/kg 690 680 U Ug/kg 690 680 U Ug/kg 690 680 U Ug/kg 690 680 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 Ug/kg 690 Ug/kg 690 Ug/kg 690 Ug/kg 690 U Ug/kg 690 Ug/kg 690 Ug/kg 690 U Ug/kg 690 Ug/kg 690 Ug/kg 690 Ug/kg 690 Ug/kg 690 Ug/kg 690 Ug/kg 690 Ug/kg 690 Ug/kg 690 Ug/kg 690 Ug/kg 690 Ug/kg 690 Ug/kg 690 Ug/kg 690 Ug/kg 690 Ug/kg 690 Ug/kg 690 U	3300 U ug/kg 3300 3300 U ug/kg 3300 3300 U ug/kg 3300 U u		- 133 - 133	Dy/80	3		- - - - - - - - - - - - - - - - - - -	3400	3300		3300
3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 690 U Ug/kg 690 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 690 U Ug/kg	3300 U 49/kg 3300 3300 U 49/kg 3300 3300 U 49/kg 690 680 U 49/kg	1,2,4,5-Tetrachlorobenzere			## 		5 5 6 4	3300	3380	٠ 2	3000
3300 U Ug/kg 5300 3300 U Ug/kg 590 9300 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 680 U Ug/kg 3300 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 690 680 U Ug/kg 690 680 U Ug/kg 690 680 U Ug/kg 690 680 U Ug/kg 690 680 U Ug/kg 690 680 U Ug/kg 690 680 U Ug/kg 690 680 U Ug/kg 690 0 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg	3300 U Ug/kg 5300 3300 U Ug/kg 5300 3390 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 690 U Ug/kg 690 U Ug/kg 690 690 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 G 680 U Ug/kg 690 U Ug/kg 690 G 680 U Ug/kg 690 U Ug/kg 690 G 680 U Ug/kg 690 G 680 U Ug/kg 690 G 680 U Ug/kg 690 680 U Ug/kg 690 G 680 U Ug/kg	Pentachiorobenzene			## 		<u>ارم</u>	3300	3386	- - -	228
690 U Ug/kg 690 0 U Ug/kg 690 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 3300 U Ug/kg 690 680 U Ug/kg 690 680 U Ug/kg 690 680 U Ug/kg 690 680 U Ug/kg 690 680 U Ug/kg 690 680 U Ug/kg 690 680 U Ug/kg 690 0 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 U Ug/kg 690 680 U Ug/kg 690 U Ug/kg	690 U 49/kg 590 690 U 49/kg 590 3300 U 49/kg 3300 3300 U 49/kg 3300 3300 U 49/kg 3300 3300 U 49/kg 3300 3300 U 49/kg 3300 3300 U 49/kg 3300 3300 U 49/kg 3300 3300 U 49/kg 690 690 U 49/kg 690 690 U 49/kg 690 680 U 49/kg 690 690 U 49/kg 690 680 U 49/kg 690 690 U 49/kg 690 680 U 49/kg 690 680 U 49/kg 690 680 U 49/kg 690 G 680 U 49/kg			ے چر	5300		ug/kg	338			Š
3300 U UA/KG 3300 U UA/KG 3300 U UA/KG 3300 U UA/KG 3300 U UA/KG 3300 U UA/KG 3300 U UA/KG 3300 U UA/KG 3300 U UA/KG 3300 U UA/KG 3300 U UA/KG 3300 U UA/KG 650 650 U UA/KG 650 650 U UA/KG 650 U UA/KG 650 G 650 U UA/KG 650 U UA/KG 650 G 650 U UA/KG 650 G 650 U UA/KG 650 U UA/KG 650 G 650 U UA/K	3300 U U4/kg 3300 3300 U U4/kg 3300 3300 U U4/kg 3300 3300 U U4/kg 3300 3300 U U4/kg 3300 3300 U U4/kg 3300 3300 U U4/kg 3300 3300 U U4/kg 690 690 U U4/kg	2.3.4.6-Tecrachloropherot		ug/Kg	38		5 6	2	<u> </u>		& {
Principal Control	phonyl 3300 U ug/kg 3300 U ug/kg 3300 U ug/kg 690 690 U ug/kg	Phenecetin			100 100 100 100 100 100 100 100 100 100		6 4/kg	1300	3380	<u>.</u>	## 8
## 1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	### ### ##############################	6-Aminobiphenyl			### 88		<u>ار</u>	3300	3500 L	- E	2108
1	ylamiro)ezobarizens 690 U ug/kg 690 690 U ug/kg 690 690 U ug/kg 690 690 U ug/kg 690 690 U ug/kg 690 690 U ug/kg 690 690 U ug/kg 690 690 U ug/kg 690 690 U ug/kg 690 690 U ug/kg 690 U ug/kg 690 U ug/kg 3300 3300 U ug/kg 3300 U ug/kg 3300 U ug/kg 690 U ug/kg 690 U ug/kg 690 U ug/kg 690 U ug/kg 690 U ug/kg 690 U ug/kg 690 U ug/kg 690 U ug/kg 690 U ug/kg 690 U ug/kg 690 U ug/kg 690 U ug/kg 690 U ug/kg 690 U ug/kg 690 U ug/kg	Pentach (oron) (repentant	690		690		mg/kg	8	8		8
### 1500 U US/Kg 690 U US/Kg 690 690 U US/Kg 690 690 U US/Kg 690 690 U US/Kg 690 690 U US/Kg 690 GBD U US/Kg 690 690 U US/Kg 3300 U US/Kg 3300 U US/Kg 3300 U US/Kg 3300 U US/Kg 3300 U US/Kg 690 U US/Kg 690 680 U US/Kg 690 GBD U US/Kg 690 GBD U US/Kg 690 U US/Kg 690 GBD U US/Kg 690 U US/Kg 690 GBD U US/Kg 690 U US/Kg 690 U US/Kg 690 U US/Kg 690 GBD U US/Kg 690 U US	### 690 U U### 690 U U##################################		\$	- Le/Kg	690		ug/kg	8	2		.
## 1900 U US/KG 3300 U US/KG 3300 U US/KG 3300 U US/KG 3300 U US/KG 3300 U US/KG 3300 U US/KG 3300 U US/KG 3300 U US/KG 3300 U US/KG 690 U	## ## ## ## ## ## ## ## ## ## ## ## ##	7 12 Digethylbenz(A)Anthracere	8	E 16/60	.) 000 000 000 000 000 000 000 000 000 0	- 6/Kg	69	3		}
meethylethylesine 590 U Waykg 590 690 U Waykg 590 680 U Waykg 590 680 U Waykg 590 680 U Waykg 590 680 U Waykg	### 690 U ug/kg 690 U ug/kg 690 680 U ug/kg 690 680 U ug/kg 690 U ug/kg 690 680 U ug/kg 690 U ug/kg 690 680 U ug/kg	3-Rethylcholanthrene	38		1 2 E	1300 C	5 £	3300	338	- 	3300
690 U wg/kg 690 690 U wg/kg 690 680 U wg/kg	690 U 1997/kg 690 690 U 197/kg 690 680 U 197/kg	Pyriding	3 8	5 (S	ه چ	690 U	64/6	690	8	- F	8
		N-Nitrodomorpholine	690	₩.	698	090 U	ug/kg	8	68	- - -	2

NAVSTA MAYPORT RFA Surface Soil Data

99	Araclar-1232 Araclar-1242 Araclar-1248	Kepane Araci ar-1016 Araci ar-1221	Toughters Toughters	Chlorobenzilate	Endrin ketone	4.4. DDT an sulfate	Endosul fan II	4,4-00E	Heptechlor spaxide Endosulten I	Heptach Lor Aldrin	delta-BRC (Lindana)	PESTICIDES/PCBs (SM:846,8080) alpha-BHC	
	CCC		35 U 19/kg							.7 U ug/kg	7 U 46/kg	υσ/kg • .7 μ ωσ/kg	
17 u	353 CCC	125t	35 35 U Ug/kg	7 7 U	= = c		c c						
77 77 17 U	**************************************	125; 126;	35 34 U ug/kg	7 6.9 U	1.4		1.4	1.4	7	. 7 . 69 U	.7 .69	. 7 . 69 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	
			201										

RFA Surface Soil Data NAVSTA HAYPORT

Lab Sample Number:

Site Locator Collect Date:

RB271005 RFADATA 19SS004 30-JUN-94 QUAL UNITS

무

AVLUE

AYLUE

몯

R8271006 RFADATA 19SS005 30-JUN-94 QUAL UNITS

R8271007 RFADATA 1955006 30-JUN-94 QUAL UNITS

_		•
ä	35	_
¥	ŀ	ŀ
4	٠	7 :
	ι.	73
	т	•
F		
_	۰	-
ы	Į.	9
щ	4	3
2	÷	3
7	1	-
F		٦,
E	::	•
٨	1	
_	_	
Č	٥,	_
_	- 7	2
	. :	Υ.
•	-	72
3	•	≓
ñ	٠,	-
٦	ġ.	
я	٠.	-
÷	Ų	u,
	2	22
V	9	2
	т.	
	٠	
2	Š	Ľ
ĺ	2	
ĺ	2	
	2	LECTE
	2	TECTED
•	2111	JECTED
	CHITT	JECTED
	MINITAL	TECTED
	CHANTITATI	JECTED
	CHIANTITATIO	TECTED
	MATTATION	LECTED AND AND AND AND AND AND AND AND AND AN
10000	MILLIALLANDING	
	CHANTITATION I	
	CHANTITATION 11	
	CHANTITATION IN	
	CHANTITATION 1811	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CHANTITATION INIT	
# 100 man 100	CHANTITATION - INIT	
	CHANTITATION - INIT IS	ECTED AND AND ASSESSMENT OF THE PROPERTY OF TH
# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CHANTITATION INIT IS	THE CITE OF WINDOWS OF THE PROPERTY OF THE PRO
	CHANTITATION - INIT IS E	
ACCEPTANCE OF THE PARTY OF THE	CHANTITATION - INIT IS ES	
	CHANTITATION - INIT IS EST	
	CHANTITATION - INIT IS ESTI-	
STATE OF THE PARTY	CHANTITATION - INIT IS ESTINA	
	CHANTITATION INIT IS ESTINAT	
	CHANTITATION INIT IS ESTIMATE	

Locator Collect Date:	VALUE QUAL UNITS DL	VALUE QUAL UNITS	DL VALUE QUAL UNITS	DL VALUE QUAL UNITS	פר
PESTICIDES/PCBs (SM-BA6, 8000) Us/kg alphs-BHC delta-BHC delta-BHC delta-BHC leptachlor epoxide Endosulfan 1 6,4-00E Endosulfan 11 6,4-000 Endosulfan 11 6,4-000 Endosulfan sulfate 6,4-001 Endosulfan sulfate 6,1-001 Endosulfan sulfate 6,1-001 Endosulfan sulfate 7,4-001 Endosulfan sulfate 1,4-001 Endosulfan sulfate 2,4-001 Endosulfan sulfate 2,4-001 Endosulfan sulfate 2,4-001 Endosulfan sulfate 3,4-001 Endosulfan sulfate 2,4-001 Endosulfan sulfate 3,4-001 Endosulfan sulfate 4,4-000 Endosulfan sulfate 3,4-001 Endosulfan sulfate 4,4-000 Endosulfan sulfate 3,4-000 Endosulfan sulfate 4,4-000 Endosulfan sulfate 3,4-000 Endosulfan sulfate 4,4-000 Endosulfan sulfate 5,4-000 Endosulfan sulfate 4,4-000 Endosulfan sulfate 5,4-000 Endosulfan sulfate 5,4-000 Endosulfan sulfate 6,4-000 3 U 49/kg 1.3 U 49/kg 1.3 U 49/kg 1.3 U 49/kg 1.3 U 49/kg 1.3 U 49/kg 2.1 U 49/kg 2.1 U 49/kg 2.1 U 49/kg 3.4 U 49/kg 3.4 U 49/kg 3.4 U 49/kg 3.7 U	######################################	1.3 1.4 U 49/kg 1.3 1.4 U 49/kg 1.3 1.4 U 49/kg 1.3 1.4 U 49/kg 1.3 1.4 U 49/kg 1.3 1.4 U 49/kg 1.3 1.4 U 49/kg 1.3 1.4 U 49/kg 1.3 1.4 U 49/kg 1.3 1.4 U 49/kg 1.3 1.4 U 49/kg 1.3 1.4 U 49/kg 1.4 U 49/kg 1.5 U 49/kg 1.7 U 49/kg	77 7 U Ug/kg 77 7 U Ug/kg 77 7 U Ug/kg 77 7 U Ug/kg 77 7 U Ug/kg 77 7 U Ug/kg 77 7 U Ug/kg 77 7 U Ug/kg 77 7 U Ug/kg 77 7 U Ug/kg 77 7 U Ug/kg 77 1.3 U Ug/kg 78 7 U Ug/kg 78 7 U Ug/kg 78 70 U Ug/kg 78 70 U Ug/kg 78 70 U Ug/kg 78 70 U Ug/kg 78 70 U Ug/kg 79 70 U Ug/kg 70 70 U Ug/kg 70 70 U Ug/kg 70 70 U Ug/kg 71 17 U Ug/kg 71 17 U Ug/kg	- T. T. T. T. T. T. T. T. T. T. T. T. T.	
		33 Peter			

RB271004 RFADATA 19SS003 30-JUN-94 QUAL UNITS

NÄVSTA MAYPORT RFA Surface Soil Data

BKG SDILE METALS Antimony Arsenic Berlium Codmium Chromium Silver Thailium Varnadium Zinc	
mg/kg	Lab Sample Number: Site Locator Collect Date:
III - talkalakinka	VALUE
	R8271005 RFADATA 19SS004 30-JUN-94 QUAL UNITS
istija i k di	0 K
874	VALUE 3
76/kg 76/kg 76/kg 76/kg 76/kg 76/kg 76/kg 76/kg	R8271006 RFADATA 19SS005 30-JUN-94 QUAL UNITS
4. 4	무
	\$
Tillabiledele Neese.	VALUE
	R8271007 RFADATA 1988006 30-JUN-94 30-JUN-94
2000년 (1902년) - 1. 100년 (1902년 - 1902년	_

NAVSTA MAYPORT RFA Surface Soil Data

A: SOILS PETAL Armenic Barrium Cadmium Cadmium Cobett Copet	
By/6u	Lab Sample Number: Site Locator Collect Date:
874 <u>1</u> 2.0.0 Xu	VALUE
	R8271001 RFADATA 19SS001 30-JUN-94 QUAL UNITS
	Đ.
10.4.2.4.3.2.2.3.4.4.3.4.3.4.3.4.3.4.3.4.3	VALUE
J mg/kg J mg/kg J mg/kg J mg/kg J mg/kg J mg/kg J mg/kg J mg/kg J mg/kg J mg/kg J mg/kg	R8271002 RFADATA 19SS001D 30-JUN-94 QUAL UNITS
	DL
WWATERNESS.	VALUE
	R8271003 RFADATA 19SS002 30-JUN-94 QUAL UNITS
Cardia a 8	P
15. 1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	VALUE 3
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	R8271004 RFADATA 19SS003 30-JUN-94 QUAL UNITS
. 2 4 E	Dt.

NAVSTA MAYPORT
RFA Surface Soil Data

Estra Estra			
ETECTED R = RESULTINGS OF			
LT IS REJECTED REPORTED QUANT DE RESULTS FOR 1			
ATION LIMIT IS ES			
-DICHLOROBENZEP CRE			
GENER		170 00000.00 1000 · v	Caraca e de la composição de la composição de la composição de la composição de la composição de la composição
ATED FROM THE SYDC (0270)			
(8270)			

ANALYTICAL RUN.

	Lab Sample Number: Site Locator Collect Date:	VALUE	R8271008 RFADATA 198S001 30-JUN-94 QUAL UNITS DL	VALUE	R8271009 RFADATA 1985001D 30-JUN-94 E QUAL UNITS D	DL VALUE	R8271010 RFADATA 1985002 30-JUN-94 QUAL UNITS DL	VALUE	R5271011 RFADATA 1988003 30-JUR-94 QUAL UNITS	DL	1
5-Chieropropene Acetonitrila		110 U	ng/kg	110 110 U		110 135	u wg/kg	110 120	U ug/kg	120	
Methacrylonitrile Methyl methacrylate			668	16			□ Ug/kg:	ع ل		ಸ್ಕ	
Pantachloroethana Propionitrile Vinyi acetate			₩9/K9	110		110	U 19/kg	110 120	ug/kg	120 12	

NAVSTA HAYPOR

RFA	
Soi	SAVE
l Bor	7 3
Ž	YPOR
Data	_

Chioromethame Virgic chioride Chioromethame Virgic chioride Chioroethame Nethylene chioride Acetone Chioroethame (1, - Dichloroethame (1, 2-Dichloroethame (1, 1, - Trichloroethame (1, 1, - Trichloromethame (1, 1, - Trichloromethame (1, 2-Dichloromethame (1, 2-Dichloromethame (1, 2-Dichloromethame (1, 2-Trichloromethame (1, 2-Dichloromethame (1, 2-Dichloro	Lab Sample Number: Site Locator Collect Date:
W/kg 11 U 49/kg 11 U 49/kg 6 U	Number: R8271008 Site RFADATA Locator 1985001 t Date: VALUE QUAL UNITS DL
11 11 U Ug/kg 6 6 6 U Ug/kg 6 6 0 U Ug/kg 6 6 0 U Ug/kg 6 6 0 U Ug/kg 6 6 0 U Ug/kg 6 6 0 U Ug/kg 6 6 0 U Ug/kg 6 6 U Ug/kg	R8271009 RFADATA 1985001D 30-JUN-94 VALUE QUAL UNITS
11 11 11 11 11 11 11 11 11 11 11 11 11	R8271010 RFADATA 1988002 30-JUN-94 DL VALUE QUAL UNITS
11 12 U U9/kg 11 12 U U9/kg 11 12 U U9/kg 11 12 U U9/kg 6 U U9/kg 6 U U9/kg 6 U U9/kg 6 U U9/kg 6 U U9/kg 6 U U9/kg 6 U U9/kg 6 U U9/kg 6 U U9/kg 6 U U9/kg 6 U U9/kg 6 U U9/kg 6 U U9/kg 6 U U9/kg 6 U U9/kg 6 U U9/kg 6 U U9/kg 7 6 U U9/kg 7 6 U U9/kg 7 6 U U9/kg 7 6 U U9/kg 7 6 U U9/kg 7 6 U U9/kg 7 6 U U9/kg 7 6 U U9/kg 7 6 U U9/kg 7 6 U U9/kg 7 6 U U9/kg 7 6 U U9/kg 7 6 U U9/kg 7 6 U U9/kg 7 7 8 0 U U9/kg 7 8 0 U U9/kg 7 8 0 U U9/kg 7 8 0 U U9/kg 7 8 0 U U9/kg 7 8 0 U U9/kg 7 8 0 U U9/kg 7 8 0 U U9/kg 7 8 0 U U9/kg 7 8 0 U U9/kg 7 8 0 U U9/kg 7 8 0 U U9/kg 7 8 0 U U9/kg 7 8 0 U U9/kg 7 8 0 U U9/kg 7 8 0 U U9/kg 7 9 0 U U9/kg 7 9 0 U U9/kg 7 0 U U9/kg 7 0 U U9/kg 7 0 U U9/kg 7 0 U U9/kg 7 0 U U9/kg 7 0 U U9/kg	R8271011 RFADATA 1988003 30-JUN-94 0L VALUE QUAL UNITS
๑๗๑ ๑๑๑๗๐๑๐๐๑๑๑๗๗๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑	P.

2-Dichitorobenzene -Chiorosthylvimyleither -Chiorosthylvimyleither -Chiorosthylvimyleither -Chiorosthylvimyleither -Chiorosthylvimyleither -Chiorosthylvimyleither -Chiorosthylvimyleither -Chiorosthorosthame -Chiorosthame -Chiorosthame -Chiorosthame -Chiorosthame -Chiorospene -C	Lab Sample Number: Site Locator Collect Date:	R8271012 RFADATA 1983004 30-JUN-94 VALUE QUAL UNITS	DL VALUE	R8271013 RFADATA 1985005 30-JUN-94 QUAL UNITS	DL VALUE	R8271014 RFADATA 1985006 30-JUN-94 QUAL UKITS	Pτ
Discrete Control of Co	,2-Dichiorobenzene -Chloroethylvinylether thyl methacrylate		, o ii o		, 6 , 6		o o
Togethame 13 U 100/kg 6 U 100/kg 6 U 100/kg 6 U 100/kg 6 U 100/kg 6 U 100/kg 6 U 100/kg 6 U 100/kg 6 U 100/kg 6 U 100 U 100/kg 13 U 100 U 100/kg 13 U 100/kg 13 U 100/kg 13 U 100 U 100/kg 13 U 100/kg 13 U 100/kg 13 U 100/kg 13 U 100/kg 13 U 100/kg 13 U 100/kg 13 U 100/kg 13 U 100/kg 13 U 100/kg 13 U 100/kg 13 U 100/kg 13 U 100/kg 13 U 100/kg 13 U 100/kg 13 U 100/kg 13 U 100/kg 13 U 100/kg 14 U 100 U 100/kg	; 2; 3 · 1 · 1 ch (or opense rang · 1 ; 4 · D (ch (or o · 2 · buterne sobuty a (coho)			: > ⊂ () N_		> 0
250 R Wg/kg 6 220 R Wg/kg 6 6 6 Wg/kg 6 6 6 Wg/kg 130 Wg/kg 100 Mg/kg 6 6 6 Wg/kg 13 11 W Wg/kg 13 11 W Wg/kg 11 11 Wg/kg 13 11 W Wg/kg 11 11 Wg/kg 13 11 W Wg/kg 11 11 Wg/kg 13 11 W Wg/kg 11 11 Wg/kg 13 11 W Wg/kg 11 11 Wg/kg 13 11 W Wg/kg 11 11 Wg/kg 13 11 W Wg/kg 11 11 Wg/kg 13 11 W Wg/kg 11 11 Wg/kg 13 11 W Wg/kg 13 Wg/kg 13 11 W Wg/kg 13 11 W Wg/kg 13 Wg/kg 13 Wg/kg 13 Wg/kg 13 Wg/kg 13 Wg/kg 13 Wg/kg 13 Wg/kg 13 Wg/kg 13 Wg/kg 13 Wg/kg 13 Wg/kg 13 Wg/kg 13 Wg/kg 13 Wg/kg 13 Wg/kg	2-0 brown-3-chigropropane	5 - 13 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	. J.		οΞ, 	5	<u>.</u>
130 U Wg/kg 130 110 110 110 U Wg/kg 130 110 U Wg/kg 1 10 U Wg/kg 6 6 U Wg/kg 6 6 U Wg/kg 6 6 U Wg/kg 11 U Wg/kg 11 U Wg/kg 11 U Wg/kg 11 U Wg/kg 110 U	A-D-Coxere	==		c >=	6 22	0 R ug/kg	•
13 U Wa/kg 13 11 U Wa/kg 11 11 U 13 U Wa/kg 13 11 U Wa/kg 11 11 U 13 U 13 U 14 Wa/kg 11 11 U 13 U 14 Wa/kg 11 11 U 15 U 16 U 16 U 16 U 17 U 18 U 18 U 18 U 18 U 18 U 18 U 18	cetoni tri le	=		_	110	0 U ug/kg	10
13 UJ Wg/kg 110 U Wg/kg 110 110 U U Wg/kg 110 110 U U Wg/kg 110 110 U U Wg/kg 111 110 U Wg/kg 111 110 U Wg/kg 111 110 U Wg/kg 111 110 U Wg/kg 111 110 U Wg/kg 110	Tethy Dethocrylate	6 U 49/kg	ű.		=-		=0
	Propionitrile	130 U Ug/kg		= = 5	=======================================		
							7 m 1 Abr 1840 - 1846 1840 - 1846 1840 - 1846 1846 1846 - 1846 1846 1846 1846 1846 1846 1846 1846

NAVSTA MAYPORT RFA Soil Boring Data

BKG VOCA (5240+11) Chloromethare Bromomethare Vinyl chloride Chloroethare Nethylene chloride Acetore Carbon disulfide 1,1-Dichloroethare 1,2-Dichloroethare 1,1-Trichloroethare 2-Butanone 1,1-Trichloroethare 2-Butanone 1,1-Trichloroethare 2-Butanone 1,1-Trichloroethare 2-Butanone 1,1-Trichloroethare 2-Butanone 1,1-Trichloroethare 2-Butanone 1,1-Trichloroethare 1,1-1-Trichloroethare 2-Butanone 1,1-Trichloroethare 1,1-1-Trichloroethare 2-Butanone 1,1-Trichloroethare 1,1-1-Trichloroethare 2-Butanone 1,1-1-Trichloroethare 1,1-1-Trichloroethare 1,1-1-Trichloroethare 2-Butanone 1,1-1-Trichloroethare 2-Butanone 2-Butanone 2-Butanone 2-Butanone 2-Butanone 3-Butanone 3-But	Lab Sample Number: Site Locator Collect Date:
13 U 49/Kg 6 U 49/Kg	R8271012 RFADATA 1985004 30-JUN-94 VALUE QUAL UNITS DL
133 11 U U9/kg 133 11 U U9/kg 134 11 U U9/kg 135 11 U U9/kg 136 6 U U9/kg 137 11 U U9/kg 138 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 139 11 U U9/kg 149 159 159 159 159 159 159 159 159 159 15	R8271013 RFADATA 1985005 30-JUN-94 VALUE QUAL UNITS (
11 11 11 11 11 11 11 11 11 11 11 11 11	R8271014 RFADATA 1985006 30-JUN-94 DL VALUE QUAL UNITS DL

NAVSTA MAYPORT RFA Soil Boring Data

				R E	HAVSTA MAYPORT	ORT Deta								
Lab Sample Number: Site Locator Collect Date:	R82 RF 19 30-	R8271008 RFADATA 1985001 30-JUN-94 JUAL UNITS	DL	VALUE	R8271009 RFADATA 198S001D 30-JUN-94 QUAL UNITS	S DL	VALUE		R8271010 RFADATA 198S002 30-JUN-94 QUAL UNITS	PE .	VALUE	R8271011 RFADATA 1988003 30-JUN-94 QUAL UNITS	DL DL	
Anthrecene DI-m-Bury/iphtheLate	730 U	ug/kg	ខ្លែខ្ល	740	u ug/kg		740	690 U U	49/kg	690	800		ug/kg ug/kg	88
f (woranthere	7 20 20 20 20 20 20 20 20 20 20 20 20 20	5/6 6/6	7 7 2 2	740	- ug/kg		26	690 E	\$ \ <u>\$</u>	690	8 8	-	19/kg	8
Butylbenzylphthalate	2	٤. ک	2	740	- Le / Kg		38	\$ \$ = c		28	1.600 1.600	= =		
Benzo(a)anthrecane	735 C	& & 2	38	740	د د سو/لو		740	690 E	\$ <u>{</u>	9	9	-	-6/g	8
	- - - -	2.	걸걸	740	= = = = = = = = = = = = = = = = = = =		77 0) } = =		} }	200		6/kg	2 8
Discontriphthelate	730 <u>L</u>	5 <u>5</u> 2	7	740	- ug/kg		76	690 U		2	800	= 0	49/kg	8
Benzo(b) f Lucranthene			3 2 2	740 740	= = = = = = = = = = = = = = = = = = =		740 0	566 - 5	6/6/66 6/6	\$ \$	800	- -	6/kg	8 8
日かりたり(中) DY フタイカ	75.		3	740	ug/kg		740	690 U	<u>ه</u>	8	200	· c	40/kg	8
Indeno(1,2,3-cd)p/reire	773 50 50	5 6 2 2	걸 2	740	 2/2		740	69 X	5 <u>5</u> 5	8 88	800	<u> </u>	4/6 6/6	88
Benzo(g.h. i)perylene	770		5 2	740	= C \(\frac{1}{2} \)		25	56 26 26 26 26	w/kg	88	300 000 000	= =	5 <u>5</u> /6	3 8 8 8
Mathyl methenesulforate	12	5	12	740	- La/kg		740) 90 :-	8) 38	200 200	= =	6/kg	88
Acetophenore	730 L	\$ { 2 2 2	3	740	- ug/kg		7,0	690 L	10/kg	8	80	=	6/6	80
Phenyl-tert-butylagine	3600 U	5 50 25 25 26 25	3600	3600	⊊		8	3,000	5 <u>6</u>	3600 2007 2007 2007 2007 2007 2007 2007 2	3900	2 E	/kg	3900
2,6-Dichtorophenal	55 	3	SE SE	740 740	= u ₀ /kg		740 740	666 666 566	€/kg	` }	3 6 6 6 6	5 E	200	8 8
H-Sitrospdiethylemine	13 20 20 20 20 20 20 20 20 20 20 20 20 20	<u>چ</u>	12	740	- Le / Le		740	698 = C	(6) (6)	38		= c		38
Benzidine		2 (S		3600	EJ ug/kg			7.00 F	5	•	3900	: E	76	
1,2,4,5.Tetrachlorobenzene Pentachlorobenzene	3600 0	4 4 6 6	3668 668	3600			88	26 26 26 26 26 26 26 26 26 26 26 26 26 2	2/ <u>2</u>	¥1	3900		6/kg	98
1-sephchylesing	3600 U	49/kg	7600 0000	3600			6 2	3480 C C	5 (88 XX	392	c c	49/kg	9065 945 945 95 95 95 95 95 95 95 95 95 95 95 95 95
7	33	56	22	740 240			770	888 288 22	(4) (4)	28	2 00 00 00 00 00	E =	49/kg	8
4-Animos (many)	3600 U	5/6	3600	3600	0 /g		2	- 6X	2		3900	==	-	390
Pentachiaroni trobanzana Pronamida	730 C	€ & & &	고 달	740 7600			76	\$2 = 0	5 <u>6</u>	88	900	C C	5/kg	88
	7 7 2 2		73	740 740	= = = = = = = = = = = = = = = = = = =		3 3	88 ==	5 6	3 3	8	<u> </u>	5 6/6 6 6	2 5
3-Methylcholanthrene		50/6	52	740	- C		38			5 8		= =		§ 8
Pyrigine N-Mitrosomethylethylemine	200	\$ \$	멸	740	50/62		325	8	5 (8	200	==		88
N-Hitroecoorpholine	730 U		귏돹	76			25	\$2 	£ {	8 3	800	C (49/kg	88
Mauechloropropera		1 S 2 S	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 600			88	2 000 E		2 2 2 2 2 2 2 2 3	39000 39000	= =	56/kg	9006 906 906 906
Safrole	3800	8	28	380			\$ \$	58 58 57		K #	1900 1900	= =		8 8 8 8
1,4-Heaththoguinare		8 /8/	73.00	74000	U 49/kg	7	8	9000 u	20/Kg	69000	80000	٤:	ug/kg	•
1,3-0 ini trobenzena	2 2 2 2		걸걸	740 740	= = = = = = = = = = = = = = = = = = =		22	\$ 2 = =	£ &	3 3	800	= =	6/kg	8 8
1 5. Trinitrobentene	1 05 F	5		7 0 0 0 0 0				588 588 588 588 588			39000	= 3	50/kg	80
						,	Ad Nobel Holder State Anna State							
														•

₽ F	
	SAY
쿬	VIS
S	Š
Ξ	Š
8	_

Lab S

	Sample Number: Site Locator Collect Date:
	R8271008 RFADATA 1985001 30-JUN-94 VALUE QUAL UNITS
\$\$ 55555555 \$\$555555555555555555555555	S DL VALUE
740 U U9/kg 6 U U9/kg 740 U U9/kg 6 U U9/kg 740 U U9/kg	R8271009 RFADATA 19850010 30-JUN-94 JE QUAL UNITS
760 760 760 760 760 760 760 760 760 760	Dt WINE
7/64 7/64	R8271010 RFADATA 1985002 30-JUN-94 JE QUAL UNITS
	P.
800 U 49/kg 800 U 49/kg	R8271011 RFADATA 1985003 30-JUN-94 VALUE OUAL UNITS
2000 2000 2000 2000 2000 2000 2000 200	P

QUAL UNITS DL VALUE QUAL UNITS DL VALUE				R8271012 R8271013	
VALUE					
<u>8</u>	J-05	198	RF2	R8271014	

Lab Sample Number:

Site Locator Collect Date:

ALUE

몯

2.4-0 inj trotolumne Diethylphthelate	2,4-Dinitropheral	3-Hitroaniline	2,6-Dinitrotoluene	2-Mitroaniline	2,4,5-Trichloropherol	Dimethylphthalate	Haxachtorocycl opentadiene	4-Chioro-3-methylphmol	Hexacht or obutadians	Reported	1,2,4-Trichlorobenzene	bis(2-Chloroethoxy)methane	BOTTO C BOLD	2-Mitrophenol	Taophorona	Hexach-toroethane	N-Nitroso-di-n-propylamine	bis(2-Chloroisopropyl)ether	1, 2-Dichlorobenzena	Genzyl Alcohol	1 A-Dichiorobenzene	bia (2-Chigroethyl) ether		Phone Control of the	
200 - 40/kg		5	-		= =	64/6n n 078				840 U vg/kg	C (==		840 U 40/kg				64/60 C C C C C C C C C C C C C C C C C C C			= (٤		
	4100 3600 UJ 149/kg	- E	740 0	= = :	3600 U	740 U	740 u		740 U	740 U U9/kg	740 0	840 740 U ug/kg	3600 U	840 740 U Ug/kg	740 U	840 /40 U Ug/kg	740 U	740 U	740 T U9/Kg	740 U	740 U	6 740 U U9/Kg	740 52	740 U	940 740 U wa/ka
740 740 u	3600 3600 U	740 740 U	740	3600 3600 U	3600 3600 U	740 740 U	740 740 4	740 740 U	740 740 U	740 047	740 740 U	740 740 U	3600 3600 U	740 740 U	740 740 U	740 740 U	740 740 U	740 740 U	74D 74D U	740 740 U	740 6 U	740 A L	7,0 U.	740 U	740 740 0
#/## 750																									

A					
808					
I DES					
- 50					
	ekonominen undakkennen in de seutstaar en				
85 . R					
9 R C	e. La contactor de Militaria.	Prince (25,500,450		n wasalwa Bar	- 200 - 55 - 35 per .
FR.					
22 E					
758					
2.3					
7					
₹ 7					
- 1.ms					
- 1 1 1 1 1					
CHED					
*O8					
. NZE					
ä					
ÆRE					
GENERATE					
3					
9					
Š					
22					
E					
MIL AIR					
¥			and the second s		
_					

Hethapprilene 3600 u. 3 3'- Diamethylbenzidine 3600 u. Hexachlorophene 3600 u. Aramite 2-Chlorophenol 3-R. A-Mathylbenol 4-Mathylbenol 5-R. A-Mathylbenol 6-Mathylbenol 1730 u 182-Chlorophenol 2-Acetylamine 1730 u 2-Acetylaminofluorene	Lab Sample Number: RE Site F Locator 30 Coliect Date: VALUE 00
J W9/k9 730 J W9/k9 3600 J W9/k9 3600 W9/k9 730 W9/k9 730 W9/k9 730 W9/k9 730 W9/k9 730	R8271008 RFADATA 1985001 30-JUN-94 QUAL UNITS DL
3600 UJ Ug/kg 36000 UJ Ug/kg 36000 U Ug/kg 740 U Ug/kg 740 U Ug/kg - Ug/kg 3600 U Ug/kg 740 U Ug/kg 740 U Ug/kg 3600 U Ug/kg	NAVSTA MAYPORT RFA Boring Soil Date R8271009 R8271009 RFADATA 1985001D 30-JUN-94 VALUE QUAL UNITS D
740	t VALUE
850 87/87 87/87 87/87 87/87 87/87 87/87 87/87	P
800 U U9/kg 800 U U9/kg 3900 U U9/kg 800 U U9/kg 800 U U9/kg - U9/kg - U9/kg 3900 U U9/kg 800 U U9/kg	R8271011 RFADATA 1985003 30-JUN-94 DUAL UNITS
3900 800 800 800 800	Br.

=					
HOLL	T DETEC				
LIST	160 20 50 P				
NGS OF		 essanos, procesoros o	took hisso te naas.	und all underst	ur sansa umo
RESULT	r is re Ported				
S FOR	D R = RESULT IS REJECTED MILE UJ = REPORTED QUANTITATION LIN				
	TATLO			prove i Nobideo Cuesa	
₩ **					
1,4-0	6 6 7				
1,4-DICKLOROBENZE	MATED				
BENZE					
ERE O					
GENERATED					
- 6				855 2885 1938	980986 (VAIRE IN)

o-Toluiding Hexachi or opropens Safrole Legasfrole Legasfrole 1,4-Haphthoqui none 1,3-D in trobenzane 5-Nitro-o-toluiding 1,3-5-Trinitrobenzane 6-Nitro-o-toluiding 1,3-D isethylbenziding 1,3-D isethylbenziding Arasite 2-Chibrophenol 3-E 4-Methylphenol 1,3-E 4-Methylphenol Diphenylasine Hexachionopropens 1-A-cetylasinofluorens 2-Acetylasinofluorens	Lab Sample Number: Site Locator Collect Date:	
8//87 0 0019 8//87 0 0019	R8271012 RFADATA 1985004 30-JUN-94 VALUE QUAL UNITS	
840 740 4100 3600 4100 3600 4100 3600 4100 3600 4100 3600 840 740 840 740 840 740 840 740 840 740 840 740	DL VALUE	RF
740 U U9/kg 3600 U U9/kg 3600 U U9/kg 740 U U9/kg 740 U U9/kg 740 U U9/kg 3600 UJ U9/kg 3600 UJ U9/kg 3600 UJ U9/kg 3600 UJ U9/kg 3600 U U9/kg 740 U U9/kg 740 U U9/kg 740 U U9/kg 740 U U9/kg 740 U U9/kg 740 U U9/kg 740 U U9/kg	RB271013 RFADATA 1985005 30-JUN-94 QUAL UNITS	NAVSTA MAYPORT RFA Boring Soil Data
740 740 3600 3600 3600 3600 3600 3600 740 740 740 740 740 3600 740 740 740 740 740 740 740 740 740 740 740 740	DL VALUE	jta .
	RB271014 RFADATA 1985006 30-JUN-94 QUAL UNITS	
750 750 7 750 750 750 750 750 750 750 75	PL	

Lab Sample Number: Site Locator Collect Date:	VALUE	R8271012 RFADATA 1985004 30-JUN-94 QUAL UNITS)12 11A 1-94 1-11S	만	VALUE	R8271013 RFADATA 198S005 30-JUN-9 QUAL UNI	R8271013 RFADATA 198S05 30-JUN-94 DUAL UNITS	DL.	VALUE	R8271014 RFADATA 1985006 30-JUN-94 QUAL UNITS		E.
		ESEE	6 6 6 6 6 6 6 6 6	4100 4100 4100	Lu (u)	740 U	ug/kg ug/kg ug/kg	3600 740 740	740 740 3600	Eeee Eeee	\$ 4 4 6 2 4 4 6 2 4 4 6	377 366 366
4,0-Dintro's metry terms. N:Aitrosodipheny lamina (1) 1.2-Dipheny lhydraz ine	35	==	\$ 65.	333	•	740 U	\$ & &	222	332	= = = = = =		333
4-8: companyl-phenylether Hexachior obenzere	22		\$ \delta	226		740		760 600 760	3.76 0.76	= = ;		3600 3600
Pentach larophenol	200	==	5 & 2 &	26 26 26	.,	740 U	09/kg	740	27.	: = : : = :	3	740
Anthraceme Anthraceme	88			22		740 U	\$ %	740	760	== ==	* * * * * * * * * * * * * * * * * * *	7,0
pf-n-Butylphthalate	28	==	\$ \$ \$ \$	2	,		ه/kg	740	276	- C)	740 240
Pyrane	:8	==) 	226	_, _	740 U	24/82 24/82	740	7,70	C	64	740
#utylbenzylphthelete	175	-	& {	170		1500 U	ug/kg	1500	7500 7500	= C	5/KG	75 68
Benzo(a) anthracera	2 2			22		740 0	63/80 83/80	740	740	= (9/kg	3
bis(2-mthy/hexy/)phthsists	2	2		33		740 U	يو√لا 19/kg	740	740	e =		33
Benzo(b) fluorenthene	2	6	By/Br	200		740 U	(4) (6)	740	740 740		5 /6 6 /6	740
Bento(k) fluoranthers	.	25	5 5 6 6	240 040		740 0	ug/kg	740	12			33
Indeno(1,2,3-cd)pyrane	• œ	- -		2 C		740 U	€ €/ €	740	73	e :	5 £	740
promote, nyenthing and	· @ 1		ě.	26		7 7 0 0 1	6/kg	3600 740	¥ 76		2	¥.
2-Picoline Nathyl methanepulformie	2	1.1	\$ \{	2,0		740	6/6	740	776			77 33
Ethyl mathematul formite	• •	5	\$ \$	Z:			5	740	22] -		76
#-#itrosopiperidine	• • • • • • • • • • • • • • • • • • •	* 8 E E	6 6 6	<u> </u>	Lel	3600 U	5/kg	3600				365
2.6-Dichloropherol			\$/K	52		740 U	6 46 6 6	740	72	<u> </u>		Zi
N-Mitroso-di-n-butylesine		. 21	2 2	: 2:	•	740	ug/kg	740	22			55
N-Mitrosopyrrolidina	<u>.</u>	2 E	\$ { 2	1		F. 99	بو/ وم/		:	Ξ	2	Ē
1,2,4,5-Tetrach Lorobentere		33 - c				3600 C	2/6 2/6	3600	8 8	==		8
Pentach lorgbenzere 1-Hach thy less ine			5 (12	,	166 166 166	19/kg	3600 000 000	23	- E		768 8
2: upphthy lawing		25	\$ { \$ }	25			ر و ا	740	**	:		76
Phenecet in	.	28 = E		£		5	64/60 64/60	3600	\ \$;	e;	5	38
Pentach Lorum i troberstene		8	ug/kg	18		3600 = E		740 740	7 % 8 %	- C		76
Pronanida		2		29		760	6/4 6/4	740	. *		5	35
p-(0)seethy(benz(A)Anthrecere			&	9		740 0	- 0/kg	740	77		6/20 20/20	33
3-yethylcholanthrane		35		} }		740 = C	5 6 6 6	36.0E	83	- C	2	800
Pyridina N-Nitrocomethylethylamine		55	5.5	3		740	Lo/ko	740	- **	- -	5 5 6 6	746
N-Nitrosamorpholine		2	Ę	9			1					
					lite Palael							
Market Control of the	8.09008.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21	¥ ::					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		

NAVSTA MAYPORT RFA Boring Soil Data

	Araclar-12		Chiordane Chioroberzii Diallate	Endrin alde	Endosul fan	Endrin Endosul fan	Endosul fan Dieldrin	genera-BHC (Heptachlor Aldrin	dere-BHC	ESTICIDES/PC
318					•		- 9			9: (SV-846,8080)
		Alexander (Control of Control of								080) ug/kg
228		528£					,225	ėrai		V.
CEC	2 49/49 49/49				5654 5662					
388		\$5.83 \$2.83	; <u>.</u>	n → → 1	4 		7 3 23	1888 1		
334 CCC	37 ZZ		1623 ====	7.5 			 68.68 99.99			<u>{</u>
19/kg	49/kg	5666 6666		666	50/kg		5666 6666		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	<u>.</u>
	5551 5551			7.5.5 7.1.1					13.56 13.56	
EEF	686 686 686	ccc	===	3CC	ccc	e e e	CEE			
# #\$	een:	uen:	de N				ik k			4

R8271013 RFADATA 1985005 30-JUN-94 QUAL UNITS

NAVSTA MAYPORT
RFA Soil Boring Data

Lab Sample Number: Site Locator Collect Date:

R8271012 RFADATA 1985004 30-JUN-94 QUAL UNITS

WALUE

VALUE

무

AVLUE

무

R8271014 RFADATA 1985006 30-JUN-94 QUAL UNITS

Aroclor-1260	Arector-1248	Aroclor-1242	Aroclor-1221	Arocior-1016	Teody in		Chiorobenzila	Chlordene	Elocito etoeni	Methoxychlor	4.4-DOT		Endoeul fan 11	A. A. DOR	Dieldrin	Endoughten -		Neptachlor	CT SECTION			STICIDES/PCBs	医多种性性 医甲状腺素
																	} } }		255 5			IDES/PCB# (\$V-846,8080)	经产业的 医多种性 医多种性性
						6800000 8800000 8800000																- Le/kg	100
18 U		137 C	77	37 U		37.0		7.5		- - - -	-	-2.5 E			, <u>1, 1, 1</u>	. 77. ū					1.4 5		四月 医多清 医二十二甲甲酰胺
40/kg		8						00/kg 7	51		5 E				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	19/kg	5 (5)		8	5/2			的 网络金属人属的 的
				37 u			5: 5:	7.5 U	5	- W	1.5 U	1.5 U	1.5 U	1.50					. = =				-
_				ug/kg			5/c		-9/kg	ug/kg	ug/kg	U9/kg	ug/kg	00/kg	5/Kg	ug/kg	L 0/kg	C (4)	19/kg	ug/kg	ug/kg	un/ka	
ä				# K			5	7.5					.5	1.5	ć k	Ċ	ĸ	K	Č K	κ.	5	K	- 一人の行の行を表記
	=(==	=		=	==		÷, ,	÷		- we/Ke	\$ 19/kg	53/6n 0 4	- ug/kg	7 11 19/kg	7 1 18/16	7 U ug/kg	7 ug/kg		17 ug/g	4 u ug/kg	7 U 50/6	不 " 有 我 一 人 你 " " 我是是我
17		44	3	238	£	- 5	£	27		^.											-		7 C. S. S. S. S. S. S. S. S. S. S. S. S. S.
-	=	= =	¢	81 U Ug/kg	-	- -	=	- -	=	- C	= =	C	= =	_		= =	_	-	= 0	=	: =	_	
_			_	<u> </u>	_		_		_														

NAVSTA MAYPORT RFA Soil Boring Data

Lab Sample Number: Site Locator Collect Date:

R8271008 RFADATA 1985001 30-JUN-94 QUAL UNITS

VALUE

무

YALUE

AVLUE

2

R8271011 RFADATA 1985003 30-JUN-94 QUAL UNITS

R8271010 RFADATA 198SD02 30-JUN-94 QUAL UNITS

R8271009 RFADATA 19850010 30-JUN-94 QUAL UNITS

			_				
Salah Januar Salah Januar		The Care	ş.,	erraa wis	8.20 cm	angere 🌉	6080.w13
	255	물으셨음	364	3885	200	330	
	8 5 5	= <u> </u>	5 T		불물물	3 7 8	
	Ē	5	₹ ક	` ' ' '	S = T	<u> </u>	
				LOS COMMENTS		清	
						- Z	
		esti sisabele Cili Kingabi			Jakananak a Juli Jakananak a		
			41.00				
Nagin Brasilia (S.A.) Opinio School (S.A.) Historia			100		Maria Car	ur i di dendan. La indicata	
	and "						
	inta hija.	5 29	`A. *.			AM and a	
						3	
						70/k 0	
911 N. N. 2099 808	al as War	- 1000000000000000000000000000000000000	الأدرو بدراء	-10/4/00/6503	20098 V25278	 20:3:0:3:0:3:30	
i e de grapada Marie de grapada		. 200200000 (1) (000 - 4 700 (0) 1 7 4 4 700 (1 77.4					
	~~~	ijiiit •ooyoj•  ⇒		•	J	) <b></b>	
	<b>∞</b> – ~	ななない	, 2 P :	3.99:	. 88°	· ww	
			C # 0			- <b>-</b> -	
da i					ann. San 11 - 1		Amalia
	222	2222	222	1221	1222	22	Anna e-V
	222	3555	33	133	1222	22	
Maria							
					2 323	an garan Sasaran	베이탈
	•		2		NR		
ige i nga Milater e na	er a company		<b>₹●</b> ₹WIIT		· (5)		
	18 18						
	9 9 8	オなまじ	. C	367	. Z S :	בּגּ	
	<b></b>		= 0	= - =	C L L	. <u>.</u> _	
	222	2000 2000 2000 2000 2000 2000 2000 200	224	198		188	
	866	6666	66	666	6666	66	
	5	<u> </u>	·. :	<u>.</u> .	~	<del></del>	
	* •	~~~ <u>`</u>					gga soj
	Filli, ili Albori		e		King di Secondari di		
	elena en La	i de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición dela composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición de la composición dela composición de la composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela c		TRA WALE			
	NV						
svanjans (H) associa	<b>470</b>		- W 1	577.	1000		
					, w		
Kwaleni			eser i				adal unim Madaladi
	522	<b>ट्ट्ट्</b>	4	<b>EEE</b>		₹₹	
	555	4668	25	6666	6666	<b>55</b> 5	1,11790 1911 – 191
tang ili. Sagarat alah			ma .	y býci			
				w.	,		ulidayin Ujugʻilga
	n 🕨	4 · •			<b>.</b>	_	giri ya Silafak
	· N	エコロレ	. #	₩ ÷	Z		

NAVSIA MAYPORI RFA Boring Soil Data

Lab Sample Humber: Site Locator Collect Date:

R8271012 RFADATA 1985004 30-JUN-94 QUAL UNITS

**VALUE** 

몯

VALUE

무

VALUE

므

RB271014 RFADATA 19BS006 30-JUN-94 QUAL UNITS

RB271013 RFADATA 19BS005 30-JUN-94 QUAL UNITS

RFA BOTING	5
Solt Data	
Data	, 2

mg/kg 1:1 U mg/kg 1:1 1:1 U mg/kg 1:1 1 1:2 U mg/kg 2:4 1 mg/kg 2:4 1 mg/kg 2:5 1 mg/kg 2:5 1 mg/kg 2:6 1 mg/kg 2:6 1 mg/kg 2:6 1 mg/kg 2:6 1 mg/kg 2:6 1 mg/kg 2:6 1 mg/kg 2:6 1 mg/kg 2:6 1 mg/kg 2:6 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:7 1 mg/kg 2:	Leb Sample Number: Site Locator Collect Date:	R827100B RFADATA 1983001 30-JUN-94 VALUE GUAL UNITS	P	RFA Boring Soil Data R8271009 RFADATA 198S0010 30-JUN-94 VALUE QUAL UNITS DL	VALUE	R8271010 RFADATA 1985002 30-JUN-94 QUAL UNITS DL 1	R8271011 RFADATA 1985003 30-JUN-94 VALUE QUAL UNITS
mg/kg 5.1 4.2 u mg/kg 4.2 4.3 U mg/kg 5.3 u mg/kg 5.1 4.2 u mg/kg 5.3 s.3 u mg/kg 5.5 u mg/kg 5.4 mg/kg 6.4 u	mg/kg	ecce ere cerec		:	**####################################		

Ant teamy
Ansente
Beryllia
Beryllia
Cadmia
Cobelt
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
Copper
C

				4	
		RFA Sediment Data			
Lab Sample Number: Site Locator Collect Date:	R8272001 RFADATA 1950001 30-July 60115	RB272002 RFADATA 19SD001D 30-JUN-94 VALUE QUAL UNITS DL	R8272003 RFADATA 19SD002 30-JUN-94 VALUE QUAL UNITS DE	R8272004 RFADATA 19SD003 30-JUN-94 VALUE QUAL UNITS DL	
					•
eks voce (8240+11) ug/kg chloromethame	E U US/KG	<b>5</b> 77	12	12 U ug/kg 12 12 U ug/kg 12 12 U ug/kg 12	~~~
Viny! chloride Chloroethene	13 U CO/KO 13		2/60 2/46 2/46	12 U ug/kg 6 U ug/kg	6 N
Acetons Citionica		- 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	9/kg 0.9/kg	U 09/kg	~ 0~
1-Dickloroathana	6 U 49/kg	. <b></b>	6 C 6/2	U vg/kg	<b>о</b> о
1,2-Dichloroathena (total)	c=	<b>-</b> -	= = <		<b>~</b> ~
1, 2-Dichtoroethane	13 R 49/Kg	6 U ug/kg 12 R ug/kg	12 R 49/kg	2 09/kg	<b>-</b>
1,1,1-Friedleroethane	9 L M9/kg	6 U ug/kg	6 U 49/kg		<b>ው</b> ው
Broadich (or one thens	6 U V9/R9	6 th Ug/kg		<u>-</u> -	ውው
cie-1,3-9 ichloropropene	6 U Ug/kg	= = 0		<b>= =</b>	00
pibromochioromethane	:ce	6 U ug/kg	-	<b></b>	. 0. 0
trans-1, 3-bichloropropene	9 C 19/kg	<b>- -</b>	6 0 U ug/kg	6 U ug/kg	0.0
4-Methyl-2-pentahone	13 13 19/69	12 UJ Ug/kg	E	= E :	Φ.
Tetrachtorosthere	6 UJ wg/kg	6 UJ Ug/kg		- E	•
Tolugne	6 U Ug/kg	6 6U ug/kg	= = •	<b>&gt; &gt; &gt;</b> (1)	• •
Ethyl benzere	6 U wg/kg	6 6 U ug/kg		6 G (	<b>Ф Ф</b>
Nyleres (total)		0.0		- C	<b>~</b> ~
1,3-0 ich locabenzene		120 R		120 R ug/kg	<b>7</b>
Indose thene	860 U 49/kg 13	6.5	==	800 U ug/kg	800
Acryloniterile	U wg/kg	6 6 U ug/kg	- <b>-</b> ;	<b></b>	••
1,2-0 ichtproberzene 2-Chtoroethylvinylether		. 72	12 II.J. ug/kg	6 UJ 49/kg	
Ethyl methecrylate	9 KT - 14/VA	2	6 UJ wa/kg	25	
trans-1, 6-0 ich i oro-2-butene		240 s	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	240 R ug/kg 6 U ug/kg	•
	13 U 46/20 13 U 46/20	-	12 U W/Kg 12	12 U ug/kg	6 2
1.4-Dioxana	260 R ug/kg	240 m U978			
				- :	

			ATA GOL								
Lab Sample Number: Site Locator Collect Date:	R8272001 RFADATA RFADATA 19SD001 30-JUM-94 VALUE QUAL UNITS	118 92 1	R821 RFJ 1988 30	R8272002 RFADATA 19SD001D 30-JUN-94 QUAL UNITS	₽	R62 R7 19 30-	R6272003 RFADATA 19SD002 30-JUN-94 QUAL UNITS	PL &	R82 RF 19 30-	R8272004 RFADATA 19SD003 30-JUN-94 QUAL UNITS	무
Anthrecene Di-n-Butylphthelete	860 U U9/kg		790 c	ug/kg 19/kg	888	780 U 780 U 1087	n9/kg n9/kg n8/kg	780 780	800 U	ug/kg ug/kg	800 800 800
Pyrene	<b>.</b>			(g/kg	S S	88		ğğ	2 00 2 00 2 00 2 00	6/kg	2 2
Sutylbenzylphthelate	1700 U ug/kg	) (Sec. 1700	1600 U	64/kg	16 33 30 33	1600 L	\$ <del>\$</del> \$	<u>;</u>	1600	ug/kg	58
Benzo(a)anthrecare	==		8 8 = =	- W - W - W - W - W - W - W - W - W - W	88	788 	5 5 6 6	<b>3</b> 2	8 E	5 6 6 6	<b>8</b> 8
Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chr	64/67 C 098		7000	<u>الم</u> راج	3	780 U	₽/E	2	800 U	F0/kg	8
Di-n-octy/phthelete	_			-0/kg	g S	2 2 2 3 3 3 3 3 3		<b>2</b> 2	2	- 40/20 - 60/20	88
Benzo(b) fluorenthene			7 7 7 6 C	5 é	3	786 C	£ {	88	800 C	5	8
Banzo(A)Pyrena	=		_	<b>10/kg</b>	8	78 8	₩/K	8	800	5 <del>6</del>	38
Indeno(1, 2, 3-cd) pyrene			7 20 	4/kg	33	78 28 -	5/ <u>5</u>	<b>Z</b>	800 C	6/6 6/3	8
Benzo(d.h. ) Derytene	= 1		790 U	49/kg	8	780 L	æ/æ	8	2 2 2 3 3 4	برو. وم/ارو	<b>.</b> 8
2-P-coline	==		7800 - C	6 /kg	38	785 88 C	6 & 2 &	288	800	5/2 2	88
meny sectioness forest	86 C		790 c	ug/kg	8	8 8 ==	\ \&	ğ	8 8 8 8	5 6/kg	3 8
Acetophenone idine	٤٠		790 EJ	₩ 10/kg	্	785 L	5 6	 	000 LJ	ug/kg	
Phenyl-rest-butylanine			3800 U		380 00 00	300 - 000 		72 S		5 6/6 6/6	<b>8</b> 8
2,0.0101010101111010111011101101	<b>C</b> (	49/kg 860	790	- kg	8	8	¥0/₹0	ğ	88	<b>Lg/kg</b>	<b>.</b> 8
N-Nitroeodiethylunine	860 U Vg/K	<b>ug/kg</b> 200	<b>7</b> 8	6/6 6/6	33	<b>Z</b>	€ 2 £	ğį	800 C	5/kg	88
Benz dine	Ξ		3800 UJ	<b>5 6</b>	<b>1</b>				1900 E	6 6 6 7	3900
Pentachlorobenzene	= (	4200	3800 U	40/kg	3000	3000 U	ug/kg	<b>36</b>	3900 U	ug/kg	3900
1-Rephthylemine	67 FT 6027	6/6 6	rn 008£	ج و مراجع	233 <b>33</b> 80223	3000 E	<b>&amp;</b> & & & & & & & & & & & & & & & & & &		7900 E	Ug/kg	
2,3,6,6-Tetrachlorophenol		STA ar Willia	<b>3</b>	- G	동	7 7 8 = C	<b>1 5 5 5 6 7 6 7 6 7 6 7 6 7 6 7 7 7 8 7 8 9 1 8 1 8 1 8 1 1 1 1 1 1 1 1 1 1</b>	8		5 6 6	
Prepared		19/kg 09/	rn 008£	6/6 6/2	Ž				7900 E	ug/kg	
Pentachloranitroberzene	- -		3800 U	6	38	3 5 5 5 5 5	<b>5 5</b>	200 200 200 200 200 200 200 200 200 20		6/kg	88
Pronamide p-(n) imethy) anino) a zobanzene	200 C C E 8		75	49/kg	78	78	6 i	3	800 C	بو/ ورا	88
7,12-Dimethylbenz(A)Anthrecene	28 28 28	19/kg 360	32	5 & 2 &	33	78 ==	<b>5</b>	<b>3</b> 8	88	6/KD	88
Pyridina	_		3800 C	-0/kg	288 888	286 286 2 = C	<b>8</b>	75 8	3980	6/6	38
M-Mitrosconethylethylemine			<b>7</b> 56	5/4 6/4	33	785	<u>ارة</u> 1	3	800 U	<b>10/kg</b>	8
o-Toluidina	-		78 = C	<u>چ</u> چ	<b>1</b> 7			22	300 C C	6 6 6 6	<b>5</b>
hexachtoropropene	42000 U ug	19/kg 42000	38000 U	6/40 19/40	38000	39000 U	40/kg	38000	39000 U	5/kg	3000
Safrole	==		3800 U	5 <u>6</u> 2 6	<b>3</b>	3800 U	46/46 46/46	565 85	7 006E	<b>2</b> 0/kg 6/kg	3906
1,4-Hephthoguinone	٤			<b>19/6</b>	j	78000	3 3	j		6/g	5
1 3-binitrobenzena		<b>ug/kg</b> 860	35	£ £	33		£ {	35	800	6/kg	8
1.3.5-Trinitrobenzene	==		25 25 20 20 20 20 20 20 20 20 20 20 20 20 20	بو/kg	<b>&amp;</b>	36000 L	€ <b>€</b> © &	788	70 0006£	<b>2</b> 0/kg 6/kg	8
S. at C. addrillas C. law load				,	43-81-8 (1-088)						)
				)	egyi Li						•

						) serves J. Programa Programa								
800	ug/kg	000 U	78	6/2 2/2	780 L	780 00	ug/kg ug/kg	790 U	\$200 860		e c		entechlorophenol	
<b>1</b> 000	- 6/kg	000 = C	į Ž	<b>8</b>	8	3	5/6 6/2	790	<b>8</b> 8	5	28 25 26		-Bromophery! -phery! ether	. A.
88	ور ورور ورور	600 C	<b>3</b> 3	€ <b>€</b> <b>€</b>	8 8 5 5 5	88	19/kg	38	8	£ {	-		itrogodiphenylemine (1) 2-bighanylhydrazine	
88	<b>10/kg</b>	800 U	780	\$ \\$ \$ \\$	780 C	3	6/6 2/6	780 - 1	3		E:		6-Dinitro-Z-methylphenol	*, o.
3900	(4) (4)	1900 U	280S	<b>10</b> /kg	3600 U	3800	جر مر	3800 U	2		298 E - S		Lorena	- E
800	6/kg	800 U	<u> </u>	5	2 2 2 2 2	88	4 /kg	8 ==	88	\$	=		Chibrophenyi-phanyiether	÷ = =
38	- 6 - 6 - 6	8 8 8 6	8		2	35	₩/kg	33	<b>8</b> 8				4-Dinitrotoluena	, .
<b>6</b>	₽0/kg	<b>8</b> 00 C	<b>8</b>		8 8 2 2	SE	10/kg	88			_ (		N) trophenol benzofuran	
3900	- 0/kg	3900 U	ğ	E 2	3800 E	3800	4 4 4	7900 C			-		4-Binitropherol	2,4-1
ave.	د ( <u>۱</u>	7900 U	홍		78	38	6/6			<b>5</b> 2	-		- Hitrografia	3-E1
3	49/kg	7900 LJ		\$ <u>\$</u> 2	200 E	3	5/6 6/6	3800 E	6285 885		= <b>=</b>		, 6-Dinitrotoluene	2,6-1
<b>8</b> 8	₩ ₩ ₩	86 66 66 66 67	<b>8</b>	)     	18 50 	8	-6/E	790 U				ુ,	**************************************	2.41
3900	49/kg	3900 U	Ž	\$ { \$ }	3890 C	<b>3</b>	\$ \ <u>\$</u>	3800 U			==	i e	-Chioronephthelene	2.C.
<b>908</b>	6 6 6 6	900 - C	3 8 8		366 - 6	38	F9/20	3800 U	,		200 U Ug/K	Ž.	Inethylphthelete	
000	-0/kg	000 U	ğ	\$ <b>\$</b>	28 E	33	5 /kg	<b>8</b> 8	88				3	2,5,6
	6/6 6/6		38	\ \ \ \ \	88	88	5/6	78	\$		860 U Ug/kg		Methylnaphthalene	2-Het
88	6/kg	800	33	£ &	28 20 20	33	5 6/6 6 6	2 56 = =	<b>3 3</b>		==		-Chlero-3-methylpherot	143.4 26x80
<b>2 8</b>	6/kg	8 8 8 8 = C	8	ug/kg	8	8	ug/kg	730	86		60 ti ug/kg		Chloroant ine	•-9:
	5/kg	200 E	Ž	5/6/20 20/20 20/20	78 E	78	6/6	790	Š			8		
<b>5 8</b>	10/kg	800 E C	33	8	7 8 5	3	49/kg	<b>C C</b>	88		25/25 25/25 25/25	<b>-</b> •	4-Dichtorophenol	2
800	رو/ ور/دو	800 C	<b>Z</b>	5 5/2 2 2	78 8 5	충	19/kg	= =			-	Ga 1	entola acia	bia(2
390 390	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	3900 U	360	بر م	3800 C	3800	6/g	<b>-</b> -			4200 = 46/kg	<b>^</b>	imathy(phenol	2,4 DIP
8 8	بو/ <u>دو</u> دو/دو	888 C C	2 2 2 2 3 2		785 - U	88	ug/kg	: = (	8		260 C	₩.		1 soph
8	بر مرازي	800	38	2 (g	780 C	<u>8</u> 8	ve/kg 64/60	78 	55		<b>-</b>	p <b>Ç</b> p	State of Services	Hitro
<b>8</b> 8	6 /6	8 8 8 8 8 8	785	140/Kg	178 - C	8	ug/kg	_ <	8		860 U Ug/kg	<b>D</b> 2	Itroso-di-n-propy Lemine	
800	5/6	800 U	<b>7</b>	5 £	786 U	<b>3 5</b>	5/kg	= =	8			<b>.</b>	18(2-Chlorolsopropyl)ether	bis(2
<b>2</b> 20		800 - U	8	\$	785 L	3.	64/69 64/69	<b>-</b> c	æ.			2	2-Dichtorobenzens	1.2
<b>6</b>	ور ور ور	- 000 - 000	2		. 78 	, <u>3</u>	6/kg	= =	8		Ξ.	<b>2</b> 5	A-Dichiorobenzene	1, A - D
800	Pg/kg	800	<b>•</b>	£ {	<b>○</b> (	• •	υ <u>α</u> /κο	<del>-</del> -	88		260 U Ug/k	: P		1,10
~ 8	ug/kg		ğ		25.	, <del>Z</del>	<b>ug/kg</b>	\$ 8 2 2	8		٣Ę	<b>22</b>	Torography I y ether	
;	و د و	E 600	Ī		3 <b>2</b>	36	19/kg	=	8		=	<b>.</b>		Phonol
<b>30</b> 0	<b>19/kg</b>	800 U	(B)	\$ \$	76  -	38	ug/kg	790 u	\$		8) F sa/ka	<b>.</b>	\$YOC (8270+24) ug/kg	SKG SYOC
Dt.	195003 30-JUN-94 QUAL UNITS	193 193 WALUE OWAL	PL V	, , , , , , , , , , , , , , , , , , ,		VALUE	RFADATA 19SD001D 30-JUN-94 DUAL UNITS OL		VALUE	JS DL	RFADATA 19SD001 30-JUN-94 QUAL UNITS	AVINE	Site Locator Collect Date:	
	7004	R82		003	R8272		002	R8272002			R8272001	-		

NAVSTA MAYPORT RFA Sediment Data

### REZ72001 REZ72002 REZ72002 REZ72003 REZ72004 REZ72004 REZ72004 REZ72005 REZ72004 REZ72005 REZ72004 REZ72005 REZ72005 REZ72004 REZ72005 REZ72005 REZ72005 REZ72005 REZ72005 REZ72005 REZ72006 REZ72005 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006 REZ72006	PESTICIDES/PCSs (SU-846,8080) ug/kg alpha-enc beta-BHC delta-BHC delta-BHC germa-BHC (Lindare) Heptachlor Aldrin Heptachlor spoulde Endosulfen I I (4-DDE Endosulfen II 4,4-DDE Endosulfen II 4,4-DDO Endosulfen III 4,4-DDO Endosulfen sulfatte 4,4-DDT Endosulfen sulfatte 6,4-DDT Rethoxychlor Endrin ketona Chlordana Chlordana Chlordana Chlordana Chlordana I sodrin Kepona Aroclor-1232 Aroclor-1233 Aroclor-1234 Aroclor-1234 Aroclor-1234 Aroclor-1234 Aroclor-1234 Aroclor-1234 Aroclor-1234 Aroclor-1234 Aroclor-1235 Aroclor-1236 Aroclor-1236 Aroclor-1236 Aroclor-1236 Aroclor-1236 Aroclor-1236 Aroclor-1236 Aroclor-1236 Aroclor-1236 Aroclor-1236 Aroclor-1236 Aroclor-1236	Lab Sample Number: Site Locator Collect Date:	
REATON A MAYPERT REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZTROOS REZT		R8272001 RFADATA 19SD001 30-JUN-94 QUAL UNITS	
RE272003  REFADATIA  PSD0002  1950003  30-JUN-94  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  DL  VALUE  OUAL UNITS  OUAL UNITS  DL  VALUE  OUAL UNITS  OUAL UNITS  DL  VALUE  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNITS  OUAL UNIT		R8272002 RFADATA 19SD001D 30-JUN-94 QUAL UNITS	NAVSTA MAYPORT RFA Sediment Data
R8272004 RFADATA 19S0003 30-JUN-94 VALUE 0UAL UNITS  VALUE 0UAL UNITS  1.6 U U9/Kg .81 U U9/Kg .81 U U9/Kg .81 U U9/Kg .81 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.6 U U9/Kg 1.7 U U9/Kg 1.8 U U9/Kg 1.9 U U9/Kg 1.9 U U9/Kg 1.9 U U9/Kg 1.9 U U9/Kg 1.9 U U9/Kg 1.9 U U9/Kg 1.9 U U9/Kg 1.9 U U9/Kg 1.9 U U9/Kg 1.9 U U9/Kg 1.9 U U9/Kg 1.9 U U9/Kg 1.9 U U9/Kg 1.9 U U9/Kg 1.9 U U9/Kg 1.9 U U9/Kg 1.9 U U9/Kg 1.9 U U9/Kg		R8272003 RFADATA 19SD002 30-JUM-94 QUAL UNITS	
<b>= *</b>	\$\$65886586525555555888888888888888888888	R8272004 RFADATA 19SD003 30-JUN-94 QUAL UNITS	

	200
	:=:
	:5#
	-00
	ં≾⊯
40,522	
	2F.Z
	<u> </u>
- 7	5=2
, ,	" # <u>"</u>
	무무는
1881. N	-M-
	7 <b>0</b> .
Jane 14	<u> 23</u> :
	587
Maria.	"
KOM 1	₽Ē:
	55,
	`
95 :	NZ
	•=:
	_2
na nà	
Maria Ma	75
0 b. 19	· I
	≥⊸ં
gg wayar Marabakh	5 <u>-</u>
	_ <b></b>
Trians	
	1=
	Ĭ
	모드
	_
	00
	200
•	
•	OROBEN.
,	OROBENZE
	OROBENZENE
	OROBENZENE W
•	OROBENZENE WEF
	DROBENZENE WERE
	D OROBENZENE WERE G
•	D OROBENZENE WERE GEN
	D OROBENZENE WERE GENER
	D OROBENZENE WERE GENERAL
	OROBENZENE WERE GENERATER
	OROBENZENE WERE GENERATED
· · · · · · · · · · · · · · · · · · ·	OROBENZENE WERE GENERATED FR
	OROBENZENE WERE GENERATED FROM
	D OROBENZENE WERE GENERATED FROM T
	DOROGENZENE WERE GENERATED FROM THE
	OROBENZENE WERE GENERATED FROM THE
	DOOBENZENE WERE GENERATED FROM THE SY
	DO DENZENE WERE GENERATED FROM THE SYOC
racas admil	DO DE SENE WERE GENERATED FROM THE SYOC (
racas admil	DO DE SENE WERE GENERATED FROM THE SYOC (82
racas admil	DOOGENZENE WERE GENERATED FROM THE SYOC (8270
racas admil	DO DE SENE WERE GENERATED FROM THE SYOC (8270)
racas admil	D DROBENZENE WERE GENERATED FROM THE SYDC (8270) AN
racas admil	DOORDENZENE WERE GENERATED FROM THE SYCC (8270) AMAI
racas admil	DOOBENZENE WERE GENERATED FROM THE SYOC (8270) ANALYS
racas admil	DOOBENZENE WERE GENERATED FROM THE SYOC (8270) ANALYTIS
	D DROBENZENE WERE GENERATED FROM THE SYOC (8270) ANALYTICA
racas admil	DOORDHIENE WERE GENERATED FROM THE SYDC (8270) ANALYTICAL
racas admil	DOOBENZENE WERE GENERATED FROM THE SYDC (8270) ANALYTICAL RU
racas admil	3

Hethapyrilere 3,3'-bimethylbenzidine Hexachlorophene 2:Chlorophenol 3-1,4-Rethylphenoi (2) 4-Rethylphenoi biphenylaeine Hexachloropropene 2:Acetylaeinofluorene 2:Acetylaeinofluorene	Lab Sample Number: Site Locator Collect Date:
4200 UJ 149/kg 860 UJ 149/kg 42000 UJ 149/kg 4200 UJ 149/kg 860 U 149/kg 860 U 149/kg 860 U 149/kg 660 U 149/kg 660 U 149/kg 660 U 149/kg 660 U 149/kg 660 U 149/kg 660 U 149/kg 660 U 149/kg 660 U 149/kg	R8272001 RFADATA 1950001 30-JUN-94 VALUE QUAL UNITS DL
3800 II.	NAVSTA MAYPORT RFA Sediment Data R8272002 RFASATA 19SDO010 30-JUN-94 VALUE QUAL UNITS DI
3800 UJ 49/kg 780 UJ 44/kg 3800 UJ 44/kg 3800 UJ 44/kg 780 U 44/kg 780 780 U 44/kg 780 790 780 U 44/kg 3800 3800 U 44/kg 3800 3800 U 44/kg 3800 780 U 44/kg 780 780 U 44/kg 780	R8272003 RFADATA 19SD002 30-JUN-94 VALUE QUAL UNITS DL
3900 UJ Ug/kg 800 UJ Ug/kg 39000 U Ug/kg 3900 U Ug/kg 800 U Ug/kg 800 U Ug/kg 800 U Ug/kg 800 U Ug/kg 800 U Ug/kg 800 U Ug/kg 800 U Ug/kg 800 U Ug/kg 800 U Ug/kg 800 U Ug/kg 800 B00 U Ug/kg	RB272004 RFADATA 1950003 30-JUN-94 VALUE QUAL UNITS DL

88627003	R870900
RFADATA	RFADAT
COC TOC	CECHAGO

16	9	55	5						
RB709002 RFADATA OBMAC10SD 09-SEP-94 OUAL UNITS	7/85	7/25	7777 9999						
R87 RF 08M 09-:	50 U. 500 U. 500 W.		50 UJ						
N N	01	22	<b>.</b>						
RB709001 RFADATA 08MM010S 09-SEP-94 QUAL UNITS	333	333	3333						
RB 088 098 VALUE 904	10 0 0 10 0 0 10 0 0	255 255							
10	06	004	<b>6</b>	de nua Le Perívide		tek tikki, Milijat	au tai keda aana kuliitik	4, 1,000,000,000	
R6627003 RFADATA 08MW009S 26-AUG-94 QUAL UNITS	/8n n 08		<b>5</b> 5						
VALUE	9	800							
#7490005 RFADA1A 08MN008S 09-JUL-94 UF QVAL UNITS DL	1/80 20 01 1/80 1/80		1785 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
Lab Sample Number: Site Locator Collect Date:		(5)			5 2864 X				
	Methapyrilene 3,3'-pimethylbenzidine	Hexach Component Ariani te 2-chlorophenol 1-2-chlorophenol 1-2-2-4-bathori phenol 1-3-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	4-Nethylphenol Olphenylphenol Hexachloropropene 2-Acetylphenofluorene						

	242666666664444444444
OF.	
RB709002 RFADATA DBMM010SD D9-SEP-94 QUAL UNITS	1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n
RB709002 RFADATA DBMM010SD D9-SEP-94 QUAL UNIT	
VALUE	2455555555554444 <u>8</u> 45 <u>5</u> 55555555
VA	
ಕ	
13 P. 14 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P. 15 P.	777777777777777777777777777777777777777
RB709001 RFADATA OBMUO10S O9-SEP-94 QUAL UNITS	
	6466666664446684462-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6
VALUE	
4	6466666666444848444444444444444444 <b>.</b>
R8627003 RFADATA 08MUOD9S 26-AUG-94 QUAL UNITS	1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n
R862 RFA 0844 26-4	24.05.05.05.05.05.05.05.05.05.05.05.05.05.
VALUE	
>	84886868888449498948
10	
05 TA BS 84 -94	
M7490005 RFADATA 0BM4008S 09-JUL-94	
	899688688899999999999999
\$ 1 × 1	
Leb Sample Number: Site Locator Collect Date:	1/85
aple N	
e č	
-	Cauldana)
	sticibes/PCBs alpha-BMC beta-BMC celta-BMC cel
	ESTICIBE PARTS - Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar Bettar

NAVSTA MAYPORT RFA Ground Water Date

ATION LIMIT IS ESTIMATED

7: 1,3-1 AND 1,4-DICHLOROBENZEME VERE GENERATED FROM THE SVOC (8270) AMALYTICAL RUN.

10	5555555555555555555555555555555555555
002 ATA 10SD P-94 UNITS	
RB709002 RFADATA DBMN010SD D9-SEP-94 VALUE QUAL UNITS	
16	
RETOSO01 READATA OBMUDIOS 09-SEP-94 QUAL UNITS	
a DL VALUE	8888888 888888 688888888888888888996988 888888888969
MAVSTA MAYPORT Ground Water Data R8627003 RFADATA OBMMO09S 26-AUG-94 QUAL UNITS	
RFA Gr	සු සු සු සු සු සු සු සු සු සු සු සු සු ස
10	56 5vv555555555555555555555555555555555
M749005 RFADATA 08MA008S 09-JUL-94 QUAL UNITS	
ALUE	22524v556566666868666666686888888866668686
Leb Sample Number: Site Locator Collect Date:	there there are the true to the true there are the true to the true to the true to the true to the true true to the true true to the true true true true true true true tru
Leb	att svoc (8270-24)  in all tropodisathy Lastine Phenol  And I has  And I has  And I for the coberation  1, 2-16 the probation  1, 2-16 the probation  2, 4-16 the probation  2-16 the probation  1, 2-16 the probation  2-16 the probation  2-16 the probation  1, 2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  2-16 the probation  3-16 the probation  3-16 the probation  3-16 the probation  3-16 the probation  3-16 the probation  3-16 the probation  3-16 the probation  3-16 the probation  3-16 the probation  3-16 the probation  3-16 the probation  3-16 the probation  3-16 the probation  3-16 th

I	1	
	16	555 585555555568 5558555588888558885558555
	e z z	1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n
	READATA BEADATA DEMADIOS 09-SEP-9 QUAL UNI	
	VALUE	
	<b>л</b>	555 58555555568 555835558888885588555855 8888555
	40	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
	RB709001 RFADATA 08MM010S 09-SEP-94 QUAL UNITE	
	VALUE	<u> </u>
	*	88888388888888888888888899999999999999
81 Dete	4	
MAVSTA MAYPORT Ground Water Data	RB627003 RFADATA OBMMO09S 26-AUG-94 QUAL UNITS	1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n
	R86; RFJ 08ML 26-A	88888888888888888888888888888888888888
RFA	VALUE	
	16	Setestion States States State States States
	M7490005 RFADATA 08MM008S 09-JUL-94 QUAL UNITS	
	_	566565666666666666666666666666666666666
	or Serven	
	Lab Sample Number: Site Locator Collect Date:	
	des de	thracements the account thracement and the account them are first the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of the account of
	3	Anthraceme  I toorantheme  System  System  System  System  Short of cooperated in a second of cooperated in a second of cooperated in a second of cooperated in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of cooperate in a second of
		thracene  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthalate  In Sury ighthala
		Anthracens  Di-n-Buryighthalate  Syreac  Benzotal anthracens  Chrystes  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular  English and a particular
		<b>できた。                                    </b>

	or	
	9002 DATA 010SD EP-94 UNITS	1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n
	RFADATA RFADATA OBMADIOSD 09-SEP-94 QUAL UNITS	
	VALUE	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	Dr.	
	R8709001 RFADATA 08MM0105 09-SEP-94 QUAL UNITS	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$
	R8709001 RFADATA 08HW0105 09-SEP-94	-55-v5v-vvvv5-vuv55v-v-vvv-555-5v5-vvv8u5u8 
	VALUE	
1 2	16	88888
NAVSTA MAYPORT Ground Water Data	R8627003 RFADATA 08HW009S 26-AUG-94 QUAL UNITS	
	R6627003 RFADATA OBMW009S 26-AUG-9 QUAL UNI	
RFA	VALUE	
	1	SOSM NEW SNEWENNEWN ENGINER, NS NSNS NEW NOW
	M7490005 RFADATA 08MM008S 09-JUL-94 QUAL UNITS	79977777777777777777777777777777777777
	M7490005 RFADATA 06MM008S 09-JUL-94 QUAL UNIT	อื่ออื่อนอื่นงนนนนอนมนนนนนนนนนนนนนนนนนนนนี้อื่นอื่นอื่อนนนี้มี 3วาววิวุรังวาววิจออจจากการการการการการการการการการการการการ
	VALUE	565ธิบธิพงพทพนธิพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพ
	ample Number: Site Locator Collect Date:	1/85
	Lob Sample Number: Site Locator Collect Date:	
	3	ide  interpretation  ide  interpretation  ide  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation  interpretation
-		Carbon (B240-11) Chloromethana Broacaethana Broacaethana Chloroethana Lilonoethana
		Chloromethane School (B240-11) Chloromethane Second (B10) Chloroethane Chloroethane Labon diaul fide 1, 1-Dichloroethane 1, 2-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 1, 3-Dichloroethane 1, 1, 3-Dichloroethane 1, 1, 2-Trichloroethane 1, 1, 2-Trichloroethane 1, 1, 2-Trichloroethane 2-Hakanone 1, 1, 2-Trichloroethane 1, 1, 2-Trichloroethane 1, 1, 2-Trichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 3-Dichloroethane 1, 2-Dichloroethane 1, 1, 1, 2-Tetrachloroethane 1, 2-Dichloroethane 1, 1, 1, 2-Tetrachloroethane 1, 2-Dichloroethane 1, 1, 1, 2-Tetrachloroethane 1, 2-Dichloroethane 1, 2-Dichloroethane 1, 2-Dichloroethane 1, 1, 1, 2-Tetrachloroethane 1, 2-Dichloroethane 1, 1, 1, 2-Tetrachloroethane 1, 2-Dichloroethane
l		

	ا م	こここここここ
	B709002 RFADATA BMM010SD 19 - SEP - 94 UAL UNITS	
	RE709002 RFADATA 08MV010SD 09-SEP-94 QUAL UNITS	3- 3333-
	_	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	VALUE	
		8 -
	ᆸ	
		EEEEEEE
	RB709001 RFADATA 08MM010S 09-SEP-94 QUAL UNITS	333333
	RE70 RFA 08M 09-5	33 3333
	띡	1,5-25
	VALUE	
		2 2
ata	1	
Ground Water Data	26 11 11 S	1/6n 1/6n 1/6n 1/6n
Ground Water	RE627003 RFADATA 08MAOO9S 26-AUG-94 QUAL UNITS	
Group	\$ 28.63	200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200 U.J. 200
RF.	VALUE	
	*	
	_	
	ត	
	490005 FADATA MA006S - JUL-94 AL UNITS	252555
		75 225
		25 25 25 25 25 25 25 25 25 25 25 25 25 2
	VALUE	
	omple Number: Site Locator Collect Date:	1
	ple I	
	Lab Sample Number: Site Locator Collect Date:	
	3	•
		itoropropene tonitrile proprene nacrytonitrile nyl methocrytor tochloroethere pionitrile yl acetate
		iaropro onitrili arroprana arroprana yi arti arti arti i aceta
ł		15505556

용

ಗ

NAVSTA MAYPORT	RFA Soil Boring Data	

M7705005 RFADATA 488500505 08-AUG-94	QUAL UNITS DL
	VALUE
	겁
M7705003 RFADATA 488500205 08-AUG-94	<b>COUAL UNITS</b>
	VALUE
Lab Sample Number: Site Locator Collect Date:	

. i.			: :								•							
27	•	,ai.	9	3 3	8		.57		.03 .03				82.	77.				
ma/ka	ma/ka	24/50 64/0	2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y 2 / Y	84/8u	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ma/ka	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
11 27		3.	- 8	) }:	= و ا	3.7	.57 u	15.6 J	.03 u	3.5	LU 70.	2.3	. 28 U	N 77	.28 UJ	2.6 J	2 J	10 J
¥2.00				31	<u>ي</u> د				క			. !	3	er Mil	(A) (A) (B)			5.1
			2	7.	9	) E	2							2	, C	mo/ko	2	/kg
	?			- - -	- <b>→</b>	- - 	<u> </u>	3	3	( Z				. <u>=</u>	3		-	
		•				Ö		K.		•			- 1 <b>1</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				ø	6
_																		

Charles Cobsic Copper Cyanide Lead Recury Rickel Silver Thalling

A MATPORT	Boring Date
_	_
n	-
2	S
_	RF.

	350 1700 350 350 1700 1700
M7705005 RFADATA 48BS0055 08-Aug-94 6 QUAL UNITS	1700 tu ug/kg 350 tu ug/kg 1700 tu ug/kg 350 tu ug/kg 350 tu ug/kg - ug/kg 1700 tu ug/kg 1700 tu ug/kg
DL VALUE	380 380 380 1900 380
H7705003 RFADATA 488500205 08-AUG-94 QUAL UNITS	0 00/kg 0 00/kg 0 00/kg 0 00/kg 0 00/kg 0 00/kg 0 00/kg 0 0 00/kg 0 0 00/kg 0 0 0 00/kg 0 0 0 00/kg 0 0 0 0 00/kg 0 0 0 0 0 00/kg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
mber: Site cator Date: VALUE	1900 1800 1800 1800 1800 1800 1800 1800
Lab Sample Number: Site Locator Collect Date:	Methapyrilene 3,3' Dimethylbenzidine Azanise Armise 2-thlorophenol 5- 4 4-Methylphenol 6-thlorylmine Nexaciloropropene 2-Acetylaminofluorene

STIMATED 4-DICHLOROBENZENE WERE GEWERATED FROM THE SVOC (8270) AMALYTICAL RUN.

4		Έ.	4.5		Ę	ŗ.	<u> </u>	Ę,	۲. <u>۲</u>	-		-:	2.6		<u>:</u>	3 132	<b>22</b> (	-	m	<b>₹</b>	- Pri	M	= =								
1005 0ATA 00505 JG-94 UNITS		ug/kg	ug/kg	69/kg	. 69/kg	69/kg	6/80 64/80	ug/kg	ug/kg	ug/kg	ug/kg ug/ka		ug/kg	69/kg	ug/kg		ug/kg	2/kg	2 S	ug/kg	2/25 26/25	ug/kg	.6/kg	) }							
M7705005 RFADATA 48BS0050 08-AUG-9 QUAL UNI	!	ה ב	); (*)	- - -		> :	- - -	71 C	- - -		⊃ = •. •.	. v.	ei.⊲ ⊃ =	7.4.	9 : T. ?			- C		9 : 2 :	2 C	35 U	2 E								
VALUE		•		• •	• •	•	• •	•	• -				~-		~			•													
10		2	•	2 X	:≳	2.	2.2	2	2 <u>'</u>				- u	<u> </u>	2:	33	2	2	***	<b>2</b> i	25	8	<b>&gt;</b> •								
003 ATA 0205 1G-94 UNITS		) (ka	%(kg	2 2 3 3 3 3	? ? ? ?	<b>5</b> /20	2 : 2 :		5/kg	; ??	24/kg	2 2 3 3	57. 37.	2 Z 3 Z	54/kg		7 2	ma/kg		ug/kg	5/5	, kg	29/kg	! !							
H7705003 RFADATA 488500205 08-AUG-94 QUAL UNIT			) )		) )			-		) >>	> = 	) )	- -	) ) ()	; •••	<b>=</b>	) ) )	) )	_ 3 = • €	?	ं ⊃ = १2 %	) = 22	⊋ : <b>2</b> :	ı.							
VALUE		*				7	<b>%</b> ×	F	<b>~</b> ;	. <u></u>					~	23				<b>,</b> 1	2#	· M									
		ug/kg			1961V. 201900	ouge Suga	rasig Divisio		.**, *	· : ·.		8		14 1444 44 44	): PE	14:2	114	1.08	en.	. '.	. 4	,	( 86°	1.5-41	4 0766	i indesed	\$078 ₀ ,408	sedite i	3813333.A	30-30-648	
Lab Sample Number: Site Locator Collect Date:		gidaya h Adhiliyayi		Y S			pod Ped	dya a 18	juradisi Balandi Albumi	owe N Year E	ligh Light Light Light		. 48 Nam 924)	fra Mos			. 20 1940 2940 1944	8-0 8-1	viji vije da vije da			a, 11. 1.12) Save								vita in the second	
rab Si		(SN-846,8080)					1 11 12					100 mm				e i Spiral Spiral Spiral Spiral Spiral															
•		ż					oxide	 	·,			Tate		*	6 ( 80 (.), [3, 24] [48]	<b>#</b>															

MAYSTA MAYPORT RFA Soil Boring Date

05 05 17A 505 -94 NITS 0L		ug/kg 350	ug/kg 350		18/ KB 330						150 250 250 250 250 250 250 250 250 250 2			ug/kg 350		Ug/Kg					UB/Kg 550				•	wa/kg 1/60		76 350			1700 1700						-			ברים פרים	
M7705005 RFADATA 488500505 08-AUG-94 VALUE QUAL UNITS		∍	320 0	<b>-</b> -	) =	350 C	_	<b>5</b> :		3 :	<b>-</b>	· >	_	_	<b>.</b>	20 x 20 x 20 x 20 x 20 x 20 x 20 x 20 x	, =	· _	<b>-</b> :	350 U 055	<b>,</b>	· =	<b>-</b>	<b>-</b> :	1700 U UG/Kg	-	3:	350 U UG/Kg	1700 tf us/kg	_	1700 U ug/kg	350 U ug/kg	-	<b>-</b> :	350 U UG/kg	· 3	_ 	_ 	350 UJ Ug/kg	3	; =
DL		380	8		380	380	380	380	?	8	200	380	380	8 m	3	2	380	380	86	35	380	380	380	280	1000	380	•	35	- - - -	<b>8</b>	<b>B 5</b>	390	28 28	08 F	3 5		<u>8</u>	ş	2		50,
M7705003 RFADATA 488500205 08-AUG-94 QUAL UNITS		80 U ug/kg	380 U cg/kg									ातः ( है					ं 	<b>=</b> :	) <b>-</b> =		-	3	 ⇒:=	5 / Kg	· =	-	ਂ 3:			5/kg	) }	_	3:	2 3 3	) )	3	- :	) > :		3	3
emple Number: Site Locator Collect Date: VALUE	pa/ka										8				8 5		260			8	Ü		7. 38.	2	- S	景			1900		198			35	380	1900	1900	<b>3 5</b>	<b>3 3 3 3 3 3 3 3 3 3</b>	8	<b>186</b>
Lab Sample Number: Site Locator Collect Date:	\$WOC (8270+24)	M-Mitrosodimethy(amine		(2-Chloroethyl) ethar	Of chi probenzene	, + Dichlarobenzene	BETLEY, RICORDI	-Methylphenol	bis(2-thloroisopropy) ether	M-Nitroso-di-n-propylamine	exachloroethane	1 tropentene		6-Dimethylphanol	0100010101	ble(2-Chloroethoxy)methane	*Dichlorophenol	C.4 = 1Fich Carobenzene	6-Chlorophi Line	exachlorobutadiene	-Chloro-3-methylphenol	-Methylnephthelene	te de Trich probant	othy(chthelete	,5-Trichlorophenol	Coronaphthalene		.6-Dinitrotoluane	Witroon !! [ De		#Itrophenol	thensofuran	a territoro vene attoristata es	Chi orochenyt-chenyl ether	luorene	(troenft Ine	0.0 intro-2 methylpherol Mitrosodicheculasississ	. 2-Diplement hydroxine	Francheny Lpheny lether	exech (orobenzene	Pentachl orophenal

	2
<u>-</u>	Data
Ž	2
Ş	Bori
æ	
HASE	Soit
≨	Ñ
	Ξ
	œ

<b>a</b>	350	120	320	2	220	550 550		320	350	320	55 55 50 50 50 50 50 50 50 50 50 50 50 5	320	1700	350 150	350	350	750	350	320	350	32	<b>5</b>	98. 22.	320		92.	350	320		150	350	200	202		<b>2</b>	35000	350	320	17000
M7705005 RFADATA 48BS00505 08-AUG-94 QUAL UNITS	ug/kg ug/kg	59/kg	, 5 , 5 , 7	ug/kg	64/65 54/65	ug/kg	19/kg	ug/kg	ug/kg	ug/kg	ug/kg	5, 52 5, 52 5, 53	ug/kg		eg/kg	ug/kg	ug/kg	49/kg	<b>69/kg</b>	ug/kg	5 5 K	ug/kg	54/Kg	5 5 2 5	ug/kg	.5/kg	59/kg	ug/kg	69/Kg	ug/kg	ug/kg	100/kg	<b>20</b> ∕kg	64/Kg	2 /kg	eg/kg	<b>ug/kg</b>	2/2 2/2	uo/ka
M77 RFI 488 488 08-4	350 u 350 u	350 UJ	350 0	n 002	350 0	350 0	320 C	350 U	350 U	350 U	350 u	350 U	1700 U	350 0			1700 UJ	_	350 U	350 U	1700 L	2 8 7		350 U	350 UJ	1380	350 U		320 C	1700 U	350 4	320 C		000/L	2021	35000 U	350 0	320 U	17000 t
ឥ	380 380	380	200	8	200	38	28	38	26		200	36	<b>8</b> :	28	380	8		<b>}</b>	8		8	<u>8</u>	<u> </u>	8		<b>2</b>	2	8	78	<u>\$</u>	2	38	8	Ş	<u>8</u>	38000	35	3	2006
M7705003 RFADATA 488500205 08-AUG-94 QUAL UNITS	ea/ke no/ke	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ua/kg	54/co		2 5 3 3	, s , s	84/8n	ey/bn	2 2 2 3	29/S	ug/kg	0/8)	7 9 <b>7</b> 9	- 64/65 - 74	5/kg		. 6 (kg	ug/kg	- 76/KB	ug/ka	<b>3</b>		ug/kg	J vg/kg		63/0n	84/85 1	7.2 }	ug/kg	2; 3;		64/g	- 45/Kg	Z Z	ug/kg	2 : 2 : 2 :	72   9	
VALUE	1 088		380	3			788 C	3 9			) <u></u>	200	7 DBC		_ 282	200		380	٦: هو		7 200	2005		200	= : # { * }	38	380 U		) = 	2 8 8	= = 8	200	> = = = = = = = = = = = = = = = = = = =	1900	- 586 	⊃ : 2008:	= = 3	2 2	2004
Lab Sample Number: Site Locator Collect Date:	Anthracena pi-n:Butyiphthalate	Fluoranthene Pyrene	Butylbenzylchthelete			bis(2*Ethylhexyl)phthalate	Of-n-octy/phthetete	Senzo(b)fluorenthere	Benzo(K)flubreathers	Benzo(B)pyren4			2-2-10-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0-01   10-0	Ethyl sethanedul forate	Acetophenore		7 A.h ichi orachanol	+ # 1 troso-di-c'tuty lenine	i-Witrosodiethylesine	I-Mitrosopyrollolla Banyidine	1,2,4,5-Tetrachlarobenzene	Pentach (probentent		2,3,4,6-Tetrachlerophenol	Phenocetin	Pantach organist densene	Prenalde	C. (Dinethylenino)atobanzene	3-Nethylcholanthrane	75.45	N-Nitroscenthy(ethylemine	o-Teluidine	Wexachloropropere	P-Frieny (energial parties	1 sout Fote	1,4-#ephthoquingme	1,3-Digitroben2018 5-biographs-toluiding		4-mitrogulasting-1-axide

_	Data
HAYPOR	Boring D
Ĭ	Sol
	RFA

1ng bata 5 A 05 94 11S DL	64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64/49  64
R7705005 RFADATA 488500505 08-AUG-94 QUAL UNITS	09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg
VALUE	
10	#==#= # ===============================
M7705003 RFADATA 48BS00205 08-AUG-94 QUAL UNITS	19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg
RF7 4885 08-4	
VALUE	1111122
Lab Sample Number: Site Locator Collect Date:	9/g
Let	Exg. Voca (8240-11) Chioromethane Somomethane Viryl chlorida Chloroethane Chloroethane Chloroethane 1, 1-Dichloroethane 1, 1-Dichloroethane 1, 2-Dichloroethane 1, 2-Dichloroethane 1, 2-Dichloroethane 1, 2-Dichloroethane 1, 2-Dichloroethane 2-Butanome 1, 1-Trichloroethane 2-Butanome 1, 3-Dichloroethane 2-Dichloroethane 1, 2-Dichloroethane 1, 2-Dichloroethane 1, 3-Dichloroethane 1, 1, 2-Trichloroethane 1, 2-Dichlorobenzene 1, 4-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichloropenzene 1, 2-Dichloropenzene 1, 2-Dichloropenzene 1, 2-Dichloropenzene 1, 2-Dichloropenzene 1, 3-Dichloropenzene

a a			ಕ
MAVSTA MAYPORT	M7705005	RFADATA 48BS00505	UB-AUG-94 QUAL UNITS
RFJ			VALUE
			ď
	M7705003 RF40ATA	489S0020S 08-AUG-94	QUAL UNITS
			VALUE
•	Lao Sample Mumber: Site	tocator Collect Date:	

70	~≘ ~==≘= :	
QUAL UNITS	U8/kg U9/kg U9/kg U9/kg U9/kg	
VALUE QU	26. 25. EEE	
HOAL UNITS DE	110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 110 3/40 3/40 3/40 3/40 3/40 3/40 3/40 3/4	
B JOYA	0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0	
A-P-	Acetonitrila Acetonitrila Chioroprene Ethoroprene Methyl methoryiste Methyl methoryiste Methyl methoryiste Methyl acetste Vimyl acetste	

INIT IS ESTIMATED

AND 1,4-DICHLOROBENZENE WERE GENERATED FROM THE SYOC (8270) AMALYTICAL RUN.

		٦	કે	7	á	ន្ទន់	2.5 5.5 5.5	~
1	M7705007 RFADATA 46SS00401	QUAL UNITS	<b>5</b> 7	ככי	<b>-</b>		mg/kg mg/kg mg/kg	
		WILUE	94.	8.8 12:	5.2	8.0.7.	1.5 u 28 u 43 u 27 u 10 72.	2.7.2 0.1.2 1.2.2
		ಕ	**************************************	<b>8</b> 3		7.		
	M7705006 RFADATA 48SS00301 08-AUG-94	CONT. CAN 15	<b>&gt;</b> 7-		mg/kg U. mg/kg U. mg/kg	70/kg 00/kg 00/kg	19/kg 1 19/kg 14 19/kg	mo/kg
	VALUE		5.85			\$ 7.8°		4.7.
Deta	ಠ			કું જું	2.7	5.5	82.	2.1
RF, . face Soil	M7705002 RFADATA 485500201 08-AUG-94 VALUE QUAL UNITS		.78 J mg/kg .23 J mg/kg 5.2 J mg/kg	-		-	.44 U mg/kg .29 J mg/kg 2.7 J mg/kg 2.2 J mg/kg	<b>5</b>
	70 S		3 8		 	5; 5; 8; 8; 2; 8;		
M7705004	#7705001 RFADATA 48\$\$00101 08-AUG-94 QUAL UNIT		100/k	. mg/kg 	0 mg/kg	C	19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg	
Lab Sample Mumber:	Site Locator Collect Date: WALUE	#0/kg		7.35	4.1	2.5.		
Lab Samp	103				٠.			
		2						

BKG SOILS M

STA MAYPOR

U * NOT DETECTED R = RESULT IS. REJECTED

J # 687 IMATED VALUE UJ = REPORTED QUANTITATION LIMIT IS ESTIMATED

 $e_{n} = \frac{1}{2}$ 

MAYPORT	Soil Data
_	Surface S
	RFA

Lab Sample Number:
Site
Locator
Collect Date:

	4	5.2	.5.	28.		83	1	Š
1						•		4
M7705004 RFADATA 48SS00501 08-AUG-94 QUAL UNITS	mg/kg mg/kg mg/ka	<b>39/kg</b>	mg/kg mg/kg	mg/kg mg/kg	mg/kg mg/kg	mg/kg mg/kg	mg/kg mg/kg mg/kg	mg/kg
H770' RFAI 48SS 08-AI	. 67 U . 7 . L 1 . S		. 57. U	. 50 . 5	. 80. 1.5 u	.28 U .44 H	2.5 1	D 4.3
M7705008 RFADATA 48SS00401D 08-AUG-94 UE QUAL UNITS DL	.46 UL mg/kg .54 L mg/kg 77 L mg/ka	. 12. U mg/kg . 12 .63. U mg/kg . 63	.56 t ng/kg 16.1 J ng/kg	2.9 U mg/kg 2.9	3.6 J mg/kg	.28 U mg/kg .28	2,3 J	
WALUE			exturina	11 () A 9887 ()				, . , .

U = MOT DETECTED R = RESULT IS REJECTED

J = PATIMATED VALUE UJ = REPORTED GLANTITATION LIMIT IS ESTIMATED

. 귤	
N7705007 RFADATA 48SS06401 08-AUG-94 GUAL UNITS	
F 5 8 5 5	<i>LZKKKKKKKZZZZZZZZZ</i> WKZWKKWW## 
VALUE	
	A CARRECTER CANALANT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT
10	EIEEEEEEIIINNE AEERASS
M7705006 RFADATA 48SS00301 08-AUG-94 QUAL UNITS	
M7705006 RFADATA 48SS0030 08-AUG-9 QUAL UNI	######################################
VALUE	
* *	EZEEKEKETTTTNANE WEEWWEE
1	
02 IA 201 -94	18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg
M7705002 RFADATA 48SS00201 08-AUG-94 CUAL UNITS	7
	5455555554444494455005500550052
VALUE	SS
16	STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE
ø	ATION LIMIT
M7705001 RFADATA 48SS00101 08-AUG-94 QUAL UNITS	
488 68-	## ## ## ## ## ## ## ## ## ## ## ## ##
VALUE	
	# RESULT
ample Number: Site Locator Collect Date:	
Lab Sample Number: Site tocator Collect Date:	(\$w-646, 8080) ug/kg
<u> </u>	
	PESTICIDES/PCBS (SW-846,8080) usiphs-BHC detta-BHC detta-BHC detta-BHC detta-BHC detta-BHC detta-BHC (Lindare)  Heptachlor epoxide Endosulfan II feptachlor efter in the form in the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of the following form of

NAVSTA MAYPORT Surface Soil Data

RFA

こはアファファファンドルははははいいはいいののます。 おりりおおせる

=	Data
	Soil
AVSTA	Surface
-	RFA S

	F. 7	Ε.	F. F.	Ę	5.5	Ę	: .	7	7.7	7	2.5			2 2	m	Ξ.	Ħ	<b>~</b> i	- 74	F)	==	•
01																						
M7705004 RFADATA 48SS00501 08-AUG-94 QUAL UNITS	ug/kg	2 5 3 5 5 5	09/kg	<b>19/kg</b>	<b>100/kg</b> 100/kg	64/Kg	19/kg	. 44 kg	ug/kg	56/g	ug/kg	9/40 64/60	69/kg	ug/kg	3 5	59/kg	5 5 7 kg	ug/kg	19/Kg	<b>4</b> /kg	ug/kg	3
M77 485 08-	)   	; =	) = [[	) = ===================================	 	) = : :	 	)   *	<b>⇒</b> =	; ·.	D 6.5	<b>⇒</b> =		2 2 2 3 3 4 4 5	32	5 5 5	32	ے ا	= = = =	32,	## ## 	2
VALUE			•	• • •		•	•-	-			~					•		_,				<b>=</b>
4		•	<b>~</b> ^								<b>8</b> .			<u>ک</u> :	**			R			<b>#</b>	
M7705008 RFADATA 48SS004010 08-AUG-94 QUAL UNITS	9/8 1	5 <del>5</del> 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 U V V V V V V V V V V V V V V V V V V	? \$ ? \$		7 S ( 2 S ) S = 2	2/kg		6 Val	5 4 C		2/85 3/85		10 00/40	2 / Kg	7 U Ug/kg	2 U.J. U.G/KB	o u ca/kg	2/kg		16 U ug/kg	
r: or b: vALUE											~	,		~								
Lab Sample Number: Site Locator Collect Date:	SV-846,8080) vg/kg			Processor Street																		
	PESTICIDES/PCBs (SV-846,8080)	Dete BEC	gamm-BHC (Linde	Heptachlor	Reptachlor spox	Endosulten I Dieldrin	4.4.00E	Endrin	000-5.4	Endosulfan autf	Methoxychlor	Endrin aldehyde	Endrin ketone	Chtorobenzilete	Distiate	I Bodi (n	Kepane	Aracior-1016		Aroclor-1242	ીં	Aroclor-1260

**₩**--**₩** 

U = NOT DETECTED R = RESULT IS REJECTED

J STIMATED VALUE UJ = REPORTED QUANTITATION LIMIT IS ESTIMATED

=	Data
2	Soil D
	Surface
	RFA S

Lab Sample Number: Site	Number: Site Locator	RFADATA 46SS00401D	008 47.4 40.10			F = 85	N7705004 RFADATA 48SS00501			
COLLECT DATE:	VALUE VALUE	OUAL C	CNITS	7	VALUE		QUAL UNITS	DL		
4-chlarophemyl-phemylathar	350	_ =	ug/kg	350		1800 U	ug/kg	1800		
Fluorene 4-witrosniline	120	- - 3		7		8800 07	69/kg			
4,6-Dinitro-2-methylphenol	2		ug/kg	2	<b>3</b> 33	9800 U	ug/kg	8800		
N. Hitrogodiphenylamine (1)	92P	) > =	19/kg	<b>3</b> 20	~ ~		ug/kg ug/kg			
-Dignerry Light of the		3 =		350	- =	3 o	29/kg	1800		
Hexach orobenzene		3	. 64/g			800 U.	ug/kg			
Pentachlorophenol	92	_	₽¥/¢n	2	~	9800 u	ug/kg	0088		
Phenanthrene		_ 	00/Kg	350			69/kg	008		
Anthrecene District Shells at a		) >====================================	59/Kg		•		63/20 Co/ko	5 5 5 5		•
Fluorenthere	) )	) -	2		_	800 E	ug/kg			
Pyrene		~	40/kg		_	800 U	ug/kg	1800	_	
ylbenzylphthalate	S		5/kg	2	<b>v</b> - 1	900 n	ug/kg	180 081		
3,3'-0 ichi orobenzi dine	269		ug/kg	\$	<b>~</b>	n 005	69/kg	3500		
Benzo(a)anthracene	~ •		2/X2		<b>~</b> ‡		4/kg		: <u>:</u>	
Chrysene	^ ¥	- : - :	2 (Y	7	•		8/85 64/61	180		
DISLATERNATIONAL DOCUMENTS	```	) = ) C	? <u>.</u>	35	_	200		1800		
Reprofibling anthone	ì					900 C	64/6n	1800		
Benzo(k) fluoranthene		-	54/kg		=	800 U	<b>4/kg</b>	1800	.;	. •
nzo(a)pyrene	32		ug/kg	Š	~	900 C	ug/kg	1800		1.
Jeno(1,2,3-cd)pyrene	<b>F</b>	- -	ug/kg			D 200	ug/kg	1800		
Dibenz(e.h)enthracene	PO P	- :	5)/da				\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			
		) - - -	- 64/61 - 64/61		= 22	0000	no/ke	9800		
		: : =	- - - - - - - - - - - - - - - - - - -	32	-	200	24/g	100		
Ethyl Bethenegul fonete	<b>S</b>		9/S	32	_	300 n	<b>4/kg</b>	180		
est i	in i	<b>-</b>	84/8n	8;		⊃ :	64/65 C0/K0	9		
₹.		<b>-</b> :	2/Kg	3	- •		\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			
Phenyl - tert - butyl maine 2 - t. m. chi content		3 =	24/g	• • • • • • • • • • • • • • • • • • •		1800	26/kg	1800		
B-aleraso-disa-hutylasilas		; ;	/k	5	•	D 008	co/kg	90		
H-Hitrosodiethylanine		े •	sy/ka	32	•	800 C	46/kg	200		
N-Witrosopyrrolidins	<b>S</b>	_ >:	ug/kg	22		3 COS	64/Kg	0081		
*****			2 / X				9/kg			
		) } }			_	200g	, kg	8800		
(*Hechthylesine	200		54/85	2		0000 n	69/kg	8800		
Nephthyl serine	2	_	s /kg	2		9800 u	ug/kg	8800		
2,3,4,6-Tetrachlorophenol	Ai	- -	8/kg	Š	·-·	1800 -	ug/kg	9		
Phenecetin		 3≥	3/5 27/5	5			64/69 16/45	RRUD		
e-Allinos presign		13	2 2 3			9800	4/kg	008		
Processide				350		2008	ug/kg	150		
p-(Disethylanino)ezobenzene		3	ug/kg	32		2008	<b>69/kg</b>	1800		
,12-0 Inethylbenz(A)Anthrecare			ng/kg	2			64/Kg	1800		
5-Nethyl chol anthrane		] 3: }}	5/KG	3			64/6 64/6			
Pyridine Pyridine		) ) 	?! }}	32			3/3	300		
_	200	9	2 2 3 2	32	_	7 008	ug/kg	508		
	25 M. 5 5 5 500	1961年1981年1981	1. K. J. C. K.	化对替定的 医红					· • • • • • • • • • • • • • • • • • • •	

	_
	Deta
	=
	2
=	0
×	
NAYPOR	Soil
•	=
=	.2
3	ų,
-	
_	å
-	~
MAVSTA	
"	7
-	≒
3	Sur
=	•
	_
	FF
	=

DI.	1800 1800 1800 1800 1800 1800 1800 1800	<b>99</b>
M7705004 RFADATA 48SS00501 08-AUG-94 QUAL UNITS	48/kg 68/kg	ug/kg
M771 RFI 48SS 68-1 08-1	1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 18	1800 U
<b>a</b>	25. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	350
M770500B RFADATA 48SS004010 08-AUG-94 E QUAL UNITS	350 U ug/kg 7000 U ug/kg 7000 U ug/kg 1700 U ug/kg 550 U ug/kg 750 U ug/kg 750 U ug/kg 7700 U ug/kg 7700 U ug/kg 7700 U ug/kg 7700 U ug/kg 7700 U ug/kg 7700 U ug/kg 7700 U ug/kg 7700 U ug/kg	250 U 42/kg
Lab Sample Number: Site Locator Collect Date: VALUE	uidine hitoropene hitoropropene froie infroie infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infroiene infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane infrodenizane in	chi propropene etyl melnofi uprene
	O TO THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL	₹. \$4

ERE GENERATED FROM THE SVOC (8270) ANALYTICAL RUM.

	ם פר	350 350 350 350 350
	N7705007 RFADATA 48SS00401 08-AUG-94 QUAL UNITS	03/kg 03/kg 03/kg 03/kg 03/kg
	M77 R8 488 488 089 VALUE 90/	1800 U 350 U 1800 U 350 U 350 U 350 U 350 U
	* ă	08 08 08 08 08 08 08 08 08 08 08 08 08 0
	N7705006 RFADATA 48SS00301 08-AUG-94 QUAL UNITS	22222222
	N77 RF. 46S 08-1	30000000 30000000 3000000 30000000000
	V.	150 180 180 180 180 180 180 180 180 180 18
NAVSTA MAYPORT Surface Soil Data	M7705002 RFADATA 48S500201 08-AUG-94 QUAL UNITS	69/kg 69/kg 69/kg 69/kg 69/kg 69/kg
NAVSTA RFA Surfac	M770 RFA 48SS 08-A VALUE QUAL	1800 1800 1800 1800 1800 1800 1800 1800
	or Vě	1800 1800 1800 1800 1800
	M7705001 RFADATA 48SS00101 08-AUG-94 QUAL UNITS (	
	M7 84 48 08 08 08 08 08 08 08	
	Lab Sample Number: Site Locator Collect Date:	1
		trhapyrilane 3 Diaethylbenaldine 3 Diaethylbenaldine 3 Siaethylbenal 2 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathylphenal 3 Siathy

U.*. MOT DETECTED R = RESULT IS REJECTED

1 * ESTIMITED VALUE UJ = REPORTED GUMITIATION LIMIT IS ESTIMATED

THE ADDITICUAL LISTINGS OF RESULTS FOR 1,2-1 1,3-1 AND 1,4-DICHLOROBENZEME WERE GEMERATED FROM THE SYOC (8270) AMALYTICAL RUN.

e.	<b>a</b>	1800 1800	000	008	900	) 	1800 180	<u> </u>	55 50 50 50 50 50 50 50 50 50 50 50 50 5	0001	12 1809 1800	1800 1800	900 0081	008 008 008	1800	<b>98</b> 00 <b>19</b> 00	1800	2800 0088	50 50 50 50 50 50 50 50 50 50 50 50 50 5	2008t	0081 0081		Angella Kananan Kananan	
NAVSIA MATPURI Surface Soil Data M7705004 RFADAIA 48S00501 08-AUG-94	QUAL UNITS	ug/kg ug/kg	08/kg	2/2/3	ug/kg	09/kg	ug/kg	2/8 2/8 3/8			3/63 3/83 3/83	69/kg	64/g	ug/kg	ug/kg	6 /kg	ug/kg ug/kg	09/kg	69/kg 28/kg	69/kg	ug/kg ug/kg			
RFA Surfac M770 RFA RFA RFA CBSS	VALUE QUAL	1800 1800 U	1800	1800	2000	1800 1800 1900 1900 1900 1900 1900 1900	1800	1800	1800 6	8800 R	1800 U	1800 1 0081	200		1800	0800 U	8800 UJ		1800 U		1800 t 1800 t		•	
	٠ ا	320	32	2 IA 4	^ 03;	200	200				320	320	320	182			320	28. 28.	28.E	120 120 120 120	22			
M7705008 RFADATA 48SSO0401D 08-AUG-94	CUAL UNITS	550 y wg/kg 450 ii 140/kg	350 U us/kg	2/20 2/20 2/20 2/20 2/20	<b>.</b>	350 U 49/kg 350 U 49/kg	33:	350 U 49/kg	<b>.</b>		350 U ug/kg	) ) <b>3</b>	) ) <b>=</b> =	27/50 D 055	, 	1700 U ug/kg	3.	· = =			350 U vg/kg 350 U vg/kg			
Lab Sample Number: Site Locator		ug/kg																						
Lab Sample N		BKG SVOC (8270+24)	Phenol And Line	bis (2-Chloroethyl) ether 1,3-Dichlorobenzene	1,4.0ichtorobenzene Benzyl Alcohol	1,2-bichlorobenzena 2-Kethylphenol	bis(2-chloroispropyt)ether N-Nitroso-di-n-propylamine	Hexachloroethane Mitrobeniene	sophorone   2-Nitrophenol	2,4-Dimethylphenol Benzalc acid	bis(2-thloroethoxy)methane 2,6-Dichlorophenol	1,2,4-Trichlorobenzene Naphthalene	4-Chloroaniline Hexachlorobutadiene	4-chioro-3-methyl phenol 2-Nethyl naphthal ene	Hexachlorocyclopentadiene 2,6,6-1richlorophemol	Dimethylphthalate 2,4,5-1richloropherol	2-Chlaronachthalene 2-Hitroaniiine	Acamaphthylane 2,6-binitrotolume	3-Nitroaniline Acenaphthene	2,4-Dinitrophenol 4-Hitrophenol	Dibenzoruren 2.4-Dinitrotoluere Dietkylphthelete			

		ł			RFA Sur	NAVSTA MAYPORI Surface Soil Data	XT Data			Ì						
Lab Sample Number: Site Locator Collect Date:	_	5 × 3 8	M7705001 RFADATA 48SS00101 08-AUG-94	. :		M7705002 RFADATA 48SS00201 08-AUG-94		•	ļ	RFADATA 48SS0030 08-AUG-9	M7705006 RFADATA 48SS00301 OB-AUG-94	ä		RFADATA 48SS00401 08-AUG-94		
	VALUE	3	CUAL UNITS	<b>a</b>	AALUE	CUAL UNITS	<u>ا</u> ۵		WICE		GUAL UMITS	<b>a</b>	VALUE	COAL UNITS	<u> </u>	
	ug/kg				!								;		,	Ş
2		2 2 2 2 2 2 2 3	2/% 2/%	1800 1800 1800		4 49/kg	<b>.</b>	322	22	- 	2 2 2 2 2 2 3 2	200	320 320 320 320 320	. ug/kg	<b>.</b> .	3 <b>2</b> 5
		200	2 /K	1800			<b>.</b>	320	2005	) >=	. 56/kg	88 88	350 350 350	U 49/kg	<b>.</b>	2 22
bis (2-Chloroethyl) ether			2 2 2 2 2 2	<b>2</b>	320 1		<b>.</b>	22		: = :	(k)	) N	22	7/67		32
1,4-blehtorobenzene		= = 8	<b>UQ/K</b> Q	000 E		u ug/kg u ug/ka		320 320 320	320	- 	2 2 2 2 2	2 S	3 25	03/80 C (18/80	<b>.</b>	325
1,2-Dichlorobenzene		000	)       	<u>5</u>		U ug/kg		350	<b>.</b>		2 % % %	350	320	0 40/kg		32 20 20
Z-Ketnylphenol bis(2-Chloroisopropyl)ether		.3 8				_	b 55		1	100 200 100 100 100 100 100 100 100 100	ug/ka		320	7/60		
K-Witroso-di-n-propylemine		2008 2008 2009	6 /2 26/29	1800 1800	350 (	U 69/kg U 69/kg	B G	320 320	22	- 	5 5/8 5/8	320	3 55 50 55 50 50 50 br>50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5	ug/kg U cg/kg	<b>.</b>	325
Nitrobenzene	in the second	200				u ug/kg		350	300	<b>3</b> =	<b>5</b> /kg	350	350	U ug/kg		22 22 23 24
Isophorone 2-witrocherol				100	_		a ca	22	120	; <b>-</b>	3	22	22			is:
2,4-0 imethy phenol		⊃ <b>•</b> 002 007	69/kg	8	350 ( 1800 I		<b>.</b>	220	2.2 2.5 2.5	3 Æ	56/28 26/29	2	<u> </u>	2 5 2 5 2 7 3 7 3 7	<b>.</b>	Ç
bis(2.Chloroethoxy)methane		2 2 2 3 3 3 3		<b>8</b>		-		320	330	_ 	3	22	320	760 n	<b>.</b>	320
2,4-0 icht orophenot			ug/kg	- - - - - - - - - - - - - - - - - - -	320	U 149/kg	<b>.</b>	22	325	- - -	2 2 2 2 3 2	325	320	5,5 5,75 5,75		3 Z
ED CONTRACTOR			<b>6</b> /20	1800		0 1/8g	- 120 1	350	350	<b>=</b> :	64/kg	350	350	2 <b>6 6</b>		22 E
4-Chigroaniline Hexachiorobytadiene				200		_	<b>3</b> 63	32	123	) ) )	2	320	200	2/2		22
4-Chioco-3-methylphenol			<b>56/kg</b> <b>76/kg</b>	2 <u>2</u>	320	. 59/kg	<b>.</b>	325	320	- - -		28	22		<b>.</b>	25
Hexachlorocyclopentadiene		2 2 2 2	ug/kg	190 190 190 190 190 190 190 190 190 190	350	J ug/kg	<b>.</b>	220 120	350	- 	2 2 2 3	320	32 S	¥¥ 86,8		2 2 2 2
	1800	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	, <u>2</u>	<u>\$</u>	200	2/2		200	32	- - -	2/kg	350	058 058	3/8		350
2,4,5-Trichlorophenol 2-chloromaththalene		28	\$ \$ \$ \$ \$ \$	38				326	320		? ? ? ?	2	320			32
2-Bitroanii ine		900 100 100 100 100 100 100 100 100 100	08/kg	- S		UJ Ug/kg	<b>.</b>	350 350	52	3 : 0 e	- 44/45 - 14/45 - 14/4	320	55 E	UJ 149/Kg U 146/Kg	<b>.</b>	350
Acamatan myterae 2,6-0 in i trotol uene		88	22	200				320	28		2 /8	320	350	U ug/kg		22
3-Witrosfline Acquestitions		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<b>26/</b> 28	2 2 2 2 3 3 3 3 3 3		94/8n n ng/kg	- -	320		) )		200	320			325
2,4-Dinitropherol		3700 U	<b>2</b> /2		1 680 1 680 1 680	U 00/kg		2 <u>2</u>		) > >	64/kg 66/kg	26	180 180 180 180 180	0 49/kg U 48/kg		2 S
		200	7.2° 3°3°	<b>2</b>	38	ug/kg		320	350	- - -	8 8	32	320	00/kg		350
2,4-binitrotoluene		= = 8 8	35	8	350	1 <b>19/</b> 59	<b>.</b>	Σ <b>Σ</b>	e X	) ) ) ()	2 & 3 \ 3	320	320			325
Diethylphinalete 4-Chlorophenyl-phenylether			2 2	180				320	320	; <b>;</b> ;	3/2	350	350	100 m		350
Fluorene Tar		986	5 2 2 3		25.081	5 09/Kg		Ž	<b>12</b>	. <del>.</del>	2	2	<u> </u>		•	Š
4.6-Dinitro-2-methylphenol		3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2/kg	870 870 88		U ug/kg	•	250 250	25 25 25	> > > >	59/kg 7/kg	1700 350	08t 08t	3/8 3/8 3/8	_	5 % 5 %
1.2-Dishenylhydratine		, <u></u>		•	200	٠,			<b>:</b>	3:	, ko		320	_		
4-Brosophenyl-phenylether		25	2/kg	<b>&amp;</b>		u vg/kg us vg/kg	<b>.</b>	320	320	- 3 - 0	5 /kg	350	320	2/3 3/3 3/3		2
Hexach i orobentene Pentach i orophenol	Tale a		7 # ; 3 9 !	B70 648				0001 0.55	5 5 5	2 S	2/2/2	95t 55t	1800 150	U 49/K		92 22 22 23 24
Phenanthrena	Ser.	3	? •	3			3	· 		<b>3</b>		ì	i			) 

-	Data
5	_
5	So
_	ace
	Surf
	RFA

10	350 350	450	32,	2	35 55 55 55	25	320	320	320	8 8	25	25	500	320	25		;	350	320	32		2005	5	<b>180</b>	<b>5</b>	200	1800	50	320	5 £	32	<u>8</u>	25.0	350	1600			35000	320	55 55	5000				)
NFAD5007 RFADATA 485500401 08-AUG-94 QUAL_UNITS	ug/kg ug/kg	5/kg	2 /k	ug/kg	56/kg	1 / S	10/kg	ua/ka	6/kg	<b>20/kg</b>	64/60 	64/60 64/61	, de	ug/kg	<b>2</b> /2	5/kg	10/kg	, ×	ug/kg	<b>5</b> /kg	2 / S	64/50 16/16	2/kg	64/kg	-64/kg	64/Kg		<b>40/kg</b>	<b>5</b> 4/83	6 4/50 6 4/50	5 5 X	<b>100/kg</b>	<b>6</b> 4/8	, o	ug/kg	5	5 / Kg	, <u>, , , , , , , , , , , , , , , , , , </u>	<b>10</b> /kg	64/Kg	, y				
M770500; RFADATA 4855004 08-AUG-		350 UJ	320 c	710 U	320 C	350	350 0	350 8	350 U	350 U	320 E	350 U	1800 0	_		255 255 255 255			350 U	350 ±	55 C	2001	2 008	1800 L	1600 u	350 U	1500 U	1800 U	350 U	250	350 C	1800 U	350 0	2055		_	1800	35000 U	350 6	320 €	18000 u				
W. 10	350			ş	8 8	۵. د د	200	Ş	320	350	320	350		22	350	0 2 2 2 3	Pictor No.	320	320	330	926	3	38	2	<b>Ž</b> :	Š	202	25	220	P.	32	<b>5</b>	320	25	3		88	35000	350	05 1	2002				
M7705006 RFADATA 48SS00301 08-AUG-94 QUAL UNITS	ug/kg ug/kg	5/2 2	2 2 3 3	, 5 , 5	64/kg	64/B	<b>3</b> 3			LO/kg	ua/kg	ug/kg	7/e:	2 2	wa/ka	64/ca	2/X	9 9 3 9	<u>9</u>	8/\ <b>9</b>	64/65 (10)	2; 2:				2	2	, 9 , 8 , 8	MA/ka	97		2	. 16/kg	7 (2)	7 7 <b>?</b> ?	5/kg		64/kg	ug/kg	ug/kg	5/Kg	?			
M777 RFI 46S 08-1 VALUE GUA	350 U 350 U	320 0		200	350 U	350 U	350 0	200	320	350 U	350 U	320 c		320 0	350 U	350 c	1.17	3 = 2 <b>2</b>	350 U	350 U	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3 3 2 4	200	2 2	20 C		)	350 u	7 05E	- = 25	10071	350	) = C	200 200 200 200 200 200 200 200 200 200	3000	- 25. 25.	2500 2500 2500 2500 2500 2500 2500 2500	350 €	350 U	- 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25	3 } }			2 2, 5,
VA DI	350 350	j	320	2	320	320	920	700	320	350	350	350	000	38	350	320		120	220	350	350	1800			98	350		1800	350	350	22	1800	320	200		90 - 1 80 - 1 80 - 1 80 - 1	000		350	350		3	- (1) -(1)		
M7705002 RFADATA 48S00201 08-AUG-94 QUAL UNITS	ug/kg ug/kg	cg/kg	. 50/kg	2/kg	sa/kg	ug/kg	04/80 1	09/Kg	09/Kg	co/ko	ug/kg	ug/kg	08/K9	64/kg	ug/kg	ug/kg	100/Kg	09/K9	ug/ka	ug/kg	ug/kg	09/kg	09/Kg	(4/kg	, kg	ug/kg	19/kg	ua/ka	ca/kg	ug/kg	<b>2</b> /8	5/kg	<b>10</b> /kg	64/65 1	64/kg	ug/kg	ug/kg	5/45 5/5	ca/kg	ug/ka	54/kg				)
M7705 RFAD 48SSC 08-AN VALUE QUAL	350 U 350 U		350 E	710 1	350 U	350 U	350 U	f 22	350 0	350 U	350 U	350 U	350 0	320 0	350 U			1800 UJ					1800				350 UJ	508		350 U	350 ± 65 ± ±	30081	320 E	350 0	55 508 500 500	18000 UJ		1800 0			320 n				
۶ د .	1800 1800		<b>5</b>	2005	<u>8</u>	1800	000	1000		180	908	1800	200	35	1800	- - - -	8	2		1800	1800	8700 0	870G		828	-1800 	5		3 <u>8</u>	- 188	500	8700	188	90		k.	8700	6700	1800	1800		3		eri Sala Tulan Tengga	
M7705001 RFADATA 48SS00101 08-ALIG-94 04AL UNITS	ug/kg	2 2	)   	2 <u>5</u>	2 2 3 3	- 64/kg	ug/kg	2 3	3;		, 24/kg	9 9	2/S	2 : 3 :	) () ()	2	<b>5</b> 2/kg	2 2 2	. 50/kg	2 × × × × × × × × × × × × × × × × × × ×	ue/kg	S/ka	ug/kg	9 S	} }	<b>8</b> /8	8/ <b>\$</b>	2 <u>3</u>	7 <u>9</u>	3	<b>8</b> / <b>§</b> 3		2   2	va/ka	6 / P		\$/kg			2   2	2 2 2 3	<b>2</b> <b>3</b>			
M770' RFA 485S' 08-A	88	23 28 28 28	⊃: 200 2.			J 0081	7 00 <b>8</b>	- <b>202</b>	) 			1800 U	7 99 1		1800	1600 u	_	3 .			1800 L	9700 U	⊐: 626		200	1000	1000 E		- 1808t	7 0091	n 0001		1800	<b>- 001</b>	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	77 0029		8700 U			1500 U	⊃ 82 S			
Lab Sample Number: Site Locator Collect Date:			Pyrene	Butylbenzylphthelate	5,5'-Dichloropenziping	は、これには、これには、これには、これには、これには、これには、これには、これに	bis(2-Ethylhexyl)phtholate	Di-n-octylofthelate	Senzo(b) fluorenthene	Benzo(k) fluorenthens	ξ,	Diberator Districtor	2	2-Picoline			K-Mitrosopiperidine		2,6-Dichlorophenol				1.2,4,5-Tetrachlorobanzere	9		2 T L 6-Tetrachlorotherol	Phancatin	4-Abinobiphent	Pentachi oroni troberzene		7, 12-Disethylbenz (A)Anthrecene	3-Methylcholanthrane	Pyridine	H-Mitrosomorpholine	o Toluidine	Hexach Coroperate		# TOL18081	1.4-Nephthodulmane		1.3.5-Trinitrobentene	4-Nitroquinatine 1-ox Ide			

Surface Soil		
RFAS	RFA S	

	S SSN NUNNA NUNNANUNANUSSNANUNA VSSSSS	
7	.1	
M7705004 RFADATA 48SS00501 08-AUG-94 QUAL UNITS		
M7 81 088 VALUE QUU		
7 16	55552 NREWER BANDARMANDERMANNA WASSINGE	
M7705008 RFADATA 48SS00401D 08-AUG-94 QUAL UNITS	######################################	
M7 48S 08 Value qu	555544 ANNER AND SERVING AND AND AND AND SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVI	
tor te:		
Lab Sample Numb S Loca Loca Collect Da	ide e en e en e en e en e en e en e en e	
	Entormethere Entormethere Entormethere Viny! chloride Viny! chloride Chloroethere Carbon disulfide 1,1-Dichloroethere 1,2-Dichloroethere 1,2-Dichloroethere 1,2-Dichloroethere 1,2-Dichloroethere 2-Butanore 2-Butanore 1,1-Trichloroethere 2-Butanore 1,1-Trichloroethere 1,2-Dichloroethere 1,2-Dichloroethere 1,2-Dichloroethere 1,2-Dichloroethere 1,2-Dichloroethere 1,2-Dichloroethere 1,2-Dichloroethere 1,3-Dichloroethere 1,1,2-Trichloroethere 1,1,2-Trichloroethere 1,1,2-Trichloroethere 1,1,2-Trichloroethere 1,1,2-Trichloroethere 1,1,2-Trichloroethere 1,1,2-Trichloroethere 1,1,2-Trichloroethere 1,1,3-Dichloroemethere 1,3-Dichloroemethere 1,3-Dichloroemethere 1,4-Dichloroemethere	

_	Data
HAYPOR	Soil
	face 5
NAVSTA	Surf
	RFA

10	Strumstring weeds
N7705004 RFADATA 48SS00501 08-AUG-94 QUAL UNITS	100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg
M77 RFI 48S 08-1	280 200 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ឥ	Wowners we weeks
M7705008 RFADATA 48SS00401D 08-AUG-94 QUAL UNITS	
A VALUE	2000 C C C C C C C C C C C C C C C C C C
Lab Sample Number: Site Locator Collect Date:	1,2-01chlorobanzena 2-Chloroptylate Ethyl sethatrylate 1,2,3-1 fichloroptopana rrana-1,4-Dichloro-2-butena laoburyl alcohol 1,1-1,2-Ietrachloroethana 1,2-Dibroso-3-chloroptopana 1,2-Dibroso-3-chloroptopana 1,2-Dibroso-1-chloroethana 1,4-Dioxacethana 2-Chloroptopana Acetonitrila Chloroptopana Acetonitrila Chloroptopana Acetonitrila Pentachloroethana Propionitrila Propionitrila Propionitrila Viryl acetata

VERE GENERATED FROM THE SVOC (8270) ANALYTICAL RUM.

	DL	55552 <i>*********************************</i>
	5007 DATA 00401 UG-94 UNITS	0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg 0.00/kg
	M770 RFA 48SS 08-A QUAL	566582~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	AALUE	
	4	
	N7705006 RFADATA 48SS00301 08-AUG-94 QUAL UNITS	######################################
	AALUE	ວຣຣຣິບິຊິນພນພນສົມພູພນພນພນພນພູພຣຣີພູພູພູພູພູພູພູພູພູພູພູພູພູລີພູພູພູພູພູພ
		ธ ธอน พพพพพ พพพพพพพพพพพพธธพพพพพ พชัธธษัติชัติพชัธพพพธพ
MYPORT Soil Data	5002 DATA 00201 UG-94 UNITS 0L	LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG LG/KG
NAVSTA MAYPORT Surface Soil D	M7705002 RFADATA 48SS00201 08-AUG-94 QUAL UNITS	
RFA S	VALUE	M- M- M 70 - 70
	16	«»»««» ««««»»»»» «» ««»»» «»
	M7705001 RFADATA 48SS00101 08-AUG-94 QUAL UNITS	### ### ### ### ### ### ### ### ### ##
		====n=navana==navanavavan===avavavavad===85=8= ==============================
	te or e: VALUE	Mark Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee C
	Lab Sample Number: Site Locator Coilect Date:	
	Lab Samp	
		10. (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)
		ekg vots (8240+11)  Chi oromethene  Vinyl chi oride  Chilorothene  Methylene chi oride  Carbon diaulfide  1, 1-Dichiorothene  1, 2-Dichiorothene  1, 2-Dichiorothene  2-Butenone  1, 1-Trichiorothene  1, 2-Dichiorothene  1, 2-Dichiorothene  1, 2-Dichiorothene  1, 3-Dichiorothene  1, 1, 2-Trichiorothene  2-Hausnone  2-Hausnone  2-Hausnone  2-Hausnone  2-Hausnone  2-Hausnone  2-Hausnone  2-Hausnone  2-Hausnone  2-Hausnone  2-Hausnone  2-Hausnone  2-Hausnone  2-Hausnone  3-Dichiorothene  1, 3-Dichiorothene  1, 3-Dichiorothene  2-Hausnone  2-Hausnone  2-Hausnone  1, 3-Dichiorothene  1, 3-Dichiorothene  2-Hausnone  2-Hausnone  2-Hausnone  1, 3-Dichiorotenzene  2-Hausnone  1, 1, 2-Tetrachiorotenzene  2-Hausnone  1, 3-Dichiorotenzene  2-Hausnone  2-Hausnone  1, 3-Dichiorotenzene  2-Hausnone  2-Hausnone  1, 3-Dichiorotenzene  2-Hausnone  2-Hausnone  1, 3-Dichiorotenzene  2-Hausnone  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  2-Chiorotenzene  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  2-Chiorotenzene  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  2-Chiorotenzene  1, 3-Dichiorotenzene  2-Lionotenzene  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  2-Lionotenzene  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  2-Lionotenzene  1, 3-Dichiorotenzene  2-Lionotenzene  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  2-Lionotenzene  1, 3-Dichiorotenzene  2-Lionotenzene  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  1, 3-Dichiorotenzene  1
		2 2 2 2 5 5 6 6 7 7 7 6 2 7 5 7 5 7 5 7 5 7 6 7 6 7 6 7 6 7 6 7 6

	2	
	ARALYTICAL	
	GENERATED FROM THE SVOC (8279)	
7	3	
	召出	
	Ξ	
	5	
33	MIED	
	GENE	
	ERE	
į		

	1
	1
	7
	<u> </u>
	8
	_ ×
i	# <b>=</b>
	23 25
	<b>≅</b> ≅
ì	E 7
ar. H	N.
mir i	
Ma.,	ੁਡ∍
T. Xal	ΞΤ.
	<b>=</b> **
	<b>⊔</b> ₩_
	<b>3</b>
	요
	الدحا
797	7:1
_	
LT 15 REJECTED	COMMITATION FIMIT IS ESTIMATED S. FOR 12-; 1,3-; AND 1,4-DICHLOROBEN
្ទ	34.
- 4	٠,
. <u>u</u>	25
-	==
===	82
	도르
·····□	모드
굻	
ij	_ %
_	E UJ - REPORTI TINGS OF RESUM
	ΨÏ
==	<b>⊃</b> ∨
_	33
· •	
DETECTED R •	INATED VALUE UJ - REPORTED OF
	=5
, <b>,</b>	TIGE
	==
9	
::: <u> </u>	1

) O F	2 00 00 00 00 00 00 00 00 00 00 00 00 00
M7705007 RFADATA 48SSCO401 08-AUG-94 QUAL UNITS	49/kg 49/kg 49/kg 40/kg 40/kg
RFA 4855 08-A QUAL	2
VALUE	20. 20. 50. 50. 50. 50. 50. 50. 50. 50. 50. 5
	v3 v2585
1	
M7705006 RFADATA 48SS00301 08-AUG-94 QUAL UNITS	64/46 64/46 64/46 64/46 64/46 64/46
H77050 RFADA 485500 08-AUC	33 3333
	~8. ~5588
VALUE	
ᆸ	~8 ~55 <b>8</b> 5
- 3 L 8	3553552
47705002 RFADATA 48SS00201 DB-AUG-94	64/60 64/60 64/60 64/60 64/60
F = 5 8 8	20.2560 23.2560 23.25
VALUE	
	v5 NLT5
ಕ	
17705001 RFADATA 18SS00101 38-AUG-94	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
RFADATA 48SS00101 08-AUG-94 QUAL UNITS	55 5555
Z K	we will
Lab Sampie Number: Site Locator Collect Date:	
ample   Collec	
Lab S.	
	- ===
	ile ile ithecr irile
	hlaropropropropropropropropropropropropropr
	VP P E E C P C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E C P E E E C P E E E C P E E E E

NAVSTA MAYPORT RFA Surface Soil Date

CROUND WATER GUALITY Alkelinity as CaCO3 Ammonia-N Chloride Nardness as CaCO3 Nitrate/Nitrite-W Oil and Grease Phosphorous-P, Total Sulfate Sulfate Total Dissolved Solids Total Dissolved Carbon COLOR COLOR Color	Lab Sample Number: Site Locator Collect Date: mg/l mg/l	150 150 150 150 1.7 1.3 1.3 1.3 7.6	M7505004 RFADATA 08MW001S 11-JUL-94 QUAL UNITS mg/l mg/l mg/l u mg/l u mg/l u mg/l u mg/l u mg/l	٠ ١	NA RFA Gr 242 1.3 31.7 262 1	RFA Ground Water Data R8405002 RFADATA 08MW005S 26-UAL-94 08WW005S 26-UAL-94 1.3 mg/l 1.3 mg/l 262 mg/l 31.7 mg/l 36.4 mg/l 36.4 mg/l 36.4 mg/l 36.4 mg/l 36.4 mg/l 36.4 mg/l 36.4 mg/l 36.4 mg/l 36.4 mg/l 36.4 mg/l 5.2 mg/l 5.2 mg/l 7.47 units	Data Data	~	332 332 332 17.1 1.6 5.1 5.3 5.3 5.3	RFADATA 28WA0015 11-JUL-94 QUAL UNITS QUAL UNITS REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1 REG/1	4 E. 2.	207 207 207 252 252 255 349 1.4 349 349 349 349 349 349	R8607C FRADR 100PC 24-AUC QUAL U	001 111A 1001 1-94 MB/1 MB/1 MB/1 MB/1 MB/1 MB/1 MB/1 MB/1
TOTAL PETROLEUM HYDROCARBONS Total petroleum hydrocarbon	s mg/l on	•	1/6w		•	mg/l			•	1/Bw		'	Mg/l	z.

æ

~

U = NOT DETECTED R = RESULT 15 REJECTED J = ESTIMATED VALUE UJ = REPORTED QUANTITATION LIMIT IS ESTIMATED THE ADDITIONAL LISTINGS OF RESULTS FOR 1,2:; 1,3:; AMD 1,4-DICHLOROBENZENE WERE GEWERATED FROM THE SVOC (B270) AMALYTICAL RUN.

Lab Sample Number:

R8607002 RFADATA 150P001 24-AUG-94 QUAL UNITS Locator

ಕ VALUE Collect Date:

APIA units **mg/**1 7.1 units mg/l APHA 1/66 TOTAL PETROLEUM HYDROCARBONS Total petroleum hydrocarbon Alkalinity as CaCO3 Ameria-N Chloride Hardness as CaCO3 Nitrate/Nitrite-N Oil and Grease Phosphorous-P, Total Sulfate Sulfide Total Dissolved Solids Total Dissolved Solids Color 置

U = NOT DETECTED R = RESULT IS REJECTED
J = ESTIMATED VALUE UJ = REPORTED QUANTITATION LIMIT IS ESTIMATED
THE DESTINATED VALUE UJ = REPORTED QUANTITATION LIMIT IS ESTIMATED
THE DESTINATED FROM THE SYOC (8270) AMALYTICAL RUN.

STATE NETALS   Lab Sample Number:   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA   RFADATA						767	MANSTA MAYPORT	Tand								
Collect Date   M7504006   M7504007   R8404002   R8404002   R7504008   R7504008   R7504008   R7504008   R7504008   R7504008   R7504008   R7504008   R7504008   R7504008   R7504008   R7504008   R7504009   R7504009   R7504009   R7504009   R7504009   R7504009   R7504009   R7504009   R7504009   R7504009   R7504009   R7504009   R7504009   R750409						RFA Gre	ound Wat	er Data								
Collect Date: (11-Jul194		Lab Sample Number: Site Locator		M7504006 RFADATA DBMWOO1S			M7504007 RFADATA 08MJ001S	<u> 44.</u> 3		R640 RFA OBMU	4002 DATA 005S			RFADA 28MM00 11- III	88 <b>4</b> 8 8	
1.1 ug/1		Collect Date:	VALUE	11-JUL-94 QUAL UNITS	5		ST-JUL-5	1	VAL		UNITS	5	VALUE	OUAL LI	RITS	<u>ا</u>
2.2 U ug/1	ER METALS	1/50			,	•	:		ſ	:	1	ú	,	=	7	2 2
3.5 J ug/l 3.5 J ug/l 3.3 1.4 b ug/l 1.4 7 J ug/l 1.8 1 1.4 b ug/l 1.4 7 J ug/l 1.8 1 1.4 b ug/l 1.4 1.8 1 1.8 b ug/l 1.4 1.8 1 1.4 b ug/l 1.4 1.8 1 1.8 b ug/l 1.4 1.8 1 1.4 b ug/l 1.4 1.8 1 1.4 b ug/l 1.4 1.8 1 1.4 b ug/l 1.4 1.8 1 1.4 b ug/l 1.4 1.8 1 1.4 b ug/l 1.4 1.8 1 1.4 b ug/l 1.4 1.4 1.4 b ug/l 1.4 1.4 b ug/l 1.4 1.4 1.4 b ug/l 1.4 1.4 1.4 b ug/l 1.4 1.4 1.4 b ug/l 1.4 1.4 1.4 b ug/l 1.4 1.4 1.4 b ug/l 1.4 1.4 1.4 b ug/l 1.4 1.4 1.4 1.4 b ug/l 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Auor		2.5	7/85 n	2.2	7.9	- ·		7.	o ≃	; ;	٠ • <u>•</u>	3.4	,	· /	:
18	ij		- 0	7 5		. F.	• • • • • • • • • • • • • • • • • • •	3	Ε.	1.4.U	; ; ;	7.		7	7	
Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Secondary   Seco	( E •		. C.	• =	.18	181.	. =		8	.3 U.	- - - - -		31.	) (	- J - J - J	<b>≘</b> .'
57900 ug/1 2.34 2.34 ug/1 2.34 2.6 UJ ug/1 2.34 2.6 UJ ug/1 2.34 2.34 ug/1 2.34 2.5 UJ ug/1 2.7 2.7 U ug/1 2.7 3.4 U ug/1 2.7 3.1 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7 3.4 U ug/1 2.7			M	. ¬	M	E S	_ _		м	7	<u> </u>	_	-	<b>⊃</b> .	- F	~
2.34 U ug/1 2.34 2.34 U ug/1 2.7 3.1 U ug/1 2.7 3.1 U ug/1 2.7 3.1 U ug/1 2.7 3.1 U ug/1 2.7 3.1 U ug/1 2.7 3.1 U ug/1 2.7 3.1 U ug/1 2.7 3.1 U ug/1 2.7 3.1 U ug/1 2.7 3.1 U ug/1 2.7 3.1 U ug/1 2.7 3.1 U ug/1 2.7 3.1 U ug/1 2.7 3.1 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2 U ug/1 3.2	5 5		57900	_		58800			i	84500 J	<b>8</b>		97.00	:	 	2
2.7 U ug/1	5		2.34	_	2.34	2.34 (	_ _ :	_	7,	9.7 4.9 1	<b>5</b> 5			) = -		
12.7 U ug/l 12.7 1.2 ug/l 2.7 U ug/l 2.7 1.8 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.7 U ug/l 1.3 U ug/l 1.3 U ug/l 1.6 U ug/l 1.7 U ug/l 1.7 U ug/l 1.5 U ug/l 1.5 U ug/l 1.5 U ug/l 1.5 U ug/l 1.5 U ug/l 1.5 U ug/l 1.5 U ug/l 1.5 U ug/l 1.5 U ug/l 1.5 U ug/l 1.5 U ug/l 1.5 U ug/l 1.5 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6 U ug/l 1.6	•		7.7	<b>-</b> ,	;	7.7.5	5° 5			3 = - 0	; ;	•	12.7	2 =	/sn	12.7
70.0 ug/l 1.60 ug/l 1.6 ii ug/l 1.6 ii ug/l 1.6 ii ug/l 1.6 ii ug/l 1.6 ii ug/l 1.6 ii ug/l 1.6 ii ug/l 1.6 ii ug/l 1.6 ii ug/l 1.6 ii ug/l 1.6 ii ug/l 1.6 ii ug/l 1.6 ii ug/l 1.6 ii ug/l 1.6 ii ug/l 1.6 ii ug/l 1.6 ii ug/l 1.6 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/l 1.7 ii ug/	C.		12.7	<b>.</b>	7.7	15.1	5° 5		•	2.7.0	;	2.7		<u> </u>	1/6n	₽.
6180 ug/l 1.6 u ug/l 1.6 u ug/l 1.8800 ug/l 1.6 ug/l 18800 ug/l 18800 ug/l 18800 ug/l 18800 ug/l 18800 ug/l 18800 ug/l 18800 ug/l 2.5 ug/l 18800 ug/l 2.5 ug/l 2.6 ug/l 2.7 ug/l 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 31500 ug/l 31500 ug/l 3.5 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 31500 ug/l 3.5 ug/l 2.1 2.1 ug/l 1.5 ug/l 1.5 ug/l 1.5 ug/l 1.5 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l 2.1 ug/l	ge Ge		18.	<b>-</b>	ē.	057	5° 5	. <u> </u>		78.6 UJ	, <u>, , , , , , , , , , , , , , , , , , </u>		<u>E</u>		J/gn	
6180 ug/l 5730 ug/l 18800 ug/l 18800 10800 ug/l 42.9 J ug/l 53.6 J ug/l 59.3 J ug/l 53.6 UJ ug/l 6180 10800 ug/l 62.9 J ug/l 63.6 J ug/l 62.9 J ug/l 62.9 J ug/l 62.9 J ug/l 62.9 J ug/l 62.9 J ug/l 62.0 ug/l 7.3 7.3 U ug/l 7.3 5.9 UJ ug/l 7.3 7.3 U ug/l 7.3 7.3 U ug/l 7.3 5.9 UJ ug/l 7.3 7.3 UJ ug/l 7.3 7.3 UJ ug/l 7.4 J ug/l 7.5 J ug/l 7.6 J ug/l 7.6 J ug/l 7.6 J ug/l 7.6 J ug/l 7.6 J ug/l 7.7 1.5 UJ ug/l 7.7 1.5 UJ ug/l 7.7 1.5 UJ ug/l 7.7 1.5 UJ ug/l 7.7 1.5 UJ ug/l 7.7 1.5 UJ ug/l 7.7 1.5 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1.6 UJ ug/l 7.7 1			6	. =		1.6.1	_		9.	n 9.	7/6n	٠.	6.	<b>-</b>	1/6n	.97
43.6 J ug/l 39.3 J ug/l 23.6 U3 ug/l 42.9 J ug/l 68.0 ug/l 68.1 U ug/l 7.3 J ug/l 7.3 5.9 U3 ug/l 7.3 5.9 U3 ug/l 7.3 7.3 U ug/l 7.3 5.9 U3 ug/l 7.3 5.9 U3 ug/l 7.3 5.9 U3 ug/l 7.3 5.9 U3 ug/l 7.3 7.3 U ug/l 7.3 7.3 U ug/l 7.3 7.3 U ug/l 7.3 7.3 U ug/l 7.3 7.3 U ug/l 7.3 1.3 U3 ug/l 7.3 U3/l 7.3 U3/l 7.3 U3/l 7.3 U3/l 7.3 U3/l 7.3 U3/l 7.3 U3/l 7.3 U3/l 7.3 U3/l 7.3 U3/l 7.3 U3/l 8 9.4 U3/l 1.3 U3/l 1.5 U3/l 1.5 U3/l 1.6 U3/l 1.7 1.7 U3/l 1.7 U3/l 1.8 7.5 U3/l 1.8 7.9 U ug/l 7.5 1.82 U ug/l 7.5 1.82 7.9 U ug/l 7.5 1.82 U ug/l 7.5 1.82 U ug/l 7.5 1.82 7.9 U ug/l	.;			3		5730	1			18800 U	1/6n	18800	10800	_	/bn	
7.3 U ug/l 08 U ug/l 10 ug/l 10 ug/l 10 ug/l 10 ug/l 10 ug/l 10 ug/l 5.9 Uu ug/l 7.3 5.9 Uu ug/l 7.3 5.9 Uu ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 2.1 2.1 U ug/l 2.1 2.1 0 ug/l 2.1 2.1 0 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug/l 6.1 ug	in Island		7 27	-		39.3	_				1/gn		45.9	<b>-</b> > :	1/6n	
7.3 0 ug/l 7.3 7.3 u ug/l 7.3 5.9 UJ ug/l 7.6 J ug/l 1.3 UJ ug/l 7.3 1.3 UJ ug/l 7.3 1.9 UJ ug/l 1.3 UJ ug/l 2.1 2.1 2.1 U ug/l 2.1 2.1 U ug/l 2.1 U ug/l 2.1 2.1 0 ug/l 31500 U ug/l 31500 12400 J ug/l 1.5 J ug/l 1.5 J ug/l 9.4 U ug/l 9.4 U ug/l 1.7 1.5 UJ ug/l 1.7 U ug/l 1.7 1.7 U ug/l 1.7 1.5 UJ ug/l 1.7 U ug/l 1.7 1.5 UJ ug/l 1.8 U ug/l 1.7 U ug/l 1.7 1.5 UJ ug/l 1.8 U ug/l 1.7 U ug/l 1.7 1.5 UJ ug/l 1.8 U ug/l 1.7 U ug/l 1.7 1.9 U ug/l 1.8 U ug/l	asau			• =	80.	80.	_		88	<b>∩</b> #:	l/gu	<del>-</del> .	ĕŢ	·	1/6n	8
1.3 UJ ug/l 1.3 UJ ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 2.1 2.1 ug/l 31500 U ug/l 31500 12400 J ug/l 1.5 J ug/l 0.6 Ug/l 9.4 ug/l 9.4 ug/l 9.4 ug/l 1.7 1.5 UJ ug/l 1.7 1.5 UJ ug/l 1.7 1.5 UJ ug/l 1.7 1.5 UJ ug/l 1.5 UJ ug/l 1.7 1.5 UJ ug/l 1.5 UJ ug/l 1.7 1.5 UJ ug/l 1.5 UJ ug/l 1.5 UJ ug/l 1.5 UJ ug/l 1.5 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.7 1.5 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l 1.6 UJ ug/l ug/l 1.6 UJ ug/l ug/l u	<u>.</u>			. =	7.3	7.3	ž,		<u>.</u>	5.9 UJ	- - -		~	¬	1/65	
2.1 U ug/l 2.1 2.1 0 ug/l 2.1 2.1 0 ng/l 2.1 2.1 0 ng/l 2.1 0 ng/l 2.1 0 ng/l 2.1 0 ng/l 31500 12400 J ug/l 31500 U ug/l 31500 12400 J ug/l 1.5 J ug/l 0.4 U ug/l 9.4 U ug/l 9.4 U ug/l 1.7 1.5 U ug/l 1.7 1.5 U ug/l 1.7 1.5 U ug/l 1.8 0.4 U ug/l 1.7 1.5 U ug/l 1.7 1.5 U ug/l 1.5 1 ug/l 1.8 7.5 1 ug/l 1.82 7.9 U ug/l	1		-	<b>,</b> ≘	•	. T	, TO			ŋ <b>9</b> .	ug/I	9.	-	3	76n	,
4980 J ug/l 15 J ug/l 31500 U ug/l 31500 J2400 J ug/l 15 J ug/l .6 U ug/l .6 J ug/l .6 J ug/l .6 J ug/l .6 J ug/l .6 J ug/l .6 J ug/l .6 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7 J ug/l .7				3 =	2 1	7.7	, n		_	2.10	- - - -	2.1	~.	<b>-</b>	1/61	7.7
1.5 J ug/l . 6 J 1.3 UJ ug/l . 6 U ug/l . 6 J 1.3 UJ ug/l . 6 J 1.3 UJ ug/l . 6 J 1.3 UJ ug/l . 6 J 1.3 UJ ug/l . 6 J 1.5 U ug/l . 7 J 1.5 UJ ug/l . 6 J 1.2 U ug/l . 7 J 1.5 UJ ug/l . 7.5 J 1.82 U ug/l . 7.9 U ug/l . 7.9 J ug/l . 7.9 U ug/l . 7.9 J ug/l . 7.9 U ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/l . 7.9 J ug/	L		7.080	, -	:	0767	; 3 ; 7			31500 U	/gn	31500	12400	70	ng/l	
9.4 U ug/l 9.4 9.4 U ug/l 9.4 B U ug/l 8 9.4 U ug/l 1.7 U ug/l 1.7 1.5 UJ ug/l 4.8 J ug/l 1.7 1.5 UJ ug/l 4.8 J ug/l 1.7 1.5 U ug/l 5.4 7.5 U ug/l 7.5 1.82 U ug/l 1.82 7.9 U ug/l	5 :		7	, <u>.</u>		5	, <u>5</u>	· /		n 9:	ug/I	<b>•</b> .		3	1/gn	,
1,7 0 ug/l 1.7 1.5 0 ug/l 1.7 1.5 ug/l 4.8 J ug/l 1.7 1.5 ug/l 1.82 0 ug/l 7.5 1.82 u ug/l 7.9 u ug/l	5		- 0	• =	7.0	7.6	, 2 , 2	5 1/6	7.4	<b>9</b>	/B5	<b>4</b> 0	7.6	<b>-</b>	- F	7.0
5.4 1 1.00 1 28.1 7.5 1 1.82 10 1.97 1 1.82 1 1.99/1				<b>&gt;</b> =	1.7	1.7	` <del>`</del> `		7.	1.5 61	/B7		4.8	- -	7 7	,
	5		- 4	>=	4	5.2	· 5		'n	1.82 u	7	1.82	7.5	<b>.</b>	1/gn	7.9

DL	
R8609003 RFADATA 150P001 24-AUG-94 QUAL UNITS	
VALUE	
10	
R8609002 RFADATA 100P001 24-AUG-94 QUAL UNITS	
VALUE	
Lab Sample Number: Site Locator Collect Date:	

10	wj ←	3.16 9.16	, <b>.</b>	<del>-</del>	2.65	က်ဆ
1/6n 1/6n	1,60 1,60 1,60	7 60 1 /60 1 /60 1 /60	1/6n 1/6n 1/6n	7/6n 1/6n 1/6n	1/6n 1/6n	1/6n 1/6n 1/6n 1/6n
27	м м- ш-	129000 2.6 U 3.1 U	130 u 9.	4800 J 33.4	5.9 5 1.6 U 30800	3.6.7. 3.9.4. 3.4.5.
<b>L</b>	ĸi−	3.10	· •		2.5	က် ဆ
1/6n 1/6n	1/6n 09/1	7/8n 7/8n	7/65	, , , , , , , , , , , , , , , , , , ,	7 7 7 7 50 50 50 50	1/6n 1/6n
2 4. U 4.		77900 2.6 U 3,1 U	3.6 J 1.6.2 1.7.34	11400 4.5 J	2 6 C	3. 4. W.
1/Bn						
BKG WATER METALS Antimony	Berium Berium Berillium	Calcium Chromium Cobalt	Copper Cyanide Iron	Lead Magnes ium Manganese Manganese	Nickel Selenium Silver	Sodium Thellium Tin Veredium Zinc

Site Locator

Collect Date:

ž

PESTICIDES/PCBs (SW-846,8080) alpha-8HC

beta-BKC delta-BKC gamma-BHC (Lindane) Heptachlor Aldrin

Heptachlor epoxide Endosulfan 1

Lab Sample Number:

ᆸ

R8608002 RFADATA 150P001 24-AUG-94 QUAL UNITS VALUE U = MOT DETECTED R = RESULT IS REJECTED
J = ESTIMATED VALUE UJ = REPORTED QUANTITATION LINIT IS ESTIMATED

8

3 >

Kepone Araclor-1016 Araclor-1221

Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1260

Dieldrin 4,4-DDE Endrin Endosulfan 11 4,4-DDD Endosulfan sulfate 4,4-DDT

Methoxychlor Endrin aldehyde Endrin ketone Chlordane Chlorobenzilate Diallate Toxaphene

MAVSTA MAYPORT RFA Ground Water Data

R8608002 RFADATA 150P001 24-AUG-94 VALUE QUAL UN1TS DL	,,,,,,,	10 U wg/l 50 U wg/l 10 U wg/l 10 U wg/l 10 U wg/l 10 U wg/l 10 U wg/l 10 U wg/l 10 U wg/l 10 U wg/l 10 U wg/l 10 U wg/l 10 U wg/l 10 U wg/l 10 U wg/l 10 U wg/l		10 U ug/1 10 10 10 10 10 10 10 10 10 10 10 10 10	
Lab Sample Number: Site tocator Collect Date:	4-Chlorophenyi-phanylether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 1,2-Diphenylhydrazine	4-Bromophenyl-phenylether Hexachlorobharene Pentachlorophenol Pentachlorophenol Pentachlorophenol Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene Di-n-octylphthalate Bis(2-Ethylhexyl)phthalate Bi-n-octylphthalate Bi-n-octylphthalate	Benzo(k) fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Zerzo(g,h,i)perylene Zerzo(g,h,i)perylene Bethyl methanesulfonate Ethyl methanesulfonate	N-Nitrosopiperidine Phenyl-tert-butylamine 2,6 Dichlorophenol 2,6 Oichlorophenol N-Nitroso-di-n-butylamine N-Nitrosopyrrolidine N-Nitrosopyrrolidine Benzidine 1,2,4,5-Tetrachlorobenzene Pentachlorobenzene 2-Naphthylamine 2.3,4,6-Tetrachlorophenol	Phencetin 6-Aminobiphenyl Pronamide promamide 7,12-Dimethylamino)azobenzene 7,12-Dimethylaminolazobenzene 7,12-Dimethylamikrane Pyridine Nyridine Nyridine

NAVSTA MAYPORT RFA Ground Water Data

		Ы
REGUEUUZ	150P001	QUAL UNITS
		VALUE
Lab Sample Number:	Locator	יסוופכו השופ:
James de.		103

	QUAL UNITS DL	10 1/6n		1/80		ug/1 50	_	0L 1/gn	ug/t 10		1/6n		<b>-/</b> 85		7	0t 1/6n		1/6n	1/6n	ng/1 50	
		2	50 0	500 C	20.5	200	1000 L	9	10 C	<b>₽</b>	500 R	2	2 2		20	10 C	10 U	•	•	20 C	
Collect Date:	VALUE																				
		o-Tolinidine	Hexachi Oroonoone	n-phenyl paedianine	Cafrole	lancafrole	1 4-Nachthoduinone	1 T-Dinitrobenzene	5-Nitro-o-toluidine	1 3 5-Trinitrobenzene	4-Witrocuinoline-1-oxide	Methanyrilene	1 3Dimethylbenzidine	Hexachlorophene	Arbaite	2-Chloroppod	7. f. 4-Methylohern! (2)		O inherviewine	Hereart Crossopene	שבאפכוו נפו סלכו סלבונים

		86 866 86
	10	
	R8608001 RFADATA 100P001 24-AUG-94 QUAL UNITS	7/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n
	·	20 c 200 2 200 2 20 c 20 c 20 c 20 c 20
	VALUE	855885 855 855 855
	10	
j.	H7503005 RFADATA 28ML0015 11-JUL-94 QUAL UNITS	1/65 1/65 1/65 1/65 1/65 1/65
	H750 RFA 28MH 11-J	00000000000000000000000000000000000000
	VALUE	<u> </u>
	16	<b>82</b> 01
NAVSTA MAYPORT Ground Water Data	·ν	1/6n 1/6n 1/6n 1/6n 1/6n 1/6n
NAVSTA MAYPOR	R8403002 RFADATA 08MU005S 26-JUL-94 QUAL UNITS	
NAV RFA Gro	_ 0	20 UJ 20 UJ 20 UJ 20 UJ 20 UJ 20 UJ 20 UJ 20 UJ 20 UJ
	VALUE	850 850 850 800 800 800
	10	in :
	M7503004 RFADATA OBMW001S 11-JUL-94 QUAL UNITS	1/6n 1/6n 1/6n 1/6n 1/6n
	M750. RFA 08MM 11-JI	850855 . 85 222222 . 22
	YALUE	I 14
	Lab Sample Number: Site Locator Collect Date:	
	r sp	nzidine mol (2)
		lene ithylben ophene henol mine opropen
		Methapyrilene 3,3'-Dimethylbenzidine Heachlorophene 2-Chlorophenol 3- 4Methylphenol (2) 6-Methylphenol Diphenylamine Hexachloropropene
1		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\

Lab Sample Number: R8608002
Site RFADATA
Locator 150P001
Collect Date: 24-A46-94

Collect Date:	VALUE	24-At	24-AUG-94 DUAL UNITS	5	
		:			
IKG SVOC (8270+24) ug/t		:	;		;
H-Nitrosodimethylamine			7 Bn		2 5
Phenot			3		2 5
i ine			3		2 5
bis (2-Chloroethyl) ether			7 g		2 \$
1,3-Dichlorobenzene			, ;		2 9
1,4-Dichlorobenzene		ے و	- /6n		2 \$
Benzyl Alcohol		_	- -		⊋ \$
1.2-Dichlorobenzene			- 5		2 :
2-Hethylphenol			) J		2\$
bis(2-Chloroisopropyl)ether		_	1/6n		2 \$
N•Nitroso-di-n-propylamine		⊋ : 2:	 		2 9
<b>Nexach loroe thane</b>			) (B)		2 9
Nitrobenzene			1/6n		2 5
1 sophorone		o :	) 60		2 \$
2-Witraphenol		ə :	5 5		2 \$
2,4-Dimethylphenol			5		2 6
Benzoic acid		) ) )	) S		2 5
bis(2-Chloroethoxy)methane			7 5 5		2 \$
2,4-Dichlorophenol			Z 5		2 5
1,2,4-Trichlorobenzene		2 9	7.6n		5 5
Naphthatene			) } }		2 5
4-Chloroaniline		) ) ) (	) (6)		2 5
Hexach Lorobutadiene			5		2 5
4.Chloro-3-methylphenol		2 9	) B		2 5
2-Methylnaphthalene			) (S		2 5
Hexachlorocyclopentadiene		2 0	, (n)		2 5
2,4,6-Trichlorophenol		2 5	3		2 =
Dimethylphthalate			1/01		S.
Z,4,5-Trichlorophenot			/6		2
Z-Culorodayanarene			, (e)		20
7-Witrospicine			7/9		2
Acenal in the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the		_	1700		2
Z.6-DINITFOTOLUERE		_	,		2
S-Nitrophiline		2 5			2
Acenaphtnene		2 5	7		2
Z.4-Dinitrophenol		25	9		<b>:</b>
4-Witrophenol					5
			<u> </u>		2
2,4-Dinitrotoluene		2 5	3 3		2
		-	•		:

														١
				RFA	NAVSTA MAYPORT Ground Water Data	ORT r Data								
Lab Sample Number: Site Locator		M7503004 RFADATA 08MW001S		,	R8403002 RFADATA OBMUDOSS			M7503005 RFADATA 28MW001S			RB60 100	RB608001 RFADATA 100P001		
Collect Date:	VALUE	11-JUL-94 QUAL UNITS	10	VALUE	26-JUL-94 QUAL UNIT	3 OF	VALUE	CUAL UNITS	TS OF	VALUE		UNITS	10	1
	  -  -							11	٠.					
BKG SVOC (8270+24)			•			•	5	•	5	Ş	5	7/47	<u> </u>	
lomine	2 5	1/6n n	<del>-</del> -	2 2	10 0		2 2	10 U 01		<u> </u>	2 2	- - - -	22	
Phenol	2 €	 66 67 67			-	پ.	2 ;	. <b>.</b> .	: = :	:23		/Bn	29	
bis (2-Chloroethyl) ether	2		-	-	<b>-</b> :	<u>.</u> .	5 5	/gn	<b></b>	2 \$	2 9	7 E	2 2	
1,3-Dichtorobenzene	2 5	789 0 = =		<b>-</b> -		ب ب	2 ∿		: ₹	22	22	ng/j	2	
1,4-Dichlorobenzene Renzvi Alcohol	2 ₽	<b>&gt; -&gt;</b>		2 2		. سپ	. C :		. <b>.</b> ;	25	⊃: 2:	1/8n	25	
1,2-Dichlorobenzene	n,	<b>-</b> :	•	<b>س</b> د	10 U U U U U U U U U U U U U U U U U U U		2 5	) 0 1 1 0 1 1 0 1	<b>.</b> =	2 2	2 2	- - - - -	2 2	
2-Methylphenol Fig/2-rhlprojeonomylather	2 2	765	_		<b>,</b>	۔ ۔	<u>.</u> 2	, _ , _	: <	2	_	/gn	2	
N-Nitroso-di-n-propylanine	2 2	) John n	· <del></del> •		<b>&gt;</b> :	_:	2:	70 c cg/	₹;	2 5	9	<b>7</b> 5	2 5	
Hexachloroethane	₽ \$	785		29	<b>-</b> -		2 €	) )	1/6n	2 2		, je	2 2	
Nitropenzene Isoahorone	22	) <b>&gt;</b>	-			· = :	2:	<b>-</b> :	<u> </u>	5 5	5 t	/8°	2 5	
2-Nitrophenol	29	<b>&gt;</b> :		00	10 U U 01/	= =	2 2	000		2 2		- - -	2 2	
2,4-Dimethytphenol	2 5		-	5	, ,	٠.	; <b>≿</b>	œ	: <u>-</u>	: ;		7/gs	20	
bis(2-Chloroethoxy)methane	<b>.</b>	: 🔿 :		0	<b>ɔ</b> :		2 5	10 U 01/01/01/01/01/01/01/01/01/01/01/01/01/0	<u> </u>	유 두	2 =	5 S	2 2	
2,4-Dichlorophenot	25			<b>.</b>	10 to 10g/		2	, ,	:=	2 2	1 2 2	7	0	
1, 2, 4-Trichloropenzene Benhthelene	20	<b>,</b> ,	-	, 0	· =	-	<b>:</b> 2	_ 	ح:	29	⊃ : ⊖ :	/gu	2;	
4-Chtoroanitine	<b>.</b> 2 3	<b>5</b> :		0	<b>-</b>	===	<b>2</b>	10 Ug/	<b>₹</b> ₹	22	2 2 2 2	 	2 9	
Hexach lorobutadiene	₽ \$	1/6m n		- <b>-</b>	10 U U		≥ ₽	<b>5 5</b>	.≤	2 2	_	- - -	2 2	
2-Nethylraphthalene	5	-		0	<b>-</b> :	= :	₽ \$	<b>-</b> -	<u> </u>	22	2 <u>2</u>	1/Bn =	25	
Hexach orocyclopentadiene	<b>2</b>	7/65		<b>-</b>	10 U U U U U U U U U U U U U U U U U U U		2 2	10 0	- 1/85 - 1/85	22		( j	2 2	
C,4,0-1rich(oropheno)	2 2	, ,	_		· >	_	2	_ :	Ζ;	25		7/gs	25	
2,4,5-Trichlorophenol	8 5	<b></b>	<b></b>	00	50 t ug/	<del>-</del> -	2 =		- /en	2 8	2 2	5 5 5 5	2 =	
2-Chloronaphthalene 2-Mittoniline	5 52		- "			: <del>-</del>	2.5	, 5	- - -	20	_	/gn	20	
Acenaphthylene	2	-		0	<b>-</b> :	て;	29	25	- - -	2 5	⇒ = 2 £	5 S	25	
2,6-Dinitrotoluene	25	7/6n n	- 41	<b>,</b>	<b>,</b> 5	: =	2 S		<u> </u>	20.		) P	2 23	
Acenaphthere	₹₽	, ,			· <b>-</b> :	<b>ا</b> ت	<b>2</b> 5	<b>-</b> :	76	25	≎ 9 5 = 0	~ §	₽ 5	
2,4-Dinitrophenol	200	<b>-</b> :		00	20 0 00/2	= =	₹		- - -	32		7	₹	
4-Nitrophenol Dibenzofuren	2 2	<b>,</b>			3 -	: <del>-</del>	5	· = :	, , , ,	29	2 t	75	2	
2,4-Dinitrotoluena	29	<b>-</b> :		•	5 5 5 5	< ₹	2 5	<b>5</b> =	<u> </u>	2 0		; ; ; ;	2 0	
Diethylphthelete 4-Chlorochenyl-cherylether	2 8	3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				:=:	22:	· = :	2	25		Z :	29	
Fluorene	2	. · •	1		<b>&gt;</b> :	₹:	₽ \$	<b>-</b>	<b>5</b> 5	25	= = 2	<u> </u>	25	
4-Witrobniline	22	1/8m n = 1	<b>41 6</b>	00	200		22			28		, _ 3 3	28	
6.6-Dinito-C-Meinyipherol	2	<b>,</b>		. 0	· <b>-</b>	: =	10	_ 	) /Bn	2	⊐ : <b>2</b> :	/gn	2 9	
1,2-0 iphenylhydraxine	29	<b>-</b> :		00	10 U OF	τ;	<b>2</b> \$	5 S 5 S	/# 1/#	22	) ] ]	 	2 2	
4-Branchenyl-phenylether	2 5		- •-		) <b>-</b>	: =	2 2		, <u>, , , , , , , , , , , , , , , , , , </u>	2	D :	) 8	0.	
Pentachi orophenol	25	. – :		22	<b>&gt;=</b>	₹₹	85	20c 20c	)/8n	8 <del>2</del>	2 2 2 2 3	- - - - - - - - - - - - - - - - - - -	S 2	
and the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contra	•	,		1	)	•								

IAVSTA MAYPORT	RFA Ground Water Data	
_	RFA	

R6608001 RFADATA RFADATA 28MW001S 100P001 11-JUL-94 24-AUG-94 QUAL UNITS DL	Lay 1 10 10 10 10 10 10 10 10 10 10 10 10 1	l
RB403002 RFADATA 08MM005S 26-JUL-94 QUAL UNITS DL VALUE	### #### #############################	
M7503004 RFADATA OBM#001S 11-JUL-94 MJAI JUNTS OL VALUE		
_	5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-	
Lab Sampl	Anthracene  Di-n-Butylphthalate Fluoranthere Pyrene Butylbenzylphthalate Butylbenzylphthalate Benzo(a)anthracene bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate Benzo(a)yrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene Z-Picoline Benzo(g,h,i)perylene Benzo(g,h,i)perylene Z-G-Dichlorophenol Benzo(g,h,i)perylene Z-G-Dichlorophenol Benzo(g,h,i)perylene Z-G-Dichlorophenol Benzidine I-Naphthylamine Z-Mainobiphenyl Pentachloropene I-Naphthylamine Pentachloropene I-Naphthylamine Pentachloropene I-Naphthylamine Pentachloropene Pronamide D-Comethylbenic(A)Anthracene Z-G-Dimethylbenic(A)Anthracene	

R8608002	RFADATA	1500001
Sample Number:	Site	Locator
ڡ		

R8608002	RFADATA	150001	54-AUG-94	QUAL UNITS
Lab Sample Number:	Site	Locator	Collect Date:	VALUE

ᆸ

<u> </u>	N IN IN IN IN IN	NININININ	พพพพ พพพพ	อีกของกล	.5855 <b>8</b> 2
1/6n 1/6n 1/6n	77 77 77 76 76 76 76 76 76 76 76 76 76 7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1/6n 1/6n 1/6n		77777
5555v 33333			~~~~~ >>>>>>	5vvvvvvv 	
1/Bn					
BKG VOCs (8240+11) Chloromethane Bromomethane Vinyl chloride Chloroethane	Acetone Carbon disulfide 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene (total) Chloroform 1,2-Dichloroethane	2-Butanone 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene	Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Wethyl-2-pentanova	2-Mexanone Tetrachioroethene 1,1,2,2-Tetrachioroethane Toluene Chiorobenzene Ethylbenzene Styrene Mylenes (total)	1.3-Dichlorobenzene Acrolein Bodomethane 1,4-Dichlorobenzene Acrylonitrile Dibromomethane

U = NOT DETECTED R = RESULT IS REJECTED
STIMATED VALUE UJ = REPORTED QUANTITATION LIMIT IS ESTIMATED
NOTICOMAL LISTINGS OF RESULTS FOR 1,2:; 1,3:; AND 1,4-DICHLOROBEN

NAVSTA MAYPORT RFA Ground Water Data

			•
1 2-bichtorobenzene	 그 은	<b>5</b>	2∶
	= ==	75	Ę
2-Chloroethylvinylether	o.: >:-	•	
C+bol methanicalate	~ ~	- -	^
	=	1701	<b>.</b>
1.2.3-Trichloropropane	<b>3</b> :	ñ	·L
trans-1 4-Dichloro-2-butene	>	_ 9	^
Laborated a location	200 R	7	
Incomit a comment	=	-	
1.1.1.2-Tetrachloroethane	<b>-</b>	<u> </u>	•
1 2. Bibrono. T. chlorograph	2 2	-/B	
	=	-	
1.2-Dibromoethane	3	Š.	
1 A.Diovene	200 200 200	<b>-</b>	
TOYOUT A	=	/011	<u>.</u>
3-Chloropropene			,
Aretonitrile	30 CE	<b>5</b>	
	•		
רשוסגסחובוים		7	
Methacrylonitrile	3	7	
Bothy methanty ate	₽ 2	- S	
שבונולו ושרווסרו ליחיר	= ==	7/611	
Pentach or oethane	3 2	1/65	
Dranianitrile	70 OOL	- 9	
	= ==	1/81	9
Vinvi acetate	> -	,	•

Lab Sample Number:		R86	R6608002 RFA0ATA		
Locator Collect Date:	VALUE	2 % 2	150P001 24-AUG-94 QUAL UNITS	ā	
		2	3		٦,
ther		2 = 2 •	765		
		, IV	; ; ; ;		
2-butene	•	2° 5°	1/69 1/69		
ethane	-	, D	7		

-														)	
			:		RFA	NAVSTA MAYPORT Ground Water Data	RT Data								
Lab Sample Number: Site Locator Collect Date:	ample Number: Site Locator Collect Date:		M7503004 RFADATA 08MW0015 11 - JUL - 94			R8403002 RFADATA 08MW005S 26-JUL-94			M7503005 RFADATA 28MW001S 11-111-94	20 ⊀ 21 ° 5 - 20 × 21 ° 5			REGORDO1 RFADATA 100P001	<u>-</u>	
		VALUE	QUAL UNITS	٦.	VALUE	QUAL UNITS	ᆸ	VALUE	QUAL UNITS		5	VALUE	QUAL UNITS	ا 12 م	
BKG VOCs (8240+11)	J/Bn	:													
Chloromethane Aromomethane		2 5	/6n ==	₽ \$		1/gn U 01 1/gn :: 01		<u> </u>	<b>-</b> :-	1/6n	29	= ;	_ 	J/Bn	9
Vinyl chloride		22		2.2	- <b>-</b>	760 0 0	_ •	2 9	  	- /g - /g	2	= =	3 : 	1/gr 1/gr	2 5
Chloroethane		₽'		2		-	_	2 0	) <b>5</b>	/6n	2 2	==	) -	1/8	2 2
Methylene chloride Acetone		in è	765			1/gn 0.5	•	ı, c	ے در	1/6n	in ;		<b>.</b>	1/6n	'n
Carbon disulfide		5 rv		2 י~		<b>)</b> =	-	<b>-</b> •	5 r	7 fg 7	5 ·	₽ •	3 :	1/6n	u
1,1-Dichloroethane						1/6n n 5			2	1/6n	טירט	, <b>v</b> ,		1/6n	n 101
1,1-Dichloroethene 1,2-Dichloroethene (total)		un u	76n n	•.•		1/6n n 5		<b>ا</b> ل ا	ار د د	7/ <b>6</b> n	ı,	<b>5</b> 11		<u> </u>	· •
Chloroform		ייי	1/60 n			1/6n n c 1/5n n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c 2 n c		n 10	- - -	- / 6n	<b>~</b> •	u	) )	<b>≤</b> 5	<b>.</b> .
1,2-Dichloroethane		ru i				<b>-</b>		· IV	, ,	. J/6n	'n	161		) /sn	, rv
2-sutanone 1-1-1-Trichloroethene		2 5	7/65	₽"		1/6m n 01	_	₽ •	D 0.	1/6n	₽,	₽,	<b>~</b> :	<u> </u>	
Carbon tetrachloride		, 10				1/60 0 0 5			2 2	1/6n 1/0r	ስ ነጥ	<i>n</i> ur	<b>3</b> 5	<b>.</b> 5	N L
Bromodich (orone thans		<b>ν</b> , ι				1/6n n 5		ı,	D.S.	1/6n	'n	, IL	; ; ;	: =	Š
cis-1.3-Dichloropropere		ט זי	7/6n (1			1/6n n 5		w 14		- 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6 - 1/6	יט יי	<b>4</b> 0 1		ζ;	<b>ب</b> د
Trichtorethene		·ω				76n 05		, ru	2 2	- /er	ט זי	~ <b>.</b>	P =	< =	^ v
Dibromochloromethane		<b>V</b>				1/6n n 3/1			2 0	i j/gn	Ň	'n	33	:=	·
l,7,2-Ifichloroethane Benzene		v v	1/6n n			7/6n n s		<b>.</b>	٠ د د	)/br	īV I			Ξ.	
trans-1,3-Dichloropropene		ın		, <u>u</u> ,		1/6n n 5		·	22	- 1 60 1	Λ <b>(</b> Λ	~ v	76n n n	<=	v v
Bromoform		n ŝ		n,		<b>-</b> :			<b>.</b>	1/6r	ı.		, ,	: ₹	'n
4-metnyt.z.pentanone 2-Nexasone		2 5	765	==		1/65 0 0L 0L 0L 0L 0L 0L 0L 0L 0L 0L 0L 0L 0	<b>-</b>		5 t	/6r 1/6	2 9	2:	_	τ;	2:
Tetrachloroethene		ī		250	_	)/gn 0.5	5 rv	o ro	<b>,</b> ,	, j	<u>-</u> ∿	5 2	/6n n	<b>=</b> =	5
1,1,2,2-Tetrachloroethane		io v	1/8n n			1/6m n 5		<b>L</b>	n 5	1/6	. LT.			. ~	'n
Chlorobenzene		. W		n 10		1/6n n 5		o 10	22	1/6n 1/6n	v 10	rv (v.	765 C	₹ ₹	ro r
Ethylbenzene		Š	1/6n n	<b>L</b> C 1		1/6n n 5	-		2 0	1/6	'n	, 10	)657 O	: =	· ~
Styrene Xvlenes (total)		^ '	765	n u		1/6n ng/1		·~ ·	ر د د د د	1/6/	<b>.</b>	<b></b>	)gu	₹:	
Trichlorofluoromethane		Š	7/65	·		1/50			) ) )	)   	~ ~	n u-	0 1	< 3	~ ~
1,3-Dichlorobenzene		2 5		0,		_	2	_	_	1/6	, ₽	, ≘		:=	, 0
Acrotein		<b>B</b>		55	_	3 :	•		<b>-</b> :	1/B		<b>9</b> :	<b>-</b>	_	8
1,4-0 ich lorobenzene		2 2		2,2		200	5 v		22	/g 	2 9	2 5	<b>&gt;</b> =	₹;	2
Acrylonitrile		5,		100	5	<b>=</b>	, <u>5</u>	-	, 5	. <u>-</u>	<u>.</u> 5	5			<u>28</u>
Dibromomethene 1 2-nichioropeanea		~	7 m	WY 1			;	·••	<b>-</b> :	7	in:	5	<b>-</b>	_	<b>.</b>
2-Chloroethylvinylether		. 5	<u> </u>	^ =		787	2 5		3 3 3 5 2 6	- - - -	2	우	<b>&gt;</b> :	₹:	29
Ethyl methacrylate		<b>10</b>		, Mar	•	-	'		ı <b>⇒</b>	<u> </u>	i v	Š		- -	2 ₩
1,2,3-1richloropropere trans-1,4-Dichloro-2-butene		<b>.</b>	769	ev e		760			>: >:	78	er n	S O	) in	₹:	· · · ·
1sobuty! alcohol		200		•	200	~	•	. <del>⊼</del> .	- - -	~~	•	200			n
1,1,1,2-Tetrachloroethane		v 2	<b>7</b>	w.ţ	<u>.</u>	- · - :	w ŝ			7/2	in g	'n	_	· = ;	~
1,2-0 brospethane		ī		5 IV		, ,	5 m		<b>.</b> .	- -	5 w	5 w			
1,4-Dioxane		200	<b>₩</b>		200	1/6m # 0		200	<b>~</b>	1/6		200	R	ب.	

Ξ	Date
HAYPOR	Water
HAVSTA	Ground
	RFA

	2 01
ಕ	
RB608001 RFADATA 100P001 24-AUG-94 QUAL UNITS	1/6n 1/6n 1/6n 1/6n 1/6n 1/6n
	4 2 001 001 001 001 001 001 001 001 001 0
VALUE	28 2000 2000 2000 2000 2000 2000 2000 20
ಕ	# #
RFADATA RFADATA 28HUOO1S 11-JUL-94 QUAL UNITS	1/8n 1/8n 1/8n 1/8n 1/8n
<del>-</del>	ან. ონნნნ აა ააააა
VALUE	2 2 2 2
ಕ	
R8403002 RFADATA 06MU005S 26-JUL-94 QUAL UNITS	1/6n 1/6n 1/6n 1/6n
	2000
VALUE	NO 10000
ಕ	20 25505
M7503004 RFADATA OBMMO01S 11-JUL-94 OMAT UNITS	1/8n 1/8n 1/8n 1/8n
M750 RFA 08Mu 11-J	20 . 2000 22 2222
- W	
Lab Sample Number: Site Locator Collect Date:	
	3-Chloropropene Acetonitrile Chloroprene Hethacrylonitrile Hethyl methacrylate Pentachloroethane Propionitrile

<b>2</b> 0/kg 20/kg	mg/kg mg/kg	<b>7</b> /kg	<b>3</b> /kg (	, kg	10/kg	# # # # # # # # # # # # # # # # # # #
_	_				-	222

76/40 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 73557

2%28428859288487 24-22-222222222

Lab Sample Number:

Locator Collect Date:

VALUE

M7684006 RFADATA 28BS00106 06-AUG-94 QUAL UNITS

ᆸ

ם

굼

VALUE

ᆸ

M7684007 RFADATA 288500504 06-AUG-94 QUAL UNITS

M7684019 RFADATA 288501004 06-AUG-94 QUAL UNITS

NAVSTA MAYPORT RFA Soil Boring Data

M7664020 RFADATA 286501704 06-AUG-94 QUAL UNITS

Berita Chromita Chromita Cobeit Cobeit Copper Cyanide Laad Nercuy Nercuy Nercuy Selenia Selenia Selenia Selenia Selenia Selenia

MAVSTA MATPORT RFA Soil Boring Date	
~	

M7683004 RFADATA 2885031040 06-AUG-94 QUAL UNITS	St. Committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the co
VALUE	The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa
10	
M7683003 RFADATA 288503104 06-AUG-94 QUAL UNITS	
VALUE	
ಕ	
M7684008 RFADATA 288502204 06-AUG-94 QUAL UNITS	
VALUE	
Lab Sample Number: Site Locator Collect Date:	

ಕ

	ä	iliani. Ngje	\$	E.	 	8	_	3:	1	×,		<b></b>	•
				: 35°		197 198				 9 . 10	v og		
\$ 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3	2	2	7,60	9/K9	k t	8/kg	9/kg	9 KG	2	6 Ka	9 2	? 3
	Street,	Şii i	22.						: '			٠.	
3.5. 3.4.	, S.	- ^	 2	93 C	2	28	 	2	) 1	24 n	9	7 :	•
	<b></b>	-	<b>-</b> ; • 	 	•	•	-	•	Ī			F3	
ugu san Basa yan	8	ક	58	~!	2	8	9.	53	?	 82	٠.		
	•	•	•	~	•	•	_	•	•	•		•	Ŧ
99	9 <b>9</b>	<b>.</b>	<b>.</b>	9	<u>.</u>	5 S	2	9	2	2	9	2	9
mg/kg mg/kg	<u> </u>	2	È	Ē	) BE	è è	Ē	Ē	è	È	Ē	È	è
3-	 	~ ·	7 =	<b>3</b>	<b>∽</b> :	 	- -		2	- -	7	ر ا	=
34.	. S	<b>3</b> .	~ ~		<u>.</u>	78	-	4		~	4		4
											e d'es		
	i Laura	8			Š			. I	3				e C
				ia Januar Paraga	igani Gara	ajirik Polo attiv					000/\ 000/\	900 900 900 900 900 900 900 900 900 900	
3 / kg	25	2	5,	? ?	2	25	? :	!!	? }		2	Ę	
	9 9	9	2	22	2	21	2 5	? 5	ľ	2	? 2	. 2	1

Arsenic Arsenic Arsenic Berium Berium Cechium Chromium Copper Cyanide Lead Mercury Mickel Seienium Silver Thallium Varadium

N7684020 RFADATA 288501704 06-AUG-94 QUAL UNITS DL	LEAN TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TO
M7684 2885 06-AL VALUE QUAL	5:222222222222222222222222222222222222
M7684019 RFADATA 288501004 06-AUG-94 QUAL UNITS BL	
M7684 RFAC 288SC 06-AL VALUE QUAL	040000004444464409mo0mooooo
M7684007 RFADATA 288500504 06-AUG-94 QUAL UNITS DL	Lag/kg 11.2 Lag/kg 11.2 Lag/kg 11.2 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg 12.4 Lag/kg
H7684 RFAD 28850 06-AL	
M7684006 RFADATA 288500106 06-AUG-94 QUAL UNITS DL	######################################
VALUE	PREFERENCE TO TO TO THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPER
Lab Sample Number: Site Locator Collect Date:	PESTICIDES/PCBB (SW-846,8080) ualphe-BHC beta-BHC delte-BHC NAVSTA MAYPORT RFA Soil Boring Data

	Deta
Ę	ē
Ĭ	Boring De
2	8
-	=
į	Soil
	Z.
	_

											_			نم : مد	50 . <b>22</b>			A		• yuccci	5000
- -		<b>*</b>	<b>: 2</b> 2	: (*;	:23	27.	44		? <del>.</del> .			~ ~		**		<b>1</b> 2	Z ;	***			
_ w		9 <b>9</b>	8 5 1	9 2	99	<b>.</b>	<b>.</b>	7 2	9 <b>9</b>	25	2 2	2:	? <b>?</b>	22	9	7.2	₽,	<b>2</b> 2	? ? <b>?</b>	2 3	
M7683004 RFADATA 2888031040 06-AUG-94 QUAL UNITS		2.5 2.5 2.5		2 × 3	33	2 5 2 5 2 5 3 5 5 6 5 7 5 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	2/S	33	64/85 64/85	55/kg	3	8/kg	2	8 / 8 8 / 83	3	<b>}</b>	8)/ <b>8</b> n		3	3	
M764 28851 06-1		ລວ: ≵":i	=== €2;	ニコ	っっ さだ	ココ	<b>3</b> =	) = [ ]	- -	3 z	: =	ے : ۲۲	; ;	= = %	3	> ⊃ 8 ≈	<b>⊃</b>	= = % \$	10	<u>-</u> \$	
VALUE				i <b>s</b> aka <b>s</b> kan mala ini																	
>		5.7	rr.	22	22	22	*	<u></u>	4 4	5.0	* *	7.5	73	22	!	2 K	2	22 H	? =	_	338
1																					
03 1A 104 -94 NITS		19/kg 19/kg	ug/kg ug/kg	ug/kg ug/kg	ug/kg ug/kg	64/kg	69/kg	59/kg 59/kg	ug/kg	7 to 1	59/kg	7 /Kg	56/88 8/88	08/kg	5 / S	46/kg	\ \ \ \ \	ug/kg	5 64 5 64 5 64 5 64 5 64 5 64 5 64 5 64	ug/kg	
M7683003 RFADATA 288503104 06-AUG-94 QUAL UNITS				22	 	 =	- -	 	<b>&gt;</b> =	<b>.</b> .	<b>&gt;</b> =	, =	<b>=</b> =	<b>-</b>		<b>=</b>	<b>,</b>	<b></b>	<b>=</b> =	2	
	1	5.7	rir.	22	22	is:	4.	4.4	4.	2.9	4. 4	7.2	22	:SE	, t3	<b>32</b>	2 22	::::::::::::::::::::::::::::::::::::::	£ =	5	
VALUE	.a. 85						نسي ش	<del></del>	- <b>4</b>	- <b>(</b> 0	<b></b> .	- =	19 S	:8;	<u> </u>	8	210	8	81		\$10 \$10
ž		~.	~~	N'N		. Ni C	<b>.</b>	4.4		÷ 60		* ~	~ <u>;</u>	'₽,	<b>~</b> ; ⊏	¥;	٠. د	,=			
v		98	9.0		20:	2 S.	22	09/kg	2 2	wg/kg ug/kg	ug/kg	<b>ug/kg</b> ug/kg	49/kg	2 × × × × × × × × × × × × × × × × × × ×	19/kg 10/kg	0/kg	9/Kg	2 / Kg	64/kg	2 2 2 2 3 3	
M7684008 RFADATA 288502204 06-AUG-94	5	W6/kg	9	3	3 3	3 3 3 3	5/59 5/79	3	3	33	3	33	3	3	<b>5</b> 5	3	<b>3</b>	\$ <b>5</b>	3:	3 3	
5 × 8 9	<b>§</b>	⇒= 	) <b>=</b> =	) = : 			= 	) 	;;	 		_ = _ =	3	25	7.5 7.5	2	= = = = = = = = = = = = = = = = = = = =	2 2 2 2 3 3 3	2	e e K	
	AALUE																				
	96-146-200-2000 2000-200-200	2			\$34.00 	Algerity :	a Repo	TOP A			, ilwir.	p#6 ⁶⁷	.". 1"		(d)power	. 17.5		4. G.	-5 V.	The te	elf-gree
ample Numbo S Local		5											n		,					्रा क्र	.303
Lab Sample Number: Site Locator Collect Date:		ê				.:	 						у́. 5. п	e f							
rap		8.9						7 ( ) 7 ( ) ( ) 7 ( ) ( ) ( ) ( )		Verri Marieta						jaa 1920 Vale					
		•			- P				and fat		_ <b>5</b>	2	:			•		 <b>24</b> €	22	75 <del>2</del>	
		S/20		) EEC (	•	£ .	- m)	. <u></u>	د			i se i		<u>.</u>	ı Eş		Arociar-1221	7.	2.5	77.7	
		PESTICIDES/PCB4 (SV-846,8080) alpha-846	bete-Bild delta-Bild	germa-BHC ( Heptachlor	Aldrin Heotachlor epoxide	Endosut for	4.4-DDE	Endrin Endosulf	4,4-000 Endouglement	100-7"	Rethorychiof Endrin Midehyde			Dieliete	Jeodrín Sedrín	Kepone	¥ So	Aractor-1252	Arocior	Arocide:	2
		PES	ैं	<u>ک بی</u>	-		· •			<b></b>	- <del></del>	,	,*** T.	Y.J.,			e jedi. I		oviši	98 a.	(40) (40) (40)

* NOT DETECTED R * RESULT IS REJECTED
* ESTIMATED VALUE UJ * REPORTED QUANTITATION LIMIT IS ESTIMATED

		1		NAVS RFA Soi	NAVSTA MAYPORT RFA Soil Boring Deta	e te				
Lab Sampte Number: Site Locator Collect Date:		M7684008 RFADATA 288502204 06-AUG-94		M. 288	M7683003 RFADATA 288503104 06-AUG-94			M7683004 RFADATA 2885031040 06-AUG-94	1004 ATA 11040 16-94	
	VALUE	QUAL UNITS	ы	VALUE OU	QUAL UNITS	<b>Z</b>	VALUE	SEA.	QUAL UNITS	5
4-Chlorophenyl-phenylether	1700	U U9/kg	1700	09£	ug/kg ug/kg	986	22	) 	56 54 54 54	22
File Control	38		- E	1800 U	ug/kg	1800	000		6	<u>8</u>
4,6-Distro-2-methylphenol	8	- -	<b>6</b> 100	1800 U	<b>4</b> 9/kg	985			5/kg	<b>3</b> 5
H-Mitrosodiphery(smine (1)		2 59/Kg	3	200 200 200 200 200 200 200 200 200 200	4, kg	2	26	33	56/55 56/50	2
6-Bromophenyl phenylethar	2		1700	360 U	ug/kg	360	2	<u>.</u>	00/kg	370
Hexachlorobenzene	2:	2/8°:	1780	360 U	ug/kg	18.00	570 1800		UG/KQ UG/ko	2 <b>2</b>
Pentach to romerot	25 25 25		2021	3098	ug/kg	98	2	:	ug/kg	2
Anthrecene 94. 1 01:55 Obeta 140	2.5 5.5 5.5	09/60 10/60	<b>88</b>	 9 %	ug/kg ug/kg	3,5	3.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	<b>&gt; &gt;</b>	2 2 2 2 3 2 3 2	28 28
Florentian	8	) S		360 0	ug/kg	98	25		ug/kg	25
		2/8 2/8		360 0	<b>19/kg</b> 19/kg	2095		<b>-</b> -		22
3,3'-0'chlorobenzidine	3300	3	- 20 20 20 20 20 20 20 20 20 20 20 20 20	0.022	ug/kg	720	<b>F</b> .	<b>)</b>	64/60 (10)	25
	22			7 09£	ug/kg ug/kg	38	32	3 3	2 % 2 %	2
bis(2-Ethylbexyl)phthalate	2	<b>.</b>	2	360 U	ug/kg	98	r.	==	2/2	25
Of-p-octylphthelate		2/2 2/2/2	3	7 09E	69/kg	28	25		5 2 2 2	28
Benzo(x)fluoranthere	120	7/65	2	360 U	ug/kg	360	370	<b>-</b>	ug/ka	25
Benzo(a)pyrena	<b>E</b> &	) /Bn	<b>⋛</b>	7 09E	29/kg	38		3 3	2 S 3 S	22
Dibenz(e,h)enthracere	3	33	2014) 1940) 2014)	3 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/kg	98	Z.	· = :	5/kg	2
Benzo(a ft. ) perytene		53/65 7		360 U	19/kg	3 6	1800	) >=	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 3 3
Methyl sethanesul forste	<u> </u>		<u></u>	360 U	<b>5</b> / <b>8</b>	38	2		, k	2
Ethyl methereul fonete	25	7/3/3		2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<b>19/kg</b>	33	22		5/89 8/89	R R
Metopienine Metitebappiperidine	2	3		98	5/E	92	R	- 	3	2
Phenyl-tert-butylesine	36	<u> </u>	3 <b>8</b> €	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 5 9 5	38		3 =		2
B-#14roso-di-n-butylamine	2	3	5	790 E	09/kg	33	25	- 	2/S	25
	<u> </u>		3	360	5 /g	3	E		;	320
Benzidine	<b>5</b>	3 5	 86	2 008 2 008 3 008	ug/kg ue/ka	28.00 0.00 0.00 0.00	<b>3</b> 3	33 33	se/ka Se/ka	<u> </u>
Pentachlorobentene	8		8	1800 U	uo/ka	1800	2	- - -	3/3	8
1-Nephthylenine	25 25 26 26 26	<b>3</b> 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 8 8 8	2 008 2 008 2 0 08	69/kg /kg	1808 1808			2 2 2 3 3 3	38
2,3,4,6-Tatrachloropherot	2		2	3 S	06/kg	360	R.F	3	64/60 (5/60	25
Phenacetin 4-Aminobiotenvi	58 56	33 33 33	8	26 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	2 /80 06/x0	<b>紫</b> 蔓				8
Pentachloronit robenzene	8100	<b>-</b>	8	1800 U	U\$/kg	900	<b>2</b> :	) 	64/s	<u>5</u>
Pronatice (or maintenance)	<b>32</b>	<b>.</b> 3	3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64/25 C6/48	33		) ) )	2/3	22
7, 12-Dimethy (benz (A) Anthrecene	2	_ ====================================	2	= = <b>5</b> 5	<b>15/kg</b>	33	25	> *** <b>&gt;</b> =	<b>19/kg</b> 116/kg	22
5-Rethylcholanthrane Pyridine	38 38	33	3	8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 2	3	<b>S</b>	) ) = :	54/kg	500
N-Ritrosomethylethylenine	<u> 2</u> 2	33			<b>59/kg</b>	88	r R	<b>)</b>	56/kg 56/kg	22 22 22
						idan 19		¥ 2.,		
									a Sinar	
	3									

<b>≒</b>	Data
ᅙ	2
₹ ₹	Bori
≤	<u>~</u>
HAVSTA	Soi
ì	
	RFA

<b>6</b>	376 1800 1800 1800 3600 370 370 370 1800 1800 370 370
M7683004 RFADATA 2885031040 06-AUG-94 QUAL UNITS	69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg
M764 RF1 2885 06-1 VALUE QUA	10081 10081 10081 10081 10081 10081 10081 10081 10081 10081 10081 10081 10081 10081 10081 10081 10081 10081 10081 10081 10081
10	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
W7683003 RFADATA 288503104 06-AUG-94 QUAL UNITS	18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg 18/kg
M768 RFA 2885 06-A VALUE QUAL	360 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to 1800 to
, 10	0018 0018 00071 0071 0071 0071 0071
M7684008 RFADATA 288502204 06-AUG-94 QUAL UNITS	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
M S S S S S S S S S S S S S S S S S S S	1700 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Lab Sample Number: Site Locator Collect Date:	o-Totuldine  Rexachloropropene  p-Phery taredismine  Safrota  Lacafrota  Laca

S WERE GENERATED FROM THE SVCC (8270) ANALYTICAL RUN.

10	39	22	æ
N7684020 RFADATA 288501704 06-AUG-94 QUAL UNITS	ug/kg ug/kg	46/48 69/48 69/48	09/kg 09/kg 09/kg
RFA RFA 2885 06-A QUAL	>> <b>≈</b>	3>>	3 <b>-</b>
VALUE	1900 390 (	<u> </u>	1900 u 390 u
DE .	2100	88	3
M7684019 RFADATA 288501004 06-AUG-94 QUAL UNITS	ug/kg ug/kg ug/kg	2.2.2 2.2.2 2.2.2 2.2.2 3.2.3 3.2.3	299 266
VALUE	2100 1		2100 2000 2000 2000
귤	*	28 89 89 89	8.3
M7684007 RFADATA 288500504 06-AUG-94 QUAL UNITS	ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg
AALUE OR	2900 U. 600 U. 29000 #	2000 2000 2000 2000 2000	2900 U 600 U
ಕ	1700 350	220	350
M7684006 RFADATA 288500106 06-AUG-94 QUAL UNITS	0 U ug/kg 0 U ug/kg	2000 2000 2000 2000 2000 2000 2000 200	- ug/kg 700 UJ ug/kg 150 U ug/kg
VALUE		ENN.	Ēž.
Lab Sample Number: Site Locator Coitect Date:	2	8	Ē
·	thapyrilene 3. Dimethylbenzi	amite Chlorophenoi & 4-Nethylpheno Methylphenol	phenylasine xachioropropere Acetylasinofluor

NAVSTA MAYPORT RFA Soil Boring Data 88

옷옷

8

STINATED 4-DICHLOROBENZENE WERE GENERATED FROM THE SVOC (8270) ANALYTICAL RUM

=	Data
MAYPOR MAYPOR	Boring
MAVSTA	Soil
_	RFA

2		22		22	2	25	22		35	22.5	2	25		25	£!	3,5	28	2	E.	Ŗ£	2,5	E	2	25	32	E	8	Ę	3	R S	g:	ξ.
N7683004 RFADATA 88503104D 06-AUG-94		2 2 2 9		2 2 2 3	2	5/kg	2 / S	by/dn	<b>15/kg</b>	5 /S	€4/kg	2/kg	7.7	5 8 8	eg/kg	2 3			ug/kg	8/4 5/2/	2 <u>:</u> <b>?</b> :	25	2	B)/\$1		2	92/PS	2 2	2 ; 3 :	2 2 2 3		3
_ ~		7 7 2 E	3	22 22 23	:= 22:	٦: ور	3 2 2 2 3 2 3 2 3 2	30 65	7 E	22	370 U	= = 25		72 C	2 2	2 S	) 2 2 2	25.25	25	그: 옷(	> = 2,5	; = ? ? ?	_ 	22:	3 S	320	_ <b>98</b>	ے: ج	3	 22	200	
31 7×		33		33	38	3,	• 9		3 <b>9</b>	3 3	3	985	2	8	3	3 3	33	\ \ <b>\</b>	3	3	3 5	3 3	5	3	5	3	2	<b>9</b>	88	} }	3	<u> </u>
ž	s	M M	•	M 14	7 (*)	m	PT	. 1	P-1 P-	1 141	1 (7)		7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,	-, -	1 77			•••		=		•	,	=	•	= :			
N7683003 RFADATA 288503104 06-AUG-94		ug/kg	5 /S	59/kg	\$ \$ \$	ug/kg	ug/kg ua/ka	ug/kg	19/kg	ug/kg	<b>19</b> /kg	ug/kg	19/Kg	59/kg	ug/kg	. 19/kg	9/kg	2/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3	ug/kg	<b>18/kg</b>	2 / S	14/kg	ug/kg	ug/kg	6/Kg	5 /kg	ug/kg	ug/kg	64/ga	09/Kg	20/kg	ug/kg
_		360 0	3 8 8 8	⊃ = 9% 2002	2 3 2 3 2 3 2 3	360	- = 9 %	300 300 300 300 300 300 300 300 300 300	250 250 250 250 250 250 250 250 250 250	3 5 2 5 2 =	, <u>,</u>	⊃ : 200 200 200 200 200 200 200 200 200 20	200	3 S	⊃ 9%	2 2 3 3	3 S	2 2	380	⊃ : 9%	3 S		1800 U	3.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00		3 3	1800 t		200	<u>5</u> 5	2 2 2 2	300 200 200
<u>.</u>		· <b>2</b>	2 9	25	2 9	2	25	2	25	<b>R</b> S	2	2	2.2	3 8	2	8	88	3 8	8	Ş	5	32	8	2	86	38	8	8	8	85	<u> </u>	8
i	3	2	<u> </u>	<u>.</u>	< <b>K</b>		Z.	: E	E !		E	Z!		-						1			5	•	5:		•	1	5	5		-
47684008 RFADATA 288502204 06-AUG-94		9/m	2 2 2 3	64/6n	10/Kg	e k	<b>9</b> /9/	? <u>?</u> ?	<b>8</b> /8	<b>19/kg</b>	2 3/93 3/93	2  }  }	5 / KB	2 / 2 2 / 2 2 / 2	₩,	<b>1.9</b> /kg	8 /g	5 / S		rg/kg	ng/kg	24/kg	60/kg	83/gs	ma/kg	7 <u>1</u> 3 9	, g , y	2 2 3	54/kg	64/8°		3
	WALUE WALUE	2 2	22 28 7	2 8 2			> : 2 :	25	2 2 2			⊃ 82.	7	1786		2 2 2	2 2			2	三 是			25.	3 2 2 3		1 9018	25	a100 L	2	32	1921
: 25:								in in pokur						8813) 9809 847	u.333 074.33	6 (9) 900 ¹	846.3 : 819			\$413 617,3		gar Yasa										
Lab Sample Number Si Si Locati Collect Date				į				avi bether	g/enire							•					2											
3		Ę		•	de la Artic		•	<u> </u>	1							1		ielle guni	Y	٠,	Ž	ğ					•					

	ы	88888888888888888888888888888888888888
	M7684020 RFADATA 288501704 06-AUG-94 QUAL UNITS	
	M765 RFA 2883 2883 06-4 VALUE QUAL	
	DL	38838°33833338888888888888888888888888
	M7684019 RFADATA 288501004 06-AUG-94 QUAL UNITS	27222222222222222222222222222222222222
	M766 RFF 2885 2885 06-7 VALUE QUAL	23523°2323232323232323232323232323232323
2	_ ਰ	\$\$\$\$==\$=\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$
MAVSTA MAYPORT RFA Soil Boring Data	N7684007 RFADATA 288500504 D6-AUG-94 QUAL UNITS	
NAVST RFA SOIL	N76 RF 288 288 06-	
i I	7	2888.882888888888888888888888888888888
	M7684006 RFADATA 288500106 06-AUG-94 QUAL UNITS	
	WINE OF	28888 28888888888888888888888888888888
	Lab Sample Mumber: Site Locator Collect Date:	Witt svoc (8270-24)  Wittensodianthylamine Phenol Anillo  bis (2-Chioroethyl) sther  1,4-bichlorobarzene Berzyl Altoch  1,2-bichlorobarzene Berzyl Altoch  2-hettylchenol bis(2-Chioroethare Wittensodianthylamine Wittensodianthylamine  2-wittylchenol  2,4-bichloroethare Wittensodianthylamine  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroethare  2,4-bichloroetharyl-phenylethar  2,4-bichloroetharyl-phenylethare  3,4-bichloroetharyl-phenylethare  4-bichloroetharyl-phenylethare  5-bichloroetharyl-phenylethare  6-bichloroetharyl-phenylethare  6-bichloroetharylethare  6-bichloroetharylethare  7-bichloroetharylethare  8-bichloroetharylethare  9-bichloroetharylethare  1-bichloroetharylethare  1-bichloroetharylet

Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Collect   Coll	Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Collect Coll	Collections	Sample Number: M76840  Locator Site RFADA  Locator 288500 288500 350 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1850 U 1	350 350 350 350 350	M76	84007						02040	
	Column	Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   C	350 U U U U U U U U U U U U U U U U U U U	350 350 350 350		500504 500504 506-94	7		16 ADG - 94			**	ب
			350 U U U U U U U U U U U U U U U U U U U			C UNITS	. 1	İ				ı	
No.						ug/kg	86		2 2 3 2 3	2.5 2.5		2/65 24/65	2
No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.	Column				===	20/Kg	99	750 07	   2   3	229	390 U	ug/kg	200
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   C			200	uo/ka	9	7 02		<b>629</b>	300 C	ug/kg	<u>ج</u>
No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.	1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	200		a 009	ca/ko	89	<b>707</b>	62/Kg	2	3 00 P	09/Kg	<u> </u>
No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.	Column	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	250 U U U U U U U U U U U U U U U U U U U		1200 U	ug/kg	1200	⊃ 058 	<b>20/kg</b>	2 2	25	02/05 07/05	2 2
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	100001	Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Colo	350 C		⊃ 09	ug/kg	909	_ \$3		<b>3</b>	366	6 / Kg	2 5
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	\$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250 0.0001  \$250	Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   C	350 CC	jeda L	⊃ 00 <del>9</del>	ug/kg	009	750 C	8 /8 8	924	25	2/2	
1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000	1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	350 C		- 009 -	ug/kg	009	n 025	2 2	200	300	2 / Y	2 5
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	388 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		- 009 9	ug/kg	009	7 624 1 624	94/6n	35	265	24/25	2 2
1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000	1200   100/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120/14   120	Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Colo	38 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		909	ug/ko	009	<b>⊃</b> :	8/P	35	202	2 / S	<b>₹</b>
1500   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600	1500   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000	1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000	380 000 000 000 000 000 000 000 000 000		n 009	ug/ka		7 (2) 1 (2)	2./M	3 5		94/9	<u> </u>
1700   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100	1750   1977   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	250 C		⊐ 009	ug/kg	009	D 024	8×/25	3:	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	94/85 64/65	26
100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   100001   1	1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000	250 U	350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T 350 T		n 009	ug/kg	009	420 U	<b>64/8</b> 0	3	> :		265
TYPO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER STORE COLO 1 WATER	1200   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001   10001	1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000	0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007	6.0 1960 1961 1968 1968	п 009	ug/kg	9	7 0 T	56/kg	2		2/2	266
1700   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   1200   100/14   1200   1200   100/14   1200   100/14   1200   1200   100/14   1200   1200   1200   1200   100/14   1200   1200   1200   1200   100/14   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1	1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/1	2002 2008 2008 2008 2008 2008 2008 2008		2 009	ug/kg	999	7 87	64/89 	2		<b>100/Kg</b>	2 5
150   10   10   10   10   10   10   10	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	250 U U U U U U U U U U U U U U U U U U U		2900 UJ	ue/ka	y Š	2100 U	ug/kg	2 2 2	200	<b>5</b> 9/kg	<b>2</b> 5
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 0550 U 055	10 1 20 1 20 1	n 009	ue/ka	9	_ 23 -	EQ/kg	2,	200 200 200	59/Kg	Z ;
1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/1	1700 U	1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700   1, 1700	250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U		rn 009	ug/ka		7 82	44/kg	2	3 06E	<b>69/kg</b>	Z 2
The color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the	The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank   The bank	The color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the	17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		CD 009	ug/kg	٠.,	2 83		<b>2</b>	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8/25 25/25	<u> </u>
1700   14   1700   14   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700	1700   10   10   10   10   10   10   1	1700   1   1974   2500   1   1974   2500   1   1974   2500   1   1974   2500   1   1974   2500   1   1974   2500   1   1974   2500   1   1974   2500   1   1974   2500   1   1974   2500   1   1974   2500   1   1974   2500   1   1974   2500   1   1974   2500   1   1974   2500   1   1974   2500   2500   1   1974   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   1   1974   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2	2007. 3008. 3008. 3008.	nik Hali	70 009	ua/ka	•	7 023	_B¥/85	<b>5</b>	-		ž
1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   100/14   1200   1200   100/14   1200   1200   100/14   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200   1200	1700 U	1700 U	350 U		2900 U	us/ka	2900	_		da da		\$/ <b>2</b>	9
1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/14   1700   100/1	1700 U wayles   1700   2000 U wayles   2000   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles   2100 U wayles	1700 L	300 C			ua/ka	009	<b>→ 02</b> 3	\$/\$	2	380 C	69/Kg	2
1700 U	1700 U ug/kg	1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700 U Warfe   1700			_	ug/ka	35 0	n 02 <b>7</b>	- 14/KB	Ş	380 C	09/Kg	<u>R</u> ;
1700 U	1700   10   10   10   10   10   10   1	1700   100/14   1700   2500   100/14   2500   2100   100/14   2100   1500   100/14   1700   100/14   1700   2500   100/14   2500   2100   100/14   2100   1500   100/14   1700   100/14   1700   100/14   1700   2500   100/14   2500   2100   100/14   2100   1500   100/14   1700   100/14   1700   2500   100/14   2500   2100   100/14   2100   1500   100/14   1700   100/14   1700   2500   100/14   2500   2500   100/14   2500   100/14   2500   2500   100/14   2500   100/14   2500   2500   100/14   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   100/14   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500   2500	STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STA		_	ce/ke	99	7 83	2/P3	8	2 S	9/kg	2
1700   USA/14   1700   2500   USA/14   2500   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700   USA/14   2700	1700   USA/4   1700   2500   USA/4   2500   USA/4   2700   USA/4   1700   USA/4   2700   USA/4   2700   USA/4   1700   USA/4   2700   USA/4	1700   100/16   1700   2000   100/16   2000   2100   100/16   1700   100/16   1700   2000   100/16   1700   100/16   1700   2000   100/16   1700   2000   100/16   1700   100/16   1700   2000   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   100/16   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700   1700	一般の こうかん かんき かんしょう こうかん こうかん こうかん こうかん こうかん こうかん こうかん こうか		ra 009	ug/ko		<b>707</b>	27/35	3	200	64/85 64/85	P S
1700 U   ug/kg   1700   2900 U   ug/kg   2900   2100 U   ug/kg   2100   1900 U   ug/kg   1700   2900 U   ug/kg   2900   2100 U   ug/kg   2100   1900 U   ug/kg   1700   2900 U   ug/kg   2900   2100 U   ug/kg   2100   1900 U   ug/kg   2100   1900 U   ug/kg   2100   1900 U   ug/kg   2100   1900 U   ug/kg   2100   1900 U   ug/kg   2100   1900 U   ug/kg   2100   1900 U   ug/kg   2100   1900 U   ug/kg   2100   1900 U   ug/kg   2100   1900 U   ug/kg   2100   1900 U   ug/kg   2100   1900 U   ug/kg   2100   1900 U   ug/kg   2100   1900 U   ug/kg   2100   1900 U   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2100   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200   ug/kg   2200	1700 U ug/kg	1700 U ug/kg			2900 L	ue/ka	2962	2 2 2 3	<b>5</b>	22		6×/62	3
1700 U ug/kg	1700   104/2   1700   2900   104/2   2900   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   104/2   2100   210/2   210/2   210/2   210/2   210/2   210/2   210/2   210/2   210/2   210/2   210/2   210/2   210/2   210/2   210/2   210/2   210/2	1700 U			2900 U	09/kg	2002	2 <b>38</b> €	19/60	2		0×/00	2 5
1700   U ug/kg   1700   2900   U ug/kg   2900   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2100   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200   U ug/kg   2200	1700   U   U   U   U   U   U   U   U   U	1700 U ua/kg			2900 E	4/kg	2900	2 8 7.	_ E4/kg	2 2 2	_	ug/kg	2
1700   140/14   1700   2500   140/14   2500   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700   140/14   1700	1700 U	1700   100/14   1700   2900   100/14   2900   2100   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   100/14   2700   2700   100/14   2700   2700   100/14   2700   2700   100/14   2700   2700   100/14   2700   2700   100/14   2700   2700   100/14   2700   2700   100/14   2700   2700   100/14   2700   2700   100/14   2700   2700   100/14   2700   2700   100/14   2700   2700   100/14   2700   2700   100/14   2700   2700   100/14   2700   2700   100/14   2700   2700   100/14   2700   2700   100/14   2700   2700   100/14   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700   2700	TOTAL SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE		2000	ua/ka	2900	238	2/ <del>3</del>	2	_	ug/kg	
150 U 19/14   1700   19/14   2500   19/14   2500   19/14   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700   19/14   1700	1700   144/4	1500 U ug/kg   1700   190/kg   2500   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg   1700   190/kg			2000	na/ka	2900	<b>787</b>	UD/Ka	8	_	ug/kg	
1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   1700   1   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14   190/14	1700   104/kg   1700   2900   104/kg   2900   2100   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg   1900   104/kg	1700   104/48   1700   2900   1 04/48   2900   2100   104/48   1700   104/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   1 04/48   1700   2900   2900   2900   2000   2900   2900   2900   2900   2900   2900   2900   2900   29			n 009	co/kg	9	3 87	8x/8n	8		ug/kg	2
1700   1	1700   1	1700   145/4			_		т, ,	787	2 7			09/kg	8
170   1974   170   2900   1974   2900   2160   1974   420   1970   1970   1970   1970   1970   1970   1970   1970   1970   1974   420   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970	170   10   10   170   2900   10   10   10   10   10   10   10	7700   1			_	ca/ka	2002	2100 C		2	_	<b>69/kg</b>	3
1350 U	1700 U ug/kg   350   600 U ug/kg   600   620 U ug/kg   620   620 U ug/kg   620   620 U ug/kg   620   620 U ug/kg   620   620 U ug/kg   620   620 U ug/kg   620   620 U ug/kg   620   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   620 U ug/kg   6	150   10   10   10   10   10   10   10			_	ug/kg	2300	2 8 8 8	2/ <b>3</b>	22		09/Kg	<u> </u>
150 (1 mg/kg   150 600 U mg/kg   600 620 (1 mg/kg   620   1900 U mg/kg   150 (1 mg/kg   620   1900 U mg/kg   150 (1 mg/kg   620   1900 U mg/kg   150 (1 mg/kg   620   1900 U mg/kg   150 (1 mg/kg   620   1900 U mg/kg   150 (1 mg/kg   620   1900 U mg/kg   150 (1 mg/kg   620   1900 U mg/kg   150 (1 mg/kg   620   1900 U mg/kg   150 (1 mg/kg   620   1900 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   1500 U mg/kg   150	1700   140/kg   1700   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600   120/kg   600/kg	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100			-	ug/kg	3	= 83 ***	2	3		8 / Y	2 2
1700   1 mg/kg   150   600   1 mg/kg   600   420   1 mg/kg   420   1 mg/kg   420   1 mg/kg   420   1 mg/kg   420   1 mg/kg   420   1 mg/kg   420   1 mg/kg   420   1 mg/kg   1 mg/kg   420   1 mg/kg   420   1 mg/kg   420   1 mg/kg   420   1 mg/kg   1 mg/kg   420   1 mg/kg   1 mg/kg   420   1 mg/kg   1 mg/kg   420   1 mg/kg   1 mg/kg   420   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 m	1700   1 mg/kg   350   600   1 mg/kg   600   420   1 mg/kg   420   1900   1 mg/kg   1700   1900   1 mg/kg   420   1900   1 mg/kg   1700   1900   1 mg/kg   420   1900   1 mg/kg   1700   1900   1 mg/kg   420   1900   1 mg/kg   1700   1900   1 mg/kg   420   1900   1 mg/kg   1700   1900   1 mg/kg   420   1900   1 mg/kg   1700   1900   1 mg/kg   420   1900   1 mg/kg   1700   1900   1 mg/kg   420   1900   1 mg/kg   1700   1 mg/kg   2900   2100   1 mg/kg   2100   1900   1 mg/kg   1700   1900   1 mg/kg   2900   2100   1 mg/kg   2100   1900   1 mg/kg   1700   1 mg/kg   2900   2100   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1 mg/kg   2900   1	350   1	7 056		73 009	ug/kg		- 2	2 3	3	2 2 2 2		2 5
1700 to tag/kg   1700   2900 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700   2900 to tag/kg   1700 to tag/kg   1700   2900 to tag/kg   1700 to tag/kg   1700   2900 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to tag/kg   1700 to ta	350 U ug/kg 350 0 ug/kg 600 U ug/kg 620 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U ug/kg 720 U	1700   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140	7052			ug/kg	8	7 23	2	3:		10 / N	2 2
1700   1,427/4	1700 U 126/kg 1700 2900 UJ 126/kg 2900 2100 U 126/kg 420 390 U 126/kg 550 0 UJ 126/kg 420 U 126/kg 420 390 U 126/kg 550 0 UJ 126/kg 550 0 UJ 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg 550 U 126/kg	1700 U UG/NG 1700 2900 UJ UG/NG 2720 U UG/NG 420 1 UG/NG 420 1 UG/NG 420 U UG/NG 420 U UG/NG 420 U UG/NG 420 U UG/NG 420 U UG/NG 420 U UG/NG 420 U UG/NG 420 U UG/NG 420 U UG/NG 420 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/NG 2900 U UG/N	350 U		<b>§</b>		3	7	2 9	3			5 5
Maintee   350 U	150   1   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19/10   19	120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120	1200 E		262 262		0-196	3	2/9	3:	2006		200
SSO U WB/kg	350 U wa/ka 350 600 UJ wa/ka 420 U wa/ka 1700 UJ wa/ka 2900 Z100 UJ wa/ka 1900 UJ wa/ka 1700 UJ wa/ka 2900 U wa/ka 2900 Z100 UJ wa/ka 1700 UJ wa/ka 1700 UJ wa/ka 1700 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 1700 U wa/ka 1700 Z900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U wa/ka 2900 U	350 U WG/kg 350 600 UJ WG/kg 420 350 U WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg 1700 UJ WG/kg	350 U		8		(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	3: 3:	)   		2005	44/m	8
350 U ug/kg 2900 U ug/kg 2900 Z100 UJ ug/kg 1900 UJ ug/kg 1900 UJ ug/kg 1700 UJ ug/kg 2900 Z100 UJ ug/kg 1900 UJ ug/kg 1700 U ug/kg 2900 Z100 U ug/kg 2900 Z100 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U	350 U ug/kg 2900 U ug/kg 2900 Z100 UJ ug/kg 1900 U ug/kg 1900 U ug/kg 1700 U ug/kg 2900 Z100 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U u	350 U ug/kg 2900 U ug/kg 2900 Z100 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 2900 Z100 U ug/kg 2900 U ug/kg 2900 Z100 U ug/kg 2100 1900 U ug/kg 1900 U ug/kg 2900 Z100 U ug/kg 2100 1900 U ug/kg 1900 U ug/kg 2900 Z100 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 350 G00 UU ug/kg 6000 4,200 U ug/kg 4,20 U ug/kg 390 U ug/kg 390 U ug/kg 390 U ug/kg 390 U ug/kg 390 U ug/kg 390 U ug/kg 390 U ug/kg 390 U ug/kg 390 U ug/kg 390 U ug/kg 390 U ug/kg 4,20 U ug/kg 390 U ug/kg 390 U ug/kg 390 U ug/kg 390 U ug/kg 390 U ug/kg 390 U ug/kg 390 U ug/kg 4,20 U ug/kg 390 U ug/kg 4,20 U ug/kg 4,20 U ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R ug/kg 1900 R	350 U		<b>§</b>		ga. ²²	= : ₹:	)	36			8
1700 UJ	1700 U.J. vg/kg 1700 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 17000 U.J. vg/kg 27000 U.J. vg/kg 1700 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 27000 U.J. vg/kg 270000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 270000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 270000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 27000 R.J. vg/kg 270000	1700 UJ vg/kg 2800 U vg/kg 2900 U vg/kg 2100 U vg/kg 1800 U vg/kg 1800 U vg/kg 2800 U vg/kg 2800 U vg/kg 2800 U vg/kg 2800 U vg/kg 2800 U vg/kg 2800 U vg/kg 2800 U vg/kg 2800 U vg/kg 2800 U vg/kg 3800 U vg/kg 3800 U vg/kg 3800 U vg/kg 3800 U vg/kg 3800 U vg/kg 3800 U vg/kg 3800 U vg/kg 3800 U vg/kg 3800 U vg/kg 420 U vg/kg 3800 U vg/kg 420 U vg/kg 3800 U vg/kg 420 U vg/kg 3800 U vg/kg 600 U vg/kg 600 U vg/kg 620 U vg/kg 420 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/kg 1800 U vg/k	7 050		8	_						_	;
17000 UJ UG/KG 1700 Z2000 UJ UG/KG 2700 U UG/KG 2100 U UG/KG 1700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG/KG 2700 U UG	17000 U) ug/kg 1700 U ug/kg 2900 U ug/kg 2900 U ug/kg 2100 U ug/kg 1700 U ug/kg 1700 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 2900 U ug/kg 290	17000 UJ UG/kg 1700 UJ UG/kg 2900 Z 200 U UG/kg 2100 U UG/kg 1700 U UG/kg 1700 U UG/kg 1700 U UG/kg 2900 Z 2900 U UG/kg 2900 Z 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 29000 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 U UG/kg 2900 UUG/kg	9/19			3	200	2002 2002					
1700 U US/kg 1700 Z 2900 U US/kg 2900 Z 100 U US/kg 2100 U US/kg 1700 Z 2900 U US/kg 2900 Z 2000 U US/kg 3500 U US/kg 3500 G 0000 U US/kg 3500 U US/kg 3500 U US/kg 350 U US/kg 350 U US/kg 420 U US/kg 420 U US/kg 350 U US/kg 350 U US/kg 420 U US/kg 420 U US/kg 350 U US/kg 350 U US/kg 420 U US/kg 420 U US/kg 350 U US/kg 350 U US/kg 420 U US/kg 420 U US/kg 350 U US/kg 350 U US/kg 420 U US/kg 420 U US/kg 350 U US/kg 350 U US/kg 420 U US/kg 350 U US/kg 350 U US/kg 420 U US/kg 420 U US/kg 350 U US/kg 17000 R US/kg 420 U US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R US/kg 17000 R	1700 U	1700 U	70 0025						 ::::	2		_	100
1700 U 124/kg 1700 2900 U 124/kg 1700 2900 U 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1 124/kg 1700 1	1700 U ug/kg 1700 2900 U ug/kg 25000 1 ug/kg 4200 3900 U ug/kg 35000 4 ug/kg 4200 1 ug/kg 35000 U ug/kg 35000 U ug/kg 420 U ug/kg 420 1 ug/kg 350 U ug/kg 350 U ug/kg 420 U ug/kg 420 U ug/kg 350 U ug/kg 420 U ug/kg 420 U ug/kg 420 U ug/kg 420 U ug/kg 420 U ug/kg 420 U ug/kg 420 U ug/kg 420 U ug/kg 420 U ug/kg 420 U ug/kg 420 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug/kg 1900 U ug	1700 U ug/kg 1700 2900 U ug/kg 4200 3900 U ug/kg 35000 U ug/kg 4200 3900 U ug/kg 3500 U ug/kg 4200 1 ug/kg 4200 1 ug/kg 350 U ug/kg 350 U ug/kg 420 U ug/kg 350 U ug/kg 350 U ug/kg 420 U ug/kg 420 U ug/kg 350 U ug/kg 420 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 420 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U	7 821		2900	09/kg	0062	3		38		64/61 64/61	200
35000 U ug/kg 35000 bulluu U ug/kg 420 U ug/kg 420 U ug/kg 350 U ug/kg 350 U ug/kg 420 U ug/kg 420 U ug/kg 350 U ug/kg 550 U ug/kg 600 420 U ug/kg 420 U ug/kg 350 U ug/kg 600 U ug/kg 600 U ug/kg 850 U ug/kg 350 U ug/kg 850 U ug/kg 1900 R ug/kg 1900 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/	35000 U Lag/kg 35000 6000 U Lag/kg 600 420 U Lag/kg 420 390 U Lag/kg 350 U Lag/kg 350 U Lag/kg 350 U Lag/kg 420 U Lag/kg 420 U Lag/kg 350 U Lag/kg 420 U Lag/kg 420 U Lag/kg 350 U Lag/kg 600 U Lag/kg 600 U Lag/kg 600 U Lag/kg 600 U Lag/kg 1500 U Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R Lag/kg 19000 R L	35000 U	178 L			54/65 54/65				7200	19000 U	, de / ka	39000
350 U ug/kg 350 600 U ug/kg 600 420 U ug/kg 420 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 850 U ug/kg 850 U ug/kg 19000 R ug/kg 17000 R ug/kg 19000 R ug/kg	350 U ug/kg 350 600 U ug/kg 600 420 U ug/kg 420 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 600 0 ug/kg 600 U ug/kg 1900 R ug/kg 19000 R ug/kg 19000 R ug/kg 19000 R ug/kg	350 U	2 7 000 KM			24/Kg	2000	1 007	10/kg	200	390 U	ua/ke	8
350 U WA/KB 350 U WA/KB 350 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U WA/KB 1900 U W	350 U WA/Kg 350 U WA/Kg 350 U WA/Kg 350 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA/Kg 1900 U WA	350 UJ WAZ/Kg 350 UJ WAZ/Kg 350 UJ WAZ/Kg 15000 R WAZ/Kg 15000 R 15000 R	3 05P			54/50 64/61	707		to/ka	87	390 U	ug/kg	옷
350 UJ W4/kg 29000 R W4/kg 19000 R W4/kg 19000 R	350 UJ W4/kg 29000 R W4/kg 19000 R W4/kg 19000 R	350 UJ 1900 R 19000 R 1900 R 19000 R 19000 R	7 05			94/60 64/60	3		- P/49		300 C	ug/kg	
			TO 055	2,		9/2 9/2 1		21000 R			19000 ₽	ug/kg	
							A+		r F S S S S S S S S S S S S S S S S S S			,	
							**						_

<b>1</b> 6	TTTT NEWWOOD WEEKENEWOOD TENNEWERS TEST	
H7683004 RFADATA 288503104D 06-AUG-94 QUAL UNITS		
. VALUE		
1		
M7683003 RFADATA 288503104 06-AUG-94 QUAL UNITS	60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48 60/48	
	======================================	
VALUE		67 <u>8</u>
ಕ	77710 H H L L L L L L L L L L L L L L L L L	
M7684008 RFADATA 288502204 06-AUG-94 QUAL UNITS		
VALUE	######################################	
Lab Sampie Number: Site Locator Collect Date:	(Cotal)	
	Entoromethane  Entoromethane  Fromomethane  Vinyl chioride  Chloroethane  Actorio  Actorio  1,1-0ichloroethane  1,2-0ichloroethane  1,2-0ichloroethane  1,2-0ichloroethane  1,2-0ichloroethane  2,2-0ichloroethane  2,2-0ichloroethane  1,2-0ichloroethane  2,1-1-1-ichloroethane  2,1-1-1-ichloroethane  2,1-1-1-ichloroethane  2,1-1-1-ichloroethane  2,1-1-1-ichloroethane  1,2-0ichloroethane  1,2-0ichloroethane  1,2-1-ichloroethane  2,1-1-1-ichloroethane  3,1-1-1-ichloroethane  4,1-1-1-ichloroethane  5,1-1-ichloroethane  5,1-1-ichloroe	

NAVSTA MAYPORT RFA Soil Boring Data

	51.222.00
ă	
004 ATA 1040 G-94 UNITS	######################################
M7683004 RFADATA 288S03104C 06-AUG-94 QUAL UNI	
	5-2000000000000000000000000000000000000
VALUE	
_	31-4-4-52-6-5-1-6-1-6-1-6-1-6-1-6-1-6-1-6-1-6-1-6
6	
003 ATA 3104 G-94 UNITS	08/kg 08/kg 08/kg 08/kg 08/kg 08/kg 08/kg 08/kg 08/kg 08/kg
M7683003 RFADATA 288503104 06-AUG-94	. בכלכם בכשבלבכבל
<b>u</b>	22
YALUE	
ب_	77.7 7.7.7 7.7.7 7.7.7 7.4.0 7.4.1 7.4.1 7.4.1 7.4.1 7.4.1
1	
.008 .41A .2204 .16-94 .UNITS	10/10/10/10/10/10/10/10/10/10/10/10/10/1
M7684008 RFADATA 288502204 06-AUG-94 QUAL UNIT	
w	28. 28. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
VALUE	
Site Site ocator t Date:	P 700
	accesses on the committee of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of th
lab Sample	įį
de J	
	1,2-Dichtonobenzene 2-Chlonosthylving ether Ethyl methachlyling 1,2,3-Trichlonopropane trans-1,4-Dichlono-2-buttene trans-1,4-Dichlono-2-buttene tachuryl michlonocthane 1,2-Dibromocthane 1,2-Dibromocthane 1,2-Dibromocthane 1,4-Diousne 2-Chlonopropene Chlonopropene Rethachlonitrile Rethachlonitrile Propionitrile Vinyl methachlonocthane
	toroo
	March Hard
	COTUS STATES

NAVSTA MAYPORT RFA Soil Boring Data

H7684020 RFADATA 28BS01704 DA-AHG-94		⇒	12 UJ UG/KO 12 U UZ/KO 12		· = ·	59 J ug/kg	9 67/50 0.9 0 0.00		6 U 49/kg	<b>-</b>	12 R vg/kg 6 U va/ka 6	_	6 U ug/kg 6	) <b>)</b>	6 U ug/kg 6	) <b>)</b>	<b>&gt;</b> =	• <b>=</b>	12 U 19/kg 12 12 H 140/kg 12	<b>,</b> = :	6 U ug/kg 6 6 U ug/kg 6	<b>-</b> :	6 U 49/kg 6 6 U 49/kg 6	7	U ug/kg U ug/ka	U ug/kg	12 U ug/kg 12 300 U ug/kg 300	U ug/kg	U ug/kg	350 U 49/Kg 350	U ug/kg	6 U ug/kg 6		U ug/kg	120 U 49/49 120 6 U 49/49 6	240 R ug/kg
M7684019 RFADATA 288501004 DA: alic-64	QUAL UNITS DL VALUE	5		75 P	61/63	5/00	9 27/20			9		6 / KB	2!		2/2						64/rg					2	72,40	2.	•			9 64/67	Vg/Kg 250		15/40 15/40	
	DL VALUE QUAL	75 12 n	3:5	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				5			27			3 3		) 3 0 • 0	3 ·		21		3 2 4	7	7 9 0 1		1.00%	f 2 11	7 - 12	210 21	•	0 029 O		> -	11		220 130 U	
RFA Soil Boring Data M7684007 RFADATA 288500504	VALUE QUAL UNITS	21 U ug/kg	21 U ug/kg	21 U U9/KB	) > =	7 00 7	11 11 11 11 11 11 11 11 11 11 11 11 11	:E:	11 U UG/KB	==	7 =	11 U Ug/kg	>: <b>:</b> :	 	)  -	11 U UG/KG	11 U ug/kg	11 U UG/KG	21 U ug/kg	11 U ug/kg	11 U ug/kg	11 U ug/kg	11 C ug/kg	11 U ug/kg	11 U ug/kg	· =	2.5	210	=	11 U ug/kg	11 U vg/kg		11 U Ug/kg	=	220 u	
M7684006 RFADATA 288500106	E QUAL UNITS DL	11 0 ug/kg 11	11 C 20/kg		7.5	BY/Sh	9 <b>.</b> 9 .		2/20 2/20 2/20	? ? ? ?	11 24/89		5 U 46/kg	- - -		49/Kg 49/kg		- - - -		2 <b>2</b>	>= ^	i dy: V		5 C 48/Kg		130 5 56	ug/ke	950 0 97/80 0 956	U vg/kg							
Lab Sample Number: Site Locator	COLIECT WALE: VALUE	BKG VXCs (8240+11) Chioromethane			Kathylene chloride		bon disulfide	1.1-Dichlorethane	-Dichloroathene (total)	•Dichloroethere					chloroethere		tieste e	trans-1,3-Dichlaropere			Tetrachloroethane		Ethylbanzene	XV BIBB (total)	Trichlorofluoromethane		cdomethane	1,6-0 schlorobenzene	ASFYLORI KFTLO Dibrompomethane	-Dichiorobenzene	Z-Chloroethy(vinylether Ethyl methacrylate	3-Trichloropropere	ine-1, 6-Dichloro-2-butere	12-Tetrachiorsethere	2-Dibroso-3-chi propropene	

		120 120 120 120 120
	1	
	#7684020 #FADATA 268501704 06-AUG-94 QUAL UNITS	09/kg 09/kg 09/kg 09/kg 09/kg
	#768 RFA 2885 06-4	120 U 6 U 6 U 72 U 72 U 72 U 72 U
	VALUE	•
	ot.	* <u>2 *2222</u>
	M7684019 RFADATA 288501004 06-AUG-94 QUAL UNITS	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	VALUE	<u> </u>
<u>ء</u>	ᆸ	
NAVSTA MAYPORT RFA Soil Boring Data	M7684007 RFADATA 288500504 06-AUG-94 QUAL UNITS	49/kg 49/kg 49/kg 49/kg 49/kg
NAVSTA A Soit	M768 RFA 2885 06-A QUAL	23 c c c c c c c c c c c c c c c c c c c
<del>'</del>	VALUE	8 8
	10	wg weega
	M7684006 RFADATA 288500106 06-AUG-94 QUAL UNITS	222222
	VALUE	7817778
	tab Sample Mumber: Site Locator Collect Date:	3-Chiaropropens Acetanitrile Acetanitrile Acetacrylonitrile Nethyl methocrylate Pentachlorothane Propionitrile
		Achti Acetor Chlora Mether Penter Propic

S ESTIMATED 1,4-DICKLOROBENZ

WERE GENERATED FROM THE SYOC (8270) ANALYTICAL RUH

DL	% 86. 86. 86. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	
N7683002 RFADATA 28SS03201 06-AUG-94 QUAL UNITS	20/kg 20/kg 20/kg 20/kg 20/kg 20/kg 20/kg 20/kg 20/kg 20/kg	
W STILLE O	3	
10	= 4 y. 2 s s . 3 s	
M7683001 RFADATA 28SS03101 06-AUG-94 QUAL UNITS		が 100mm できない
VALUE	3	F1 11 11 12 12 18 18 18 18 18 18 18 18 18 18 18 18 18
ដ		
M7675003 RFADATA 28SS030010 05-AUG-94 QUAL UNITS	.65 U mg/kg .6.2 J mg/kg .6.2 J mg/kg .6.3 U mg/kg .5.4 J mg/kg .0.3 U mg/kg .0.3 U mg/kg .2.6 J mg/kg .2.7 U mg/kg .2.2 J mg/kg .2.2 J mg/kg .2.2 J mg/kg .2.5 U mg/kg	
VALUE		
18 T T S DL	332333333333333333333 3333333333333333	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M7675002 RFADATA 288503001 05-AUG-94	2.4.2.2.4.2.2.4.2.2.4.2.2.4.2.2.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	
Lab Sample Mumber: Site Locator Collect Date:	mg/kg	
<b>-</b>	BKG SOILS METALS Antigony Arsenic Berium Beryl Lium Codmium Chromium Codmium Codmium Codmium Codmium Codmium Selenium Selenium Selenium Selenium Silver Tin Tin Venndium Zinc	

	_
į	
- 1	₹
- 1	Ξ
1	Ξ
sasis i	ŭ.
85.	un:
	=
	<u> </u>
99	=
25.1	=
	•
	丟
2000 2000	=
	=
84	=
_	Ξ
፼	3
ច	3
T 1S REJECTED	•
뻘	0
	<b>;</b>
- 22	S
	Œ.
*5	뿔
굶	_
نيا	_
4	3
•	ш
œ	₹
_	₹
_ <u>~</u>	>
្ទ	
ETEC	Ξ
	3
eridi. Santar	=
- 2	7
NOT DETECTED R = RESULT 15 REJECTED	ŭ

	اء					<b>1</b> 9.		-	ž	8		<b>7</b>	28	7		
M7698011 RFADATA 28SS03501 10-AUG-94	JAL UNITS			J 89/kg 80/kg	84/5 1	2 2 2	<b>3</b> /kg	2 (Kg	mg/kg	10/kg	10 /kg	Z /kg	#6/Kg	mg/kg	mg/kg	2
	VALUE			3 7 5, 2,	75.		in •	·	7	2.5	1.6.1	2.5	900	2.1 C	<b>.</b>	2
	ם	aginggin a ri	a ta thaire	95112		<b>.</b> 3		<b>.</b>	.03	2	9.			7		
M7698012 RFADATA 28SS03401 10-AUG-94	L UNITS			mg/kg mg/ka	mg/kg	79/49 76/40	mg/kg	<b>30/kg</b>	mg/kg	mg/kg	mg/kg	mg/kg	M9/Kg	mg/kg	mg/kg	mg/kg
M76 RF 28S 10-				. 48 UJ	6.6	3. % 3. 3. 3.	3.5	×. 4	.03 U	 	. 9. . 9.	G:	 	? ?	- 9 -	16.7
	VALUE															•
	Dľ					<b>3 3</b>		2.5	8:	2	3.	•	·			¥.
M7683005 RFADATA 28SS03301 06-AUG-94	QUAL UNITS			3/2 2/2 2/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3		- -		- -		- -	- ->:=		2/2		2/2º	U mg/kg
	VALUE			¥°		8.4		<b>3</b> .5		9	3.5		R:		2.2	ř
Lab Sample Number: Site tocator Collect Date:		1,000	04/60													
3								Sorpe Sorpe Sor	iti saire, itik i iti.	nuur ir Shri II. Filodrid sh		e Hy	) 6 (8)		iği tət;	

NAVSTA MAYPORT RFA Surface Soil Data

16		•	ż	<b>20</b> .	8.7.2	.27	1.35	
M7675008 RFADATA 28SS02501 05-AUG-P4 QUAL UNITS	et/es		2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		75/kg 75/kg 75/kg		<b>30</b> /kg	
VALUE	127			<b>e</b> . g: 2	. 8. 7. 8. 4			
12 TS DE			60/K6	.0.	8		• •	
M7675009 RFADATA 28SS02401 05-AUG-94 QUAL UNITS				E	28 U U 25/28 U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 28/28 U U 2			
VALUE	17							
M7675010 RFADATA 28SS02301 05-AUG-94 QUAL UNITS DL	mg/ka	ng/kg ng/kg	mg/kg mg/kg mg/kg	mg/kg mg/kg	mg/kg mg/kg mg/kg	19/kg 19/kg 19/kg	mg/kg	
M767 RFA 28SS 28SS 05-A VALUE GUAL	n 29.	4.6	3.6.75 3.0.50 3.0.00	1.2.1 U 50.	28. 28. 28. 29. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	3.3.2	. 7 u	AA7ED
70	Ŋ		<b>4</b> 5.	63	8.58.	;R	-	MIT IS ESTIMITED
M7675011 RFADATA 285802201 05-AUG-94 QUAL UNITS	Sy/au							MATTITATION C
.e :: VALUE	73.	947	47.X	652	8.081	8.7.		RESULT 15 REJECTED
Lab Sample Number: Site Locator Collect Date:	1/5							<b>.</b>
Lab S								
	EDULS N			Cyanida	- <u> </u>			<b>37</b>
	95	₹6.	558	2		:==;	Ä.	

	1	2 4 248 8244 <del>2</del>
	M7675004 RFADATA 285802901 05-AUG-94 QUAL UNITS	
	VALUE	
	5 001 94 115 DL	755555555555555 27777777777777777777777
	M7675005 RFADATA 28S502801 05-AUG-94 JE QUAL UNITS	750-350-350-55-55-55-55-55-55-55-55-55-55-55-55-5
	DL VALUE	ន់ ន ខ ≥ីន់ខ⊻ <b>ន</b>
MAVSIA MAYPORT Surface Soil Data	M7675006 RFADATA 285502701 05-AUG-94 QUAL UNITS	######################################
RFA Sur	WALUE OF	2.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.1 1.5 6.
	ح 1 م	
	N7675007 RFADATA 28502601 05-AUG-94	1.55 1.45 28 28 28 28 25 25 25 25 25 25 25 25 25 25 25 25 25
	Number: Site Locator it Date: Value	= RESULT IS
	Leb Sample Number: Site Locator Collect Date:	DETECTED R
	_	
		BKG SOILS HETALS Antimony Arsenio Berium Cachium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium

ಕ	
M7684018 RFADATA 285501801 06-AUG-94 QUAL UNITS	20/kg 20/kg 20/kg 20/kg 20/kg 20/kg 20/kg 20/kg 20/kg 20/kg 20/kg 20/kg 20/kg 20/kg 20/kg 20/kg 20/kg
	.48 U. .48 U. .48 U. .48 U. .52 U. .52 U. .52 U. .52 U. .52 U. .52 U.
VALUE	
10	3 2 282 38
017 A1A 1701 6-94 UNITS	77777777777777777777777777777777777777
N7684017 RFADATA 285501701 06-AUG-94 QUAL UNITS	3
VALUE	26 87 82 82 22 22 22 22 22 22 22 22 22 22 22
10	4 2 4 4 2 24
M7684016 RFADATA 288801601 06-AUG-94 QUAL UNITS	30/kg 30/kg 30/kg 30/kg 30/kg 30/kg 30/kg 30/kg 30/kg 30/kg
M76 285 06-	######################################
VALUE	ied i ie i ie i inc
ಕ	3 588 5º 55
M7684015 RFADATA 28SS01501 06-AUG-94 QUAL UNITS	
VALUE	\$8.28475887578875723
Lab Sample Number: Site Locator Collect Date:	

888284

22

#7684004 #7684005 #7684005 #7684005 #7684004 #7684004 #7684005 #7684005 #7684004 #7684004 #7684005 #7684005 #7684004 #7684005 #7684005 #7684004 #7684005 #7684005 #7684004 #7684004 #7684005 #7684004 #7684004 #7684005 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #7684004 #76	10	25.4.2.5.8 G
1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5	675013 FADATA SS021010 F-AUG-94 AL UNITS	30/kg 30/kg 30/kg 30/kg 30/kg 30/kg
### WANTER TO THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF	- ~	
### ##################################	្	
### ##################################	7675012 RFADATA 8SS02101 5-AUG-94 WAL UNITS	
#7684004 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #7684005 #76		saus.75.45.25
#7684004  #8 FADATA  #8 FADATA  28 SS01901  20 SS01901  00 - AuG - 94  00 - AuG - 94  00 - Aug - 94  00 - Aug - 94  00 - Aug - 94  01 - Mag/kg		20000000000000000000000000000000000000
### ##################################		222233277
#7684004 #8768501901 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc-94 004-Nuc		a sa ru
	M7684004 RFADATA 285501901 06-AUG-94 QUAL UNITS	
WILLE		
Lab Sample Mumber: Site Locator Collect Date: mg/kg	.ab Sample Number: Site Locatol Collect Date:	
Example Col Col Col Col Sample Service Service Service Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control	-	Copper Cyanide Lead Mickel Mickel Silver Tin Variabilia Zino

U * HOT DETECTED R = RESULT IS REJECTED

J * ESTIMATED VALUE UJ = REPORTED QUANTITATION LINIT IS ESTIMATED

NAVSTA MAYPORT RFA Surface Soil Data

N7684009 RFADATA 28SS01101 06-AUG-94 QUAL UNITS

M7684010 RFADATA 28SS01001 06-AUG-94 QUAL UNITS

MAVSTA MAYPORT RFA Surface Soil Data

ᆸ

ᆸ

M7698013 RFADATA 28SS00801 10-AUG-94 QUAL UNITS

Site Locator Collect Date: Lab Sample Number:

M7675019 RFADATA 28SS00901 05-AUG-94 QUAL UNITS

	.67	8	<b>3</b> .	] S	9.	.52	8.		
70/kg 70/kg 70/kg	<b>5</b>	2/2	36/kg	<b>10/</b> Kg <b>10/</b> Kg	mg/kg	76/x8	mg/kg mg/ka	mg/kg mg/kg	) •
.49 UJ 1.1 J 6.2 J	. 54. 2. 54.	: 300 300 300 300 300 300 300 300 300 30	; s;	. e.	1.6 U		3.2 U	2.3 6.6	
	<b>3.</b> 9	<u>.</u>	8 8 1	8,8	9,1	3.	<b>&amp;</b> ~		
12 mg/kg 10/kg	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.9.1 	8 / C	1 mg/kg	3/0E		76/kg	mg/kg	
97.2	<b>3%</b> (	Y.D.	88	. 8	-	2.5	2.		
	<b>3</b> .		.03	20.	5.5	8. <b>3</b> .	.27	7.1	
mg/kg mg/kg mg/kg	mg/kg mg/kg		79/K9 78/K9	mg/kg mg/ka	mg/kg	<b>mg/kg</b>	mg/kg	mg/kg kg/kg	
.47 UJ .59 J 2.7 J	8;4;	žki.	- <b>6</b> 0.	. 45 J	+.5 □	2. 3. 2. 3.	27 0	9.4	? !
	8	5	 	<b>.</b>	} <b>.</b>	* <b>\</b>	8	•	<b>)</b>
20/kg 20/kg kg/kg	8/kg 8/kg	2 Z 2 Z	2 5 /2 2 /2 2 /2	<b>2</b> 3	2 /kg	#g/ka	9	? ? ?	<b>2</b>
3		7.5.	2 3 7 8.	n c	99	7.7	25		<b>D</b>
mg/kg									

Arsenic Beryllium Cadellum Chromium Coppet Coppet Coppet Coppet Coppet Coppet Coppet Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium

		_
		=
		롣
		~
		z
		_
		<u></u>
		Ś
9:3		ш
9,35	es à	-
X (*)	:	-
	::	
	٠,	
T:	۲.,	=
		₹
10	÷	=
4,3	3	ت
-100	J.	7
40	*	×
'' .á	N	o
oiri.	٠.	_
3	$\leq$	=
88	~ 7	≊
		☲
		Ξ
1	7	寁
	=	₹
· (	٠	3
- 1	<u>ب</u>	ø
	3	$\simeq$
	=	Ħ
	_	=
80		Ξ
	÷	Б
Ø.,,	. :	٥.
	-	
	┙	~
- 3	₹	-
		-
	۳	_
	_	=
	M	_
	_	ш
	œ	=
	4	_
žņ.	9	ж.
Wr.	ш	
833		-
113		4.
1600		F
886	'n	
150	ō	3
	٠.	
en e	÷	٠
er ()	₫	
SW.	Z	: #
	Œ	1
	_	

RFA Surface Soil Data M7684012 RFADATA 288501301	M7684011 RFADATA 28SS01201
루 글	VALUE QUAL UNITS
	•:
•	
-	3 -
	2.2
	<b>-</b>
	. 57 C
EE	85. 1.5. 1 03
mg/kg mg/kg	= ~ &
E	1.5 U
EE	. 28 U
<b>E</b> (	.28 U
₽₽	
•	3.7.1

22 282 282

	8.5.2.5.2.5.3. 8.5.2.5.2.5.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	
* ***	9 <b>.2 XX</b>	
7.6. 88.6. 88.6. 88.6. 88.6. 88.6. 88.6. 88.6. 88.6. 88.6. 88.6. 88.6. 88.6. 88.6. 88.6. 88.6. 88.6. 88.6. 88.6	3. 5.6 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	
30/kg 30/kg 30/kg 30/kg 30/kg	997	
2. 56. 66. 56. 56. 56. 56. 56. 56. 56. 56	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	MATED
17171777 18	5555555 53333333 8. Cv	ON LINIT IS ESTIMATED
24452455	sagasta ganganta ganganta	T IS REJECTED
<b>8</b> /8		R = RESULT
•		
	Lead Nercury Nickel Selection Silver That I'um Zinc Zinc	

8

87.8

28

4

겁

VALUE

ಕ

VALUE

ᆿ

VALUE

ದ

VALUE

N7684001 RFADATA 28SS00101 06-AUG-94 QUAL UNITS

Lab Sample Number: Site Locator Collect Date:

N7684002 RFADATA 285500201 06-AUG-94 QUAL UNITS

M7684003 RFADATA 28SS00201D 06-AUG-94 04AL UNITS

NAVSTA MAYPORT RFA Surface Soil Data M7675014 RFADATA 28SS00301 05-AUG-94 9UAL UNITS 2 2 8

	9
	¥118
	<u> </u>
	H. LIMIT IS ESTIMATED
	 ₹
	IN
e BEJEFTED	SEATITY.
	8
T IS BEJEETED	FPORT
2	
1	] 
	35
	• • • •

		13:	ą.	<b>8</b> 0.	.07 1.5 82.	72.	5.1	
2								
M7675018 RFADATA 285500701 05-AUG-94		70/kg 70/kg 70/kg	8 8 8 8 8 8 8 8	20/kg	<b>30/kg</b>	6 4 6 6 4 6 7 6 6	30/kg 30/kg	
_		47 U 1.5 J	3.6 3.6 3.6 3.6 3.6		3.50 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0	.56 J .27 U 2.8 J	3.2 J 1.5 U	
9 1								
ā	d		<b>3</b> 5	e S	8.58	38.		
58	2	70/kg 70/kg 70/kg	8	2 kg	2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	3 (kg 2 (kg	23	
M7675017 RFADATA 28SS00601 05-AUG-94		222	2222	22	2222	555	22	
RF 28S 05-	<b>§</b>	 	~~~ ~~~		3.8 o.8 3 ⊃ ⊃ ⊃	→=¬	, ω - =	
!	<b>5</b>	3	 	នខ	48.58	4.4.		
					· · · · · · · · · · · · · · · · · · ·			
	ł	87.	8.	. 8	70. 82.	3.8	1.7	
	터							·
016 ATA 10501 1G-94	QUAL UNITS	mg/kg mg/kg mg/kg	mg/kg mg/kg mg/kg	8 /kg /kg	76/kg 76/kg 76/kg	9 % 9 /kg 9 /kg	2 /kg	
H7675016 RFADATA 285500501 05-AUG-94		277	70 =	, <b>-</b> -	3	- - -	, , ,	
		4.6	E. 25. 2. 2.	5.50	4.0°5.8°	48,	::-	
į	ALUE							
	9 (13 simo) 10 sept (1 simo)	9	<b>1</b> 20	, S	8.7.4	25	12,	
	ಕ	en in terme Reduce No excess						
	<u>5</u>	223	999	2 <b>2</b> 2	<b>927</b> 5		22 <b>2</b>	
M7675015 RFADATA 285500401 05-AUG-94	CUAL UNITS	26/2 26/2 26/2 26/2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	555 525 523	255	<b>?                                    </b>	2 2 <b>2</b>	
#767 # F F F F 9	3	<b></b> -	, , , , ,	3 <b>3</b> 3	333:	333-	 	
	щ.	40	6.0	, e e	46_1	•		
	WALUE							
Number: Site Locator t Date:	go viti Seville	mg/kg	* 14					
Lab Semple Number: Site Locator Collect Date:								
emple Cotte								
Š de								
_	1000 (1000) 1000 (1000)	eneganijo galen. Ontobia se se ust	gregoriae (h. 1917) 1909 arregisto (h. 1917)	uran. Uran.		50000	unitégié Panyak Panyak	

Antimony Argenic Argenic Berium Beryllium Chromium Chromium Chromium Chromium Chromium Charide Lead Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury Hercury He

NAVSTA MAYPORT RFA Surface Soil Data

<b>DL</b>	たんだけだけだけだんしょうしょうだいなみだ もちたみみませ
M7683002 RFADATA 28SS03201 D6-AUG-94 QUAL UNITS	
M7 8 28 28 06 VALUE QU	
Dr.	ezekekkiziiiisilaan uuruus
H7683001 RFADATA 28SS03101 06-AUG-94 QUAL UNITS	77777777777777777777777777777777777777
N7 R 28 28 06 VALUE QU	Cicccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
פר	க்லீன்கள்ள்ள்ள்ல்ல்ல்ல்ல்ல்ல் 2 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
M7675003 RFADATA 28SS03001D 05-AUG-94 QUAL UNITS	19/48 19/48 19/48 19/48 19/48 19/48 19/48 19/48 19/48 19/48 19/48 19/48 19/48 19/48 19/48
M74 RI 28SS 05- VALUE QUI	AT
1	2
M7675002 RFADATA 285503001 05-AUG-94 QUAL UNITS	
M7 8 28 28 05 VALUE QU	( Sir-844, 8000) ug/kg ( ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	ug/kg F. w. = RESULT
Lab Sample Number: Site Locator Collect Date:	TI METECTED VALUE
	C. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (
	Praticipes/PCBs (SW-846, 8080) alpha-BHC bats-BHC dets-BHC dets-BHC gamma-BHC (Linders) Heptachlor epoxide Endosulfan II 6,4-DB Endosulfan sulfsta 6,4-DB Endosulfan sulfsta 6,4-DB Endosulfan II 6,4-DB Endosulfan sulfsta 6,4-DB Endosulfan sulfsta 6,4-DB Endrin aldehyde Endrin aldehyde Endrin aldehyde Endrin aldehyde Endrin aldehyde Endrin sidehyde Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isangham Isang

≡
3
≡
# <b>#</b>
-
<b>~</b> -
ા≣
░₹
_=
TED ANTITATION LINIT IS ESTIMATED
迈킠
37
50
45
. <u>7</u> 2
ದ್ಷ .
2
•
્≃≒
`e ₹
<u> </u>
* NOT DETECTED R * RESULT 1\$ REJECTED ** NOT DETECTED YALUE UJ * REPORTED QUANTITATION LINIT IS ESTIM
55
会会

		K.	ĸκ	ĸı	ĊΚ	32	ĸĸ		<b>1</b>	- -		PF3 6	, , ,		2	<b>3</b> ‡	; P		<b>≒</b> ¥	C۴	C Fr	2	2	
<b>a</b>						· · · · · · · · · · · · · · · · · · ·		٠.,	**.* **.*	√: :														
47698011 RFADATA 285503501 10-AUG-94 DUAL UNITS		24/kg	ug/kg	2/2	2/5	? ? ? ?	18/kg		3	24/ga	3	<b>8</b> / <b>k</b> 3	3	3 3 3	3	 		Š	By/85	3	19/Kg	3	<b>1 1 1 1 1 1 1 1 1 1</b>	3
M7698011 RFADATA 28SS03501 10-AUG-94 QUAL UNIT		_ ⇒∍	<b>=</b> =	· =	_ ⇒:	) -	<b>&gt;</b> =	<b>3</b> =	: -	<b>=</b> =	: > =	<b>=</b>	<b>-</b> :	) ===	. 3	>:	) >=	.3	<b>.</b>	<b>⇒</b> :	<b>3</b> =	· <b>&gt;</b>	<b>=</b>	2
4		5. N	ĸĸ	K.	ĸĸ	CK	ĸ			-	. <del></del>	<b>M</b> 1	ָרָי ייי		N	<b>~</b> ;	λK		<b>F</b>		C.	F	î	2
VALUE			A1 A				~ .					•		4 ^		<b>.</b>	~ ^	•	•	N	24			
1		2.7	2.2	-	Ķ	; K	151	• -	: ;	<u> </u>	<u>:</u>	5.0			55	*1	32	•	PO 1	-	~ ~	) PC	_	•
		<u></u>	999	, e	9	99	9	9 9	? <u>.</u>	<b>.</b>	99	9	9	<b>9</b> 5	? 9	<b>5</b>	<u>9</u> 5	? 9	9	<u>9</u>	<b>9</b> ,5	? 5	<u>8</u>	<b>9</b> .
M7698012 RFADATA 26SS03401 10-AUG-94 QUAL UHITS		ug/kg	, g/kg	3/3	ug/kg	59/kg	ug/kg	6x/65	25/52 24/62	ug/kg	<b>59/kg</b>	<b>29/kg</b>	ug/kg	09/kg	29/kg	ug/kg	<b>69/kg</b>		64/kg	<b>69/kg</b>	59/kg	2 / kg	3	54/g
RFJ 2855 10-7		n = 7	. 25	- - - -	o:	22	)     2	> : 2 :		ے: حج	4.4	, o	n 4.	م. د ⊐ :	2.2	43 U	당 t 그 :	2 2 2	32	n 22	ם : 2:		18 U	18 U
VALUE		٠.٠	,	•••			, ,	•	<u>-</u>		<u>-</u>	۰~	_	- r		-		• `						
3		ج	Ei	こた	: <b>.</b>	r.	, F	-		•	-	r =0	4			2	٤;	<b>5</b>	×	T.	Z:	<u>۲</u>	2	<b>#</b>
Z	3															zii X								
5 % 5		æ/kg	2.5 2.5	<b>J</b> 0/kg	, ko	<b>20/kg</b>	2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 ×	ug/kg	69/kg	. 9/e			04/kg	ug/kg	54/Kg	ua/ka	ug/kg	67/KG	, ka	54/B	<b>40/kg</b>	5/KG	, , , q	, <u>P</u>
H7683005 RFADATA 285503301 06-AUG-94		3	33	<b>5</b> 5	3	3	33	3	3 :	7 <b>3</b>	5	<b>3</b> 3	5	3	5 :	5 5	3	<b>5</b> :	5 3 2		<b>3</b>	<b>3</b> .:	3 3 3 -	
£ ~ 8 8 5		: ≂:	:5:	⊃ = 5 5	) =  -	_; []	; F	⊃ 	> = Y	) <b>–</b>	⇒: •	- C	1.4	7	 	7	35	ء ج ا	7 5	\ \ -	<u></u>	2 1	) = }	9
	AALUE															: (1 ) (41 ) (41 )				:0. 202 1. c				
	\$44,222	<u> </u>			\$9K	J H	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	'Esta		: Walls		•	:, ;		•		1	* \$8	Page 1. Pa				i ee	
emple Number Sit. Locato Collect Date		<u> </u>															*					•:		i, e u
Lab Semple Number Sit Locato Collect Date		<b>\$</b>		j. S				: 3					:									ene Si Si ege		2004 2004 2005 2005
ra q		/PCBs (SW-846,8080 C				·	1. . 181			i sil go e in y			 	1 1864 111		:	 24.3 	Table Van S Van S						
		<u>.</u>				oxion de				50 (1) 50 (1)	ul fata		·	الم	Marian Marian	9								
		\$/ <b>FCB</b> \$	وں	3	5	<u>ئ</u>	_ <b>S</b> ,			= <b>=</b>			اران ا	ketone	2		2 £				722	-124	72	<u> </u>

	MATER	
	ECT 2	
	1	
	2	•
	F REJEC	
)    		
	34 :	3
		į B
in of the s	• •	•

	2 <u>.</u>	ĸ;	22	:2:	ĸ!	2,2	2	4.	<b>*</b> :	* *	<u>* *</u>	5.9	1.4	7.4	7.2	12	<b>4</b>	3 25	1	2	21	22	옷 술	<b>5</b>	<b>ਦ</b>							
	ug/kg ug/kg	/kg	5 <u>5</u>	?	/kg	/Kg /kg	/kg	\$	/kg	6 / Y	/kg /kg	, e	/kg	/kg	/kg	/Kg	2, 2,	25	/s	2.	<b>.</b>	/Kg	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	/ko	/kg							
	55	3	<b>5</b>	3 5	ה ה	9 9 			3 :	9° ! -> =		_	_	_	_				_	3	_			_	-							
	2: 7:	r;	22	2:	2.1	ġ.c	12	4.	· ·	-	• •	2.9	1.4	7.	7.2	75	3 2	3 6	42	2	21	22	R ≯	2	2							
	54	<b>S</b> :	ë.	ş	Ą.	ė.	9	7	<b>*</b>	*	* *	٥ ۲	_	-	•	N:	<b>?</b> ¥	•	Side Side Mark Til	<b>S</b>	3	3;	4		=							i Line
	56/kg 16/kg	5 /A	6 / Kg	4 kg	ø/ko	6/kg	6/kg	ø/ka	D//0	5 × 5	10/K9	4/kg	5/kg	6×/6	.0/kg	8 X	6 / Ke	) } }		2		/kg	5 / Kg	V	2							
	20 4 20 2		∑ : ⊃ :	: : : :		: >:=		-	: ~*:	- :	- - -	· •		_ 		_ ⇒ :	) 	- - -	3	- - -	_ = •	_ ⇒: '%:	- 	) = 								
												~ ~	-	-	•																	
	9.	9.	9.9	9	9.	99.9	9	. T	m.			2.5		7.3	6.9	Σ:	25	£ &	ì	Ř	\$	<b>5</b> ;	* *	\$ <b>=</b>	. 2							
	ug/kg	09/kg	ug/kg	ug/kg	ug/kg	ug/kg	9/8	5 5 5 7 5 8	ug/kg	69/kg	59/kg	2 / S	, 64/52 54/52	<b>29/kg</b>	ug/kg	ug/kg	84/85	B / S	7/ca	\$       	ug/ka	ug/kg	54/Kg	20/kg	5 /kg	) }						
	9. E	9.0	5. 5.	;	. 69 U	6. 9	) ) )		J. U	ے ابر	٠ ٠	2.8.0	_	_	_					ے کے												
	E.	: E	<b>~</b> ;	<b>= = =</b>	: E	C.	- -	<u> </u>	<b>୍ୟ</b>	<b>-</b> 2.0	4	P. C.		· •	Ţ	≂	<b>(1)</b>	3.5	<b>=</b> 00 .	33	7	T)	5	3 =	<u> </u>	6(S) (300)			48.			
																		_														
	<b>49/kg</b>	7 9 3 9	5 / B	5		3	3 3						 :-		- LE/K	ng/kg	9X/80	× .	7 <u>:</u>	3	3	<b>4/k</b>	3	5 / X	7 / PX							
	: .: TI::.7	: = : E				⊃: Ki	= = = ;	4, 77		4	⊃: **:	- ^ • 0 • 2	) = -	7	7.3	↑ <del>.</del>	⊐: \$};	⊃ : າຄ	- 2	; ;	=	⊃   	- -	׆ ׆ ֭֞֞֞֞֞֞֞								
1	<b>?</b>				},			700 A			dere e		*2	· · ·									: .	Alia Tai				9-97 9-97 9-97		Tarior Con Si Produkt		
	J. W.		S.,																	1 85			- 4	ja Pr		e Nile	orii s			ara Paga	64) 194	
300								ili Vilger Vilger			· · · ·							i Sile Sile							**************************************							
i.	<u> </u>				r enact d	فحاة			-		n sulfet		- - - -	100		zilet.				910	221	R	2,5	992	<b>6</b> 5	}						
	PERIODES/FURE (SECOND)	deita-BHC	gamma-BHC (Linds	eptachlo	Alectachler Coox	ndosul fa	ieldrin	- 4,4-00E	Endosul fe	000-7.4	Endosul fan s	- 00.	Methoxychian	Endrin keton	Mordan	Chlorobenzil	Diallate	Toxaphere	l sodrin	Arpelor:	0000	roctor-1	Araclor-1242	roclor								
	# 4.	<b>5</b> C		<b>Z</b> . •	=		<u></u>	- 4			ш.			كا ب							333					Terri						

겁

VALUE

ᆸ

VALUE

ಕ

VALUE

ಕ

VALUE

M7675011 RFADATA 28SS02201 05-AUG-94 QUAL UNITS

> Site Locator Collect Date:

Lab Sample Number:

M7675010 RFADATA 28SS02301 05-AUG-94 QUAL UNITS

M7675009 RFADATA 28S502401 05-AUG-94 QUAL UNITS

NAVSTA MAYPORT RFA Surface Soil Data M7675008 RFADATA 28SS02501 05-AUG-94 QUAL UNITS

in a material a result 15 REJECTED	ESTIMATED
11	5
y: 1	:-
37.7	=
	Ξ
	3
	=
4.71	5
Ис) .	Ξ
	S
	Ξ
_ ==	Ξ
- 5	3
Ѿ	3
ं भू	
. =	Ξ
	丢
	Σ
	2
7	
<u> </u>	ΙĪ
	3
•	
. •	: =
· e	ŧΞ
	! 7
1	? 6
. 2	÷
	į
: <b>3</b>	و ب
99.	· ·
16,15	) -

		הבההההההההבבבבבבבבבשה שההששהם
	04 1A 901 -94 NITS 0L	18/46 18/46 18/46 18/46 18/46 18/46 18/46 18/46 18/46 18/46 18/46 18/46 18/46 18/46 18/46 18/46 18/46 18/46 18/46 18/46 18/46
	M7675004 RFADATA 28SS02901 05-AUG-94	646666666444444644686688888 =============================
	VALUE	EIKEREREIIIININI NEENNES
	47675005 RFADATA 285502801 05-AUG-94 QUAL UNITS DL	# # # # # # # # # # # # # # # # # # #
		######################################
_	DL VALUE	アルファイン・フィー・フィー・フィー・フィスト 対力の対象機関
NAVSTA MAYPORT Surface Soil Data	M7675006 RFADATA 28SS02701 05-AUG-94 QUAL UNITS D	
NAVSTA RFA Surfac	M767 RF7 2852 05-7 VALUE QUAL	にはアイアアアアにはははははははなっていながになるのなが知由
	3	EZEKERKEZZZZZZZZZZZZKE MEKNABB
	M7675007 RFADATA 28SS02601 05-AUG-94 04381 13M11S	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	7. # #7 82 8. # #0	ETEETEETTAATAGATTAGATTAGATAAAA
		51/60
	Lab Sample Number: Site Locator Collect Date:	
		PESTICIDES/PCBs (SW-B46,8080) alpha-BHC bata-BHC celts-BHC gamma-BHC (Lindare) Heptachlor Aldrin Aldrin Aldrin Loledrin C.4-DBE Endosulfan eulfste C.4-DBE Endosulfan eulfste C.4-DBE Endosulfan eulfste C.4-DBE Endosulfan eulfste C.4-DBE Endosulfan eulfste C.4-DBE Endosulfan eulfste C.4-DBE Endosulfan eulfste C.4-DBE Endosulfan eulfste C.4-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE Endosulfan eulfste C.1-DBE E
		PESTICIDES/PCBs alcha-BHC bate-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC delta-BHC d

	K; 4	ĸ	ĸ.	i.	;ĸ	i K	ĸ	R.	<b>4.</b>	<u>*</u> :	7	7	5.9	1.4	<b>7.</b>		22	2 \$	Ŗ Ľ,	7	*	ĸ	r;	3;	8 5	2 2	!			
	ug/kg	7 ×	ug/kg	ug/kg	64/60 64/60	ua/ka	ug/kg	ug/kg	ug/kg	09/kg	04/S	ua/ka	co/kg	ug/kg	ug/kg	Ce/ka	6x/60	10/kg	ua/ka	04/kg	ug/kg	ug/kg	ug/kg	69/kg	64/50 64/60	, (a)				
	0 57. 0 4.1	2 12.	ت ا	: c	? = ? K	; r;	J 22.	ב ה	<b>3</b> .	3 · ·	) = • •	7.7.	2.9 U	1.4 U			0 127		_	_	_	ت ت	⊃:   	⊃ : 9; ;	= R €					
	K.	ĸ	K!	C I	CK	, K	ĸ	۲.	٠ <u>٠</u>	<b>(1</b> .5	<u> </u>		M	1.5	r.	2:	7 Y	T. P.	K	***	ñ	K	٤	71	20	* <u>0</u> **				
	14/kg	) <u>-</u>	<b>Le</b> /ka	27.	04/05	8/kg	2/2	2/3 3	19/kg	2/kg	2.5 2.5	, ,	56/kg	08/kg	ug/ka	2/2	2 S	7 S	/ka	, s , s	Works	2/ <del>3</del>	ea/ka	9 2		: <u>:</u> : :	•			
	22	K	: Ki	= :  C	2 K	, =	κ. =	₽  C		)   	) = 		, m		) ()	) 	- = <b>3</b>		. = K	<b>3</b>	7 7	⊃ ℃	2 F.	- };	) = 	2.0				
	5.1	2.	27	, ,	22	2	2	2	7.	4.		7.7	2.9	1.4	4.6	7:5	77	: :	2		£	22	F¦	<b>S</b> :	) <b>K</b>	•		oren Orași Residi		
	ug/kg ug/kg	64/kg	ug/kg	ug/kg	19/kg	ua/ka	ug/kg	ug/kg	ug/kg	ug/kg	18/18 18/18	ua/ka	ug/kg	ug/kg	ug/kg	03/K0	64/80 64/80	16/kg	uo/ka	.e/ka	ug/kg	ug/kg	03/K0	49/Kg	100/Kg	, ka	•			
	U 27.	. 27.	n 2.	⊃: 2:	; ; ;	2	n 22.	U 27.	) )	); ;;	 	7.4	2.9 U	1.4 U	1.4 U	ا 2.7 : در	0 = 27 7	;	. n	43 U	35 U	n 22	⊃: ~;	o :	ر د هر	2 <b>5</b>				
	27	K	r:	Ç.		F	Ę	E		<b>4</b>		7	0.	4.	- 1-6 - 1-6	Ξ;	[27	; ;	\ <b>7</b>	2	35	K.	K:	9;	?=	<u> </u>				3500 kg 1800 kg 1800 kg
	9/ <b>9</b> 5	: 2 : 3	<b>5</b> 0/kg	<b>18/48</b>			3	ta/kg	₩/kg	to/kg	2.2 3.2			ug/kg	ug/kg	ue/kg	49/Kg	10/kg	6/kg	S/kg	ug/kg	₩,ko	uo/kg	0x/20						
		: 7 : 7	3 Z	) 	3 = <b>.</b> K		K	₹.	⊃ :	) - -	A					5: 5:	) = [] []	2 1		0 24	8	<b>-</b>	⊃: []	). V	) = } =					
										- y* 9	÷				٠.			. 8												
		9. (2.9.) (2.4.)						. ,						ار ار از از ار از از از از از از از از از از از از از					1 (4) 1 (4) 1 (4) 1 (4)						o de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya della companya della companya de la companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya della companya dell					41 41
,					40.00									*	- 793		3													
	elphe-8HC beta-8HC	78-8EC	11 - BHC CL 1	rechlor		osul fan 1	ldrin	-00E	Lin	Endosulfan II		-001	hoxychlor	Irla aldeby	Endrin ketone	Chlordene	Chiarobenzila			Kebone	clor-1016	clor-1221	Clor-1232	ctor-1242	CIOC-1256	Aroclor-1260				
	- T	8		\$:			-		5	Ē.	* 1	2 9	Her			5	5 2		-	9	2	7	5	2	2	- 0				

ಕ

ᆸ

ಕ

VALUE

ᆸ

M7684015 RFADATA 28SS01501 06-AUG-94 QUAL UNITS

Collect Date:

Locator

Lab Sample Number:

M7684016 RFADATA 28SS01601 06-AUG-94 QUAL UNITS

NAVSTA MAYPORT RFA Surface Soil Data M7684017 RFADATA 28SS01701 06-AUG-94 QUAL UNITS

M7684018 RFADATA 28SS01801 06-AUG-94 QUAL UNITS

	'		•	*	•	•	•	•	•		-	_	_ •		- ۲	<b>.</b>	-			-		•															
	ug/kg	ug/kg	19/Kg		8 /2°	64/80 64/80	09/Kg	69/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	09/Kg	04/80 19/80	19/kg	oy/ko	ug/ka	ug/kg	ug/kg	ug/kg	<b>cg/kg</b>	ug/kg	5 5 5 7 7	2/2 2/2	2 /43 2 /43	-6/kg	ug/kg	ug/kg							(	Í
	.71 U	7.4 U	) : [:	) ;;	⇒ : = i	= : C:	_	_	n ⊏.	J 1.	7.4 C	1.4 ∪	) •	) : - -				7.10			32 C		n :	⇒ : ? ?		: £			18 U							IS ESTIMATED	
	*	**	<b>2</b> ;	e;		*	*	*									 , (.)			٠.	e ji	Z	<b>G</b>	<b>#</b>	е ^{се} :	23	**										
	_ wa/ke	U 09/kg	n vg/kg	29/20					200,00						(1) (1) (4)					=	7		•	9 9				5/5	2/20						91	UNITITATION	
	%. ***		<b>*</b>			2	<b>*</b>	×	2.	**			(A) (A) (A) (A) (A) (A) (A) (A) (A) (A)						2		4			***												U. = REPORTED QUANTITATION LIMIT	
N3	evitti Colon					: C.	- 1 - 3 - 3						10 (1) 10 (1) 10 (1) 10 (1) 10 (1)				2000				e 3					i i i Nada	ĺť.	,							A 0 11111111111111111111111111111111111	ESTIMATED VALUE UP	Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro
	STICIDES/PCBS (SW-866,8080) alpha-BHC		<u>.</u>	C (Lindens)	6		or moxide						ososy yd ^{os} y	Ξ		Methoxychlor								-1016	7.7	e :	7571	9 7	18								
	PESTICIDES/I	beta-BEC	del to-BHC	HO-GATTING - GA	Heptach	Aldrin	Hentachi	Fredoais	Dieldrin	95-7 7		Forbelit	99-7-7	Endosul	100-y.4	Methoxy	Endrin	Endrin keton			TOWARD TO	leodrín	Keoone	Aractor-10	Aroctor	Arocior	Arocion	JO TO TO	Arocior				100				

			RFA Su	Surface Soil Data	Data						,		
Lab Semple Number: Site Locator Collect Date:	M7684004 RFADATA 285501901 06-AUG-94		_	M7684005 RFADATA 28SS02001 06-AUG-94				N7675012 RFADATA 285502101 05-Aug-94		!	RFADATA RFADATA 28SS02101 05-AUG-9	M7675013 RFADATA 28SS021010 05-AUG-94	ž
	VALUE QUAL UNITS	rs or	VALUE	QUAL UNITS	<u>م</u>	<b>₹</b>	VALUE	CUAL UNITS	2	VALUE	E E	GUAL UNITS	<u> </u>
146,8080) ug/kg	.74 U 47.	2.	Ε.	U vg/kg		<b>F</b> .	5;	2 2 3	<b>9.</b>	• •	Σ. ⊐ =	00/kg	r
	)     	*.Z	<u>.</u> F.	64/60 C 46/40		: F.	* 50	33				ug/kg	RI
	9/65 2.2.	27	۳iz	09/kg		ĘF	& &	to/kg	 ææ	• •	2 2 2 3 3	<b>59/kg</b> <b>50/kg</b>	ċκ
	)     	. ×.	Ė	. u. y.		Ę.	8	2/8	i Ye:	•	22	12/kg	Ľ.
	74.0 bg/kg 74.0 bg/kg	Z Z	K.F.	U 09/kg U 09/kg		<b>.</b>	ė. Š	2 2 2	 :%		5 K2		iki
	: <b>X</b> :	Z; • ₽	Ę	U ug/kg		r.				• •	Σ Κ. ⊃ =	50/kg	κ'n
	1.4.C (16/15)	Ko 1.4	- <b>*</b>		<b>.</b> .			91 FM 14_8				69/kg	<u>*</u>
•,	) 		4.1	U UG/Kg		<b>4</b> 4	2 7 7 7	10/kg			ب بر ح ک	<b>5</b> /kg	• •
	2 <b>3</b>			5 (§ §		7.	7					5/kg	-
	) :		4.0	- 59/kg	<b>.</b>	4.0	- ^ - ^	5 5 5 5 5 5	••• •••	- 14	 	5 /5 5 /5	- 6. - 6.
	) } }	7.0	7.7	, <b>.</b>	. ta	7:	e e e e e					<b>19/kg</b>	<b>*</b> :
				U ug/kg	<b>.</b>	7.4	~ ~ ~ ~	\$/\$   			3 D	54/kg	* K
	<b>3 3</b>	Kg 22	•	, <u> </u>				\$ . T	~			ug/kg	25
1 (1) 1 (1) 1 (1)	=: 3;	er.		U <b>ug/kg</b>	<b>.</b>	;;	2 F			- 1-	) 198	5 5 8 8 8 8	2 X
	Pilata 1911		•			اج:			5		3 E	6/kg	ĸ.
1 11	34		35.	- 49/45 - 49/45	<b>.</b>	3 K		2 <u>2</u> 3 3				2 /2 2 /2	22
	) = } <			-		r:		Ž				8/kg	K
	2; >=	22 22	<b>F A</b>	5/89 29/89	o q	E X	2 K		 8×8		2 2 2 3 3	2 /¥	283
	) ) (%)	on K Gest		<b>-</b> - :		£ :	'n:	2; 3;		<b>ند. د</b>		5 /kg /kg	2 5
	<b>P £</b>		<u> </u>		. Q	2 22		; š		<b>1.44</b>	<b>5 5</b>	ug/kg	<b>:</b>
	<b>.</b>				)					Separa			
										a rid			
			m + 7							i she w			
			5 C 45			244 Jan 1666 J				vin e u			
			od bunnin h										

ಕ	ะพพพพพพะพพ ตั้ง อัตออีตอีตอีตั้งที่ที่ที่ที่ที่ที่ที่ ที่ ค. 25 25 25 25 25 25 25 25 25 25 25 25 25
M7684009 RFADATA 28SS01101 06-AUG-94 QUAL UNITS	
_	- W
VALUE	x
ಕ	
M7684010 RFADATA 28SS01001 06-AUG-94 GUAL UNITS	265533355355555555555555555555555555555
_	なるなななななななないとうは、これにはなるないななななない。
VALUE	■ ■ ■ 100 12 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
ā	P. Selection between the angel and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection and a selection
N7675019 RFADATA 28SS00901 05-AUG-94	100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 10
M7675019 RFADATA 28550090 05-AUG-9	24.25.25.24.44.44.25.25.25.25.25.25.25.25.25.25.25.25.25.
9	
ā	CTERREFERTATIONS REFINES
013 ATA 0801 6-94	20000000000000000000000000000000000000
M7698013 RFADATA 28SS00801 10-AUG-94	
!	ESEREERE STANDAR WELLER
Number: Site Locator it Date:	
Lab Sample Number: Site Locator Collect Date:	
9	
	CBs (SW- (L Indone 1
	PESTICIDES/PCBs (SW-846,8080) Beta-8-81C  detta-81C  de
	に

## U. #. NOT DETECTED A = RESULT IS. REJECTED J. * ESTIMATED WALLE UJ = REPORTED GUARTITATION LIMIT IS ESTIMATED

	_
	<b></b>
	=
	-
	z.
	_
	Ξ.
	М.
5.7	***
٠.	44
	Ξ.
aul.	
4.0	-
:	="
0	Ξ.
4 (1)	~
	-
engy.	-
1.55	8
	<b>골</b> ∘
thing pr	-
7779	400
	Ξ.
=	2
- 5	3
Ѿ	.6
	иша
ं ध्य	
	_
٠,	Ξ.
=	8
. T.	Æ.
-	- □
_	~
╗	! _
*	-
_	· -:
	_
-	-
	: 2
<u> </u>	-
- 5	
	-
∴ Σ	-
	, w
· F	=
	4
. 6	-
	: 77
- 5	* ESTIMATED VALUE UJ = REPORTED QUANTITATION LIMIT IS ESTIMATED
	* **
300	
37.7	

	Dr.	アルファファファルルははははいいいないになるカリカのの場合
	M7684014 RFADATA 2885014010 06-AUG-94 QUAL UNITS	US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS
	M76 RF 288S 28SS 06-	C. Z. C. C. C. C. Z. Z. Z. Z. Z. Z. Z. Z. Z. Z. Z. Z. Z.
	/A	Kikkkkkkkiiiiiiiiii
	47684013 RFADATA 285501401 06-AUG-94 QUAL UNITS	######################################
	M7 R 28 28 06 VALUE QU	なべんななななななななななななななななななななななななななななななななななな
ste	1	E344444444777777772008498488
NAVSTA MAYPORT Surface Soil Data	M7684012 RFADATA 28SS01301 06-AUG-94 QUAL UNITS	100 kg kg kg kg kg kg kg kg kg kg kg kg kg
NAV RFA Sur	VALUE O	1.4.2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.
	ā	
	M7684011 RFADATA 285501201 06-AUG-94	
		**************************************
	Lab Sample Number: Site Locator Collect Date:	
	Col	
		PESTICIDES/PCBs. (Su- 646, 8080) Alpha-BHC delta-BHC gemma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endrin 4,4-DDE Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Endrin Afrocior-1016 Arocior-1221 Arocior-1232 Arocior-1234 Arocior-1246 Arocior-1246 Arocior-1246 Arocior-1246
		PESTICIDES/P Beta-BHC delta-BHC delta-BHC delta-BHC delta-BHC gamma-BHC Heptachlor Aldrin K-6-DDE Endosulfar C,4-DDE Endosulfar C,4-DDE Endosulfar C,4-DDE Endosulfar C,4-DDE Endosulfar C,4-DDE Endosulfar C,4-DDE Endosulfar C,4-DDE Endosulfar C,4-DDE Endosulfar C,4-DDE Endosulfar C,4-DDE Endosulfar A,4-DDE Endosulfar A,4-DDE Endosulfar A,4-DDE Chlordara Chlordara Chlordara Chlordara Chlordara Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I Aroctor-I A

	10	KIKKKKKKKKIIIII
	M7675014 RFADATA 28SS00301 05-AUG-94 QUAL UNITS	
		K.
	VALUE	<u> </u>
	t ND NG TS OL	######################################
	M7684003 RFADATA 28SS00201D 06-AUG-94 QUAL UNITS	
	VALUE	<pre></pre>
sta	4	x ² xxxxxxxx ² xxxxxxxxxxxxxxxxxxxxxxxx
Surface Soil Data	M7684002 RFADATA 28SS00201 06-AUG-94 QUAL UNITS	100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg
RFA Surfe	M76 RF 285 285 285 06-	x4x4x4x4x44444444444444444444444444444
	70	%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	M7684001 RFADATA 285500101 06-AUG-94 QUAL UNITS	
	ALUE OC.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Lab Sample Number Sit Sit Locato Collect Date	
		ESTICIDES/PCBs (SW-846, algha-8HC beta-8HC data-8HC data-8HC legara-8HC (Lindare) Heptachlor epoxide Endosulfan I 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan II 4,4-00E Endosulfan
		PESTICIDES/PCBs (SW-866,8080) alpha-BHC detta-BHC detta-BHC gama-BHC (Lindore) Heptachlor Aidrin Aidrin Heptachlor epoxide Endosulfan II 4,4-DD Endosulfan II 6,4-DD Endosulfan I

HAVSTA MAYPORT

U * NOT DETECTED R = RESULT 15 REJECTED
J * ESTIMATED VALUE UJ = REPORTED QUANTITATION LIMIT IS ESTIMATED

				22.	7:	ĸ.	Ċ.	;	i,	;r	į	;t		•						4	2.2	≂	<b>4</b> 5	2	2	7	2	21	2;	2 2	ጻ :	2 ⊈	2
	<u>ح</u>			•			<b>.</b>	<b>.</b>	-	<b>.</b>		<b>.</b>		<b>.</b>	<b>.</b>	<b>.</b>	<b>.</b>	<b>.</b>	<b>.</b>		• 9			<b>9</b>	<b>.</b>	٠				<b>.</b>	<b>.</b>	<b>.</b>	•
M7675018 RFADATA 288500701	05-AUG-94 QUAL UNITS			4/en	ug/kg	<b>56/k</b>	8/kg	64/89 C6/49	3	5	) }	è:			3	D 7/00		¥	2 / Kg		7/kg	3	3	3	3	<b>1</b> 8	\$	50/kg	, e	64/6n	9	64/cs	Š
M767 RFJ 2859	8 3-			n 22	n 4.	22	o :	n :	ء د	o :	ء د	= : 2:	) : )	<b>:</b>	= :	) = *. \	) : • •	) :	) = }	•	2.7	21 0	42 U	36 ∪	= 22	<b>42 ∪</b>	ء ۾	22	ے : ا	ə : 옷;	ə : 유 :	) =   	<u> </u>
	VALUE				_	٠	•	•	•	•	•	•	• •	- •	-				<b>.</b>		-  -	•			•								
				*5	*	ŝ	\$	ė.	Ş,	8:	Ş:	ŝ.	ê,		* .	<u>.</u>	-	- (		•		R	2	×	2	2	n	3	S	A.	<b>£</b>	2:	9
	ದ															e j Sel	,4. 12.																
017 0601	05-AUG-94 QUAL UNITS		(1 - 04) 30- 1 - 13- 1 - 13- 1 - 13-	Va/ka	<b>1 2 3 3 3 3 3 3 3 3 3 3</b>	uo/ka	19/kg	2	ug/ka	29/gs	24	<b>8</b> /8	6×/6	8 / KB	9 9	5	2 3	2 2		2 / X 3	}	2	9	2	2/2	3	ug/kg	<b>20/kg</b>	10/kg	\$ /¥	\$/ <b>\$</b>	6/Kg	? •
M7675017 RFADATA 28SS00601	05-AUG-94			. <b>.</b>	3	=	<b>-</b>	<b>=</b>	<b>-</b>	<b>&gt;</b> :		<b>-</b>	<b>-</b> :	<b>3</b> :	<b>-</b> :	<b>3</b> .2	<b>&gt;</b> :	<b>3</b> :	<b>)</b> :	3: =	) <u>=</u>	=	2	2	<b>-</b>	_ 		<b>→</b>		<b>-</b> :	<b>-</b>	_ ⇒:	<b>.</b>
	VALUE		n se Ngjar Tati	ं	-	9	٠.	Ġ.	٠	•	•		<b>a</b> :	_		_	-	- (				~	•	M	•				•	P)			
	\$			7	•	4	4	•		•			4	<b>.</b>	<b>.</b>	<b>.</b>	<b>5</b>	<b>10</b> (	ю (	, c	0 2	•	28	2	**************************************	¥	2	9	9	2	2	2,	8
	1			•	. (7)	_	_	_	_		_	_								•	•				•			•	•				
15 15 16 16	-94 NITS			m/ka	ua/ko	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	Ja/kg	ag/kg	BX/Br	g/kg	ag/kg	ag/kg	49/kg	69/kg	Ag/kg	9/Kg	9×/60	19/kg	19/ Kg	7/kg	5/Kg	147/kg	7/kg	Ma/kg	10/kg	ay/ka	Joy ka	69/kg	6/Kg
M7675016 RFADATA 28SS00501	05-AUG-94 QUAL UNITS			=		, ,	, ,	_ >	<b>~</b>	<b>→</b>	<b>→</b>	_ _	_ _	- -	_ _	ر ت	- -	- -	- -	_ ·	<b>.</b>	, :	, =	. =	- -	_	_	_	- -	۔ د	- -	<b>.</b> 5:	- -
	3			7 1	2	7.	7.	1.4	7.	1.4	4.	<del>7.</del>	4.	2.8	2.8	2.8	2.8	2.8	κ. es	2.8	2.7 2.5	<u> </u>	<b>:</b>	2	1.4	ž	2	150	<del>1</del> 0	2	2	۲, ۲	2
	VALUE		, .		r <b>e</b> 0					4	•	**	4	<b>&amp;</b>	₩.	€:	₽.	€0:	•	æ (	<b>0</b> 5	<u> </u>	2 2	: 95		Va e	- 53	9	9	92	92	2:	9
	10			•	~		7		į	÷				~	N	~	•	r.	'n	Ni I	N.											1948.4 1949.4 1944.4	
5 س. د.	7¢ 				- o / o	ro/ko	53/S	<b>2</b> 6/kg	54/kg	54/ga	wo/kg	84/89	2	<b>5</b> 6/kg	ng/kg	<b>5</b> /kg	ug/kg	<b>20/kg</b>	ug/kg	8/8 8/8	2.	By/84		)       	, de / de				/k	- E	- 64/g	₩/kg	2 2 2
M7675015 RFADATA 285500401	05-AUG-94 QUAL UNITS		ude Kyr		Ì	g	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3 :	3 5	9	3	ि <u>ड</u>	7.3	3	3	- 5	3	3	<b>5</b>
7 E 8					- C		1	7:	7	7:	7.4	7	7.4	2.8 U	2.B U	2.8 ∪	2.8	2.8 €	2.6 U	⊃ 2	7.8 7.8	= = £	) = 1 2	3 = 3 <b>5</b>	7	=   		107	07	8	8	2 2	125
	VALUE																						.:							) -1			
Number: Site	Dete:	B13886	} }po30; +	2/ <b>5</b>	99-51	49.400		`	•:		•. •		~-		·																		
ple Nu	Collect Date:	S880:	javi ir 1 Javania N	3		8.34	1 65	ili.	Page 1	ď.						, s				٠		٠,.			J.		o el		. :	e 133			ń.
Lab Semple Number: Site Locator	చి			888			iei Ge	14 (.) 14 (.) 14	e Ort			:				٠		: .				`, '\ '	11.50					i Ga Naja Lina					
3				98- <del>1</del> 2	gele. Selet		•	i L		-			'	1	villa T	:	at a						ra Trac Hair	1000 1000 1000 1000		Aur Au Lu Airi					 		
				3 .83			1			X			19 20.00 20.00	i i	Ξ	i Kar Maja Kara	n suit		5	dehyde	5		21/1014					٠ 2 ز	2£	12	87Z	72	3
				PESTICIDES/PCBs (SV-846,8080)			Die Care	Hertechlor	1441	Hentachlor eboxide	Fortner	Dieldrin	300-7 7	Endrin	Endostutfen 1	900-y	Endosulfan sulf	160	Methoxychior	Endrin aldehyde	Endrin ketone	Chlordane	Chiorobenzi	Diallate			Cepone	Proceed 193		Argetor-1242	1	tractor-1	Aroclor-1260
				PESTIC	E	3 ÷			}		1	1	•	En de	E	4	E	7 7	Ket		교	ź	5	=	Ö		<u>ş</u>		2	-		1	2
		1					•																										

U . MOT DETECTED R = RESULT IS REJECTED

1 . ESTIMATED VALUE UJ = REPORTED QUANTITATION LINIT IS ESTIMATED

	Ξ	Deta
	MAYPOR	So <u>i</u>
	NAVSTA !	Surface
I	2	RFA S

	Lab Sample Number: M7683005 M7698012 M7698011  Site RFADATA RFADATA RFADATA 28SS03401  Locator 28SS03301 28SS03401 10-AUG-94 10-AUG-94  Collect Date: VALUE QUAL UNITS DL VALUE QUAL LUNITS DL VALUE QUAL UNITS	ន្តិ	1700 18000 UJ vg/kg	U ug/kg 1700 18000 U ug/kg 18000 1	9/2: -:	11 110/kg 350 3600 U Ug/kg 3600	U ug/kg 350 3600 U ug/kg 3600	U 146/kg 1700 18000 U 19/kg 18000 1	350 3600 U ug/kg 3600	350 U 49/Kg 350 U 49/Kg 3600 U 3600 U 46/Kg 3600 370 U	0 1 ua/kg 350 3600 ug/kg 3600	0 U UU/Kg 350 3600 U Ug/kg 3600	350 U	3600 U ug/kg 3600	350 3600 U ug/kg 3600	350 350 U	0000 By/80 0 000 000 000 000 000 000 000 000 00	15 146/kg 350 1 19/kg 3600	U ug/kg 350 3600 U ug/kg 3600	350 3600 U	U 49/kg 3600	U wg/kg 1700 18000 U wg/kg 18000	350 U 19/kg 350 3600 to 19/kg 3600 370 U	U UD/Kg 350 3600 U UG/kg 3600	U UG/kg 350 3600 U Ug/kg 3600	1700 U	U 42/kg 350 3600 U 42/kg 3600	250 3600 U	18000 to ug/kg	U ug/kg 1700 18000 U ug/kg	U 49/kg 1700 18000 U	18000 U ug/kg 18000	u ug/kg 350 3600 u ug/kg 3600	350:0 ug/kg 350 3600 UJ ug/kg 370 UJ 370 UJ	U ug/kg 1700 18000 U ug/kg 18000	U 49/kg 350 3600 U	11 140/kg 350 3600 0 02/kg 3600	U ug/kg 350 3600 U ug/kg 3600		
--	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------	---------------------	------------------------------------	------------	---------------------------------	-------------------------------	-------------------------------------	-----------------------	--------------------------------------------------------	-------------------------------	---------------------------------	-------	-------------------	-----------------------	-----------	-------------------------------------------------	----------------------------	-------------------------------	------------	--------------	----------------------------------	------------------------------------------	-------------------------------	-------------------------------	--------	-------------------------------	------------	----------------	----------------------------	----------------------	---------------------	-------------------------------	---------------------------------------------	----------------------------------	--------------------	---------------------------------	-------------------------------	--	--

STA MAYPORT	face Soil Data
E SE	Surf
	RFA

·		
10	77. 2000 77. 2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	
47698011 RFADATA 28SS03501 10-A3G-94 QUAL UNITS		
	2500 2500 2500 2500 2500 2500 2500 2500	200 c 200 c 200 c
T AALUE	3600 18000 18000 350060 3600 18000 18000 18000 16000	3600 18000 3600
112 NTA 1401 3-94 MITS OL	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
M7698012 RFADATA 28SS03401 10-ALIG-94 JE QUAL UNIT	3600 U 18000 U 18000 U 18000 U 36000 U 3600 U 18000 U 18000 U 18000 U 3600 U	<b>5</b>
VALUE	350 1700 1700 1700 1700 3500 350 1500 1700 1700 350	SS 25 SS
05 17 301 -94 NITS DL	99499999999999999999999999999999999999	2222 2422 2466
M7683005 RFADATA 28SS0330 06-AUG-9 QUAL UNI	200 C C C C C C C C C C C C C C C C C C	9 055 1 0 055 1 0 055
r: te or e: vALUE		
Leb Sample Number Sit Locato Collect Date	o-Toluidine Heachloropropere p-Pherylenciamine Safrole laceafrole 1,4-Maphthoquinone 1,5-Maphthoquinone 5-Mitro-o-toluidine 5-Mitro-o-toluidine 1,3-5-Trinitrobenzene 4-Mitroquinoline-1-oxide Mathapyrilene 3,3-Pimerhylbenzidine Haxachlorophene	5. & 4-Methylphenol (2) 4-Methylphenol Diphemylamine Hexachloropropere 2-Acetylaminol luorene

LERE GEHERATED FROM THE SYOC (8270) ANALYTICAL RUM.

1707	Soit Date	
EL CIOAVE	Surface S	
	RF.	

ā	360	1800 1800 36000	88 88 88 88	000 000 000 000 000 000 000 000 000 00	<u>88</u> 88	28. 28.
M7683002 RFADATA 28SS03201 06-AUG-94		69/kg 69/kg 69/kg	ug/kg ug/kg ug/kg	64/kg 64/kg 64/kg	09/kg 09/kg 09/kg	ug/kg ug/kg ug/kg
M764 RF1 2883 06-1	388		360 tu	1800 U 360 U 18000 U	1800 u 360 u 360 u	1800 J
ā	350	007- 007- 0008:		2	N N	<u> </u>
RFABATA 28SS03101 06-AUG-94	ug/kg	2223 3233	333; 222;	7223 7223	68/8 66/8 78/8 78/8	50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50
28 R M	258	2000 2000 2000 2000 2000 2000 2000 200	3 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	558 5088 3303	, 508 3.9
i	390	1900 1900 39000	360	1900	068 098 090	<b>005</b>
N7675003 RFADATA 28SS03001D 05-AUG-94	U ug/kg	09/kg 09/kg 09/kg		09/19 09/19 09/19	•	0.0/kg 0.0/kg 0.0/kg
~		3900 U U U U U U U U U U U U U U U U U U		2006t 2006t 2006t 2006t	1900 ti 390 ti 390 ti	1900 390 u
		2000 2000 2000 2000 2000 2000 2000 200	333	<b>3</b>	77	72
M7675002 RFADATA 28SS03001 05-AUG-94	U UG/kg	69/kg 06/kg 09/kg	19/kg 19/kg 19/kg	2222 3333		/375 :335
		2588 2588 2588 2588 2588 2588 2588 2588	333	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00% 00% 00%	· 3 <del>2</del>
				\$. ********		
Lab Sample Number: Site Locator Collect Date:			2	o	8	
	0-foluidine Hexachioropropene	p-Pherylenedianine Safrole Taosafrole	1,3-Dinitrobenzene 5-Nitro-o-totuidine 1,3,5-Trinitrobenzene	4.Nitroguinoline l'oxide Nethapyrilena 5.3' pimethylbenzidine	Arasito Manage 2 Chloropherol 5-2 4-Rethylpherol (2)	4-Mathy plane Dipheny learing Baschi or poporers 2-Acatyi an indition are 2-Acatyi an indition are

U = NOT DETECTED R = RESULT 1% REJECTED
J = ESTINATED VALUE UJ = REPORTED QUANTITATION LINIT IS ESTINATED
THE ADDITIONAL LISTINGS OF RESULTS FOR 1.2-; 1,3-; AND 1,4-DICKLOROBENZENE WERE GENERATED FROM THE SVOC (8270) AMALYTICAL RUN.

	<b>6</b>		25	22	25	2 P	2	25	3: 1: 3: 1:	370	2 Z	22	21		370	25	25	R	2	32	R	25	2	Ę	<b>.</b>	e e	8	2		Ŗ	2	<b>2</b>
	•						K							ő,															erese S			
	M7698011 RFADATA 285503501 10-AUG-94 QUAL UNITS		3 2 2 3 3	3/2	40/kg	2 ×	.g/k	64/kg		ug/kg	64/gn	3	<b>48/kg</b>	16/kg	18/kg	<b>69/kg</b>	5	3	<b>8</b> /8		3	3;	3		3		3	5/2 2/2		7 9 3 3	<b>2</b> /23	
	N7698011 RFADATA 28550350 10-AUG-9 QUAL UNI			> >	<b>a</b> :			· ⇒:	-3	-	_ _:	, =	· <del></del> :	- =	, ,	_ _:	: >:=	• =	::: •:	: 2 <b>⊃</b> (≅		 =:	)  -		3:	<b>)</b> =		ું ⇒:	) <u> </u>	35	•	•
	_		25	Z R	2	22	22	2	22	32	25	22	2	25	32	2	35	22	2	25	2	RE	28	2	<b>3</b> f	35	3	2	3	36	£	2
	VALUE						40												Ç.	100000 100000 100000000000000000000000												
	ᆸ		3600	200	3600	2600	888	3600	3600	3600	3600		3600	3600	360	3600	3600	3898	3600		96	98		8			<u> </u>	88	900	3600	3600	<b>8</b>
NAVSTA MAYPORT RFA Surface Soil Data	N7698012 RFADATA 285503401 10-AUG-94 QUAL UNITS		ug/kg	ug/kg ug/ka	ug/kg	ug/kg :s/kg	54/s	ug/kg	09/kg	ug/kg	ug/kg	69/kg	ug/kg	64/kg	56/kg 2/kg	ug/kg	dy/dn	5 /kg /kg	5/kg	54/kg	64/g	ug/kg	5/8 2/8		54/kg	64/kg	? <u>9</u>	ug/kg	54/g	140/Kg	, y	ug/kg
Face	M7698012 RFADATA 285503401 10-AUG-94 QUAL UNIT		_		_				_ =	: _	_		. –	٦.	- T		<b>-</b>		_	<b>3</b> :	<b>,</b> ,	<b>=</b>	<b>&gt;</b> =	<b>.</b> =	3:	<b>&gt;</b> :	<b>,</b> =	9	<b>.</b>	3 =	) <b>–</b>	⇒
SEL	Z _ 0 = 0	İ	3600 u	3600 L	3600	7 S L	3600	366	3600 L	98	3600 1	2600	2002	3600 1	200	3600	3600	2600	3600	3600	399	3600	2600		200	9		360	8	<b>8</b> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3	3600
RFA	VALUE		<b>%</b>	× ×	**	7	7 7	(ř	4	ň	ň	M M	ň	M	_								•		_		_					
	<b>a</b>		320	% %	350	32	720	320	320	350	350	350	320	320	350	32	320	220 220 220	320	350	320	350	350	35	5	320	7.5	350	2	2	320	8
ł	_		edelik (i Application Status	lita Spirit														in f					isa. Mak	2003								
	M7683005 RFADATA 28SS03301 06-AUG-94 04AL UNITS		3	64/kg	? <u>5</u> } }	) (4)	5 / KG	3/3	0 X/80	10/KB	3	<b>5</b>	2 3 3 3	24/kg	8 / Y	24/85 54/85	4/6n	va/ka	3	ug/kg	64/KG	3	<b>9</b> /80	5 / 6 / C :	3	2	5 / S	2				
1	M76 RF. 28S 06-1		<b>=</b>	= :	3 <b>-</b>	<b>:</b>	<b>3</b> =	3 <b>3</b>		3 = -	. =	<b>:</b>	3 3		3 :	2 0	<b>-</b>	3 : 0 :	-	) 	) = = 0	: <b>-</b>	) 	) = ) c	9	<b>3</b>	3 = 3 G	) D	9 9	2 : 9 :	150	2
	WALUE		2	350		350	֓֞֞֜֞֜֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֡֓֓֡		22	Z F	3	ž.	X Z	S	2007		32	320	32	320	34	320	<b>S</b>	<b>3</b> §	<u> </u>	<b>12</b> 1	25	32	2	21	A F	Ä
		00000000100010000000000000000000000000				i dipo			· · .		. '	). 							1.4		;	·	:	d wy			20	4), A	artij.		, (39) e	ার রাইটারি
	Lab Sample Mumber: Site Locator Collect Date:		2				1 (2) 4 (4) 5 (4) 5 (4) 5 (4) 5 (4)			ppy ( ) ether		o non Non- Jang Co Profession Sentato											100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 /			21 de Baril 21 de 21 de 11 de						
1	3		2			)  -	•			<u> </u>			wight La m	\$ \\ 8	grad Garag	Į			ooda 1		2			Ę	2							<b>B</b>

		1					!		100Z87Cm	7		4	0002874A	
Lab Sample Number: Site Locator Collect Date:	_	_	N7675002 RFADATA 285503001 05-AUG-94		!	M7675003 RFADATA 28SS03001D 05-AUG-94	i	!	RFADATA 28SS03101 06-AUG-94				RFADATA 28SS03201 06-AUG-94	ā
	VALUE	100 yla 170300 170300	QUAL UNITS	<b>a</b>	VALUE	QUAL CHITS	ಕ	ARTOE			3	ALUE	MONTH OF 12	<b>4</b>
			:   									!	•	;
<u>2</u>		33	Ug/kg	07K	380	. U ug/kg	25 E	## -	22 23	50/kg 16/kg	8 8 8 8	 98	J 48/kg	33
And Line		2		Ž.	8	<b>-</b>	25	<b>A</b>	) 	2 × ×	8 8 8 8	95 5	JJ ug/kg	<b>1</b> 40
bia (2.chloroethyl) ether		· 5.91	64/85 76/83	9 9	38		28		) <u> </u>	7 S 2 S	320	38	ug/kg	<b>3</b>
1,4-Dichlorobentere	State Ngara Manga		2,40	96	380	<b>-</b>	88		<b>-</b> -	59/kg 10/kg	350 350	 88	J 49/kg	<u> </u>
Benzyl Alcohol 1.2-Dichlorobenzene	• .	4"	7.7 ? ?			· =			· <b>3</b> :	, e	<b>1</b>	5	ug/kg	~ 57.
2-Nethylphenol		3 . 2 .	2/2	\$ P	25	<b>&gt;</b> =	8 5	350		10/kg	25	3 3	13 CG/Kg	nos S
bis(2-thiorolappropyl)ether		2 2 2 4 2 5 3 7 4 7	2 S	25	28				-	8 /kg	320	32	03/60 1	360
Hexachloroethane		⊃ :	ug/kg	950	88	<b>-</b> -		350	- 	19/kg	350	33	19/kg	33
Ni trobenzene		39			38	, ,			. =	, k	2	98	2/kg	360
2-uitrochenol		2	)       	340	38	· >			_ :	ug/kg	320	98	ug/kg	360
2,4-Dimethylphenol		20%	2,43	9£	ج 190	29/kg	•		===	10/Kg	\$ £			8
Benzole seld			61/61 19/40	340	200	. <b>-</b>	<u> </u>	• • * • * !!	ı –	5/kg	320	360	ug/kg	360
2,4-Dichlorophenol		3	ug/kg	S.	88	<b>&gt;</b> :		M L	⊃ : ⊃ : c	16/kg	350 550 550	33	J 49/kg	33
1,2,4-Trichlorobenzene			20/Kg	<b>7</b> 2	× ×			•	: >		326	<b>3</b>		3
Machine (end			5 S	35	25	3				no/ka	32	98	04/kg	<b>9</b>
Hexachlorobutadlene			ug/kg	8	25	<b>-</b> :			) )	14/Kg	2 S	33	1 UG/KB	33
4-Chtoro-3-methytphenol	<i>f</i> .	Ę	uo/ka		26			[3] [4] [6]				3	1 /kg	260
Mexach lorocyclopentadiene		3	10/kg	9	8	_ :			3:	<b>2</b> /21		9 S	69/kg	92
2,4,6-Trichlorophenol			<b>19/kg</b>	95 8 8	3 5				20 C	24/kg 16/kg	320	3		3
Dimethylphinalate 2 4 Sitrichlandhend				5	<u>\$</u>	-	-		_ 	w/kg	2	1800	gy/kg	0 <u>0</u> 2
2-Chtoronaphthalene			54/kg	340	390	<u> </u>	•		320 C	64/en	2 E		29/kg	3
2-uitroaniline		2 5 2 5 2 5	56/Kg	35					) 3		25	3		380
Acenaphthylene			, (c)	3	2 2	, ,			. 5		320			35
	Ten Ten	7 091	- E		1900	3			_ >:	0x/8	2:	_	ug/kg	200
Acenephthene	- 1 :. 3	750 0	mo/kg	3	26 S	<b>-</b> :	<b>S</b>	1. <b></b> 1	350 C	5 / Kg	3		19/kg	<b>3 5</b>
2,4-Dinitrophenot	1, 53 1 9 168 1, 203 1879-1		2 S	9	200		196		33	? 5 ? 5		_		1800
Diberzofuran			2 2	3	Š		,			wo/kg	<u>ک</u>		0 /kg	35
2,4-Dinitrotolume		⊃= 93	3,	35	<u> </u>	og/kg	88		350 c 350 c	2/2 2/2 2/3	20 20 20 20 20 20 20 20 20 20 20 20 20 2	33	- 49/kg	33
ethyiphthelate			3		•	•			•		eric kili kili pris	; }	! }	ı

					RFA SUL	NAVSIA MATPUKI Surface Soit D	Soit Data									
Lab Sample Number: Site Locator		N7675002 RFADATA 285503001 D5-AUG-94	25 4 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		¥ 800	M7675003 RFADATA 28SS03001D 05-AUG-94				M768 2853 1-60	M7683001 RFADATA 28SSO3101 06-AUG-94			M7683002 RFADATA 28SS03201 06-AUG-94	02 11A 201 -94	i
יסופר לפוני	VALUE	OUAL UNITS	NITS	겁	VALUE	QUAL UNITS	2 01	^	VALUE	S S	QUAL UNITS	5	VALUE	QUAL UNITS	E TS	اء
	3		va/kg	340	390 U	ng/kg		390	35	n 05	ug/kg	350		<b>&gt;</b> =	ug/kg	33
	3		61/gn	3	1980 U	ug/kg		200	25		2 / Z	12		, ,	5 /kg	98
: 1, 1 y	35		24/kg	9	1900 t	3/8°		8	2	_	<b>5</b> /8	2	•	_ 	ug/kg	호;
N-Mitrosodiphery(spine (1)	*		2 2	<b>%</b>	390 ח	7×/4		닭	S S	; ⊝ (	5/kg	2	360	• • • • • • • • • • • • • • • • • • •	.5/kg	Ž
	2	- 14 - 14	ug/kg	<b>3</b> i	⊃ : 06£	U9/kg		26 20 20 20 20 20 20 20 20 20 20 20 20 20	֓֞֞֜֟֓֓֓֓֟֝֓֟֟ ֓֓֞֓֓֞֓֞֓֓֞֓֞֓֓֞֓֞֓֓֞֓֞֓֞֡	) 		3		,	ua/ka	3
ther	<b>3</b> 5	) 	64/kg	07E	390			390	ì	200 200 200 200 200 200 200 200 200 200	2/2	32		, ,	ug/kg	3
an Jan	<b>1</b> §			100	1900 נ	9,8		9	120	-	) }	2	-	_	<b>19/kg</b>	<u>5</u>
	707		8//S	3,0	390	/g/		88	ं े	2 S	2/kg	350	38	- 	ug/kg ug/ka	33
	<b>3</b> 5		50/Kg 50/kg	9,5	386	* × ×	<b>.</b> .	28 28 28	312		2 × ×	32		_	ug/kg	3
	3		<b>6</b> 8/kg	340	380	7		330	is:	<b>&gt;</b> :	19/kg	350	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	 - =	<b>ug/kg</b> :s/kg	33
	3		ug/kg	340	390	09/Kg	<b>.</b>	2 S	n Pr	2 2 2 2 3 2	2/2	32		) )	6) kg	3
	3 3		64/89 64/89	3				.a ,	; <b>~</b>	3	2 2 3			<b>-</b>	ug/kg	25
Senzo(a)anthracene	2		s) ka	<b>3</b>	390 0		6	25	Fi F	20 ====================================		350	32	<b>&gt;</b> =	<b>49/kg</b> 100/kg	33
	25		5/kg	3,3	3065	69/kg	G) (7)	38	i Pi	) 	2 2 2	2	_	· =	ug/kg	3
	3		ug/kg	3	390 u	ug/kg	. <b>.</b>	200	M I	9:	ug/kg	320	360	<b>&gt;</b> =	64/kg	33
Benzo(b) fluoranthene	340	 	69/kg	040 460	2005	19/kg	<b>.</b>		n in	28		25		<b>,</b> –	56/kg	3
Benzo(K) f Lucranthene		. :- 2 <b>3</b>	ug/kg	3	360	ug/kg	ò	8	P1 7	ا ا ا	ug/kg	350 550 550 550 550 550 550 550 550 550	96	<b>-</b> =	<b>59/kg</b>	33
Indeno(1,2,3-cd)pyrene	25	<b>&gt;</b> :	ug/kp	0 S	7 C	1.00/kg		2 8 2 8	<b>1</b> M	2 S	24/kg	350		, ,	5/kg	3
	22	> >	6/kg	25	2000	- 6.5 . kg	, 59	8	P	고: ()	<b>2</b> /kg	32	•	<b>&gt;</b> :	50/kg	3
٠.		_ ===	mg/kg	<u>용</u>	7 00¢	- 4/kg	99			200	26/Kg 26/Kg			-	64/59 54/59	38
	33	<b>.</b>		3,4	206	2/kg		88		2	)    -	8		<b>&gt;</b> :	ug/kg	33
Acetophenane	٠	<b>.</b>	na/ka	340	2 06E	. 49/kg	9 9	2 2 2 2		2 S	10/kg	350		<b>&gt;</b>	ug/kg ug/kg	33
# - # (rosop) per idine bean tertablication		> =:	2 /S	166	1005	1 × 1	9 9	8	E	2	) }	2;	1800	3:	26/kg	740
2,6-Dichlorophenal	26	 •	ug/kg	9£	390		95	Z §		) 150 150 150	2 /kg	350		<b>.</b>	4/kg	<b>3</b>
	33	- =		3	88	. 46 kg	9	동		2	3			<b>-</b>	ug/kg 15/20	33
	340	- · ·	ug/kg	ş	390 -	2/Kg	<b>.</b>	ੂ ਵ	*	255 255 255 255 255 255 255 255 255 255	83/95 25/95		-	• <b>=</b>		<u> </u>
	2009T	35	2 2 3 3	3			9 9	<u>8</u>		2		2		=:	09/kg	900
	<b>3</b>		<b>50/kg</b>	<b>9</b>	1986 1986		9 !	2 2 3		2	\$ /\$ 5			- =	ug/ko	35
	35	- 3 - 3	20/kg	3			9 9	2		. = 22	7 2	Ē		<b>&gt;</b>	ug/kg	9
2.3.4.6-Tetrachloropherol	*		, ka	3			9	25		350 C	2; 3;	r r	88	<b>=</b> =	ug/kg ug/ka	33
	<b>X</b> §	)	5/kg	3	290 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 000 to 00		<del>.</del> 9	<b>Z</b>	-	; = = = = = = = = = = = = = = = = = = =	7 2	<b>12</b>	_	. =	ug/kg	000
A - Amiliadol principal a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a company and a comp	3	) }>		200		- ca/kg	9	1900 1900	<b>.</b>	。 足	<b>2</b> /kg	K :		<b>&gt;</b> :	ug/kg	
	200	<u>.</u>	g/kg	7	86	1 <b>49/kg</b>	<b>9</b> 9	2 2 2 2 3		- - - - - - - - - - - - - - - - - - -	3 3 3 3 3				2/2 2/2	<b>3</b> 3
p (Dimethylanino)ezobenzene	13	<b>=</b> =		19	28	2/kg	9 9	2		350 C	54/kg	<b>2</b>		<b>-</b>	ug/kg	3
	i X	, ,	Ž	3	200			28		320	3	2.	<b>5</b>	<b>=</b> =	ug/kg in/kg	3 5
	<u>.</u>	<b>&gt;</b> :	- C	<b>3</b> ;	-		9 9	<u> </u>		2 S	32				5/kg	3
N-Eitroschethylethylebine	i X	) 3 <b>3</b>	7 5	3	88	2	; ;	8		350 U	\$/ <b>\$</b>	350		<u>-</u>	cg/kg	3
ernak Bayan Basas								i kiran								4
COVER 1			vr N. N. H. N. H.				_	i noor			1940 s 1831 18					
						)		oc1	i j		:					

_	Date
¥.6	Soil
MAVSTA	Surface
	RFA

		20	8	88	3 2	S.	8	2	200				350			350	
	ᆸ	•	17	φ:	35000		<b>-</b> 1	-	=							V-V	
N7675004 RFADATA 285502901 05-Aug-94	UNITS	09/kg	ug/ka	ug/kg	59/kg	ug/kg	ug/kg	. 69/kg	2 2	54/kg	ug/kg	09/x0	64/g	64/8n	9/4/67	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	) j
M767 RFA 2855 05-A		350 U	2 00 2 00 2 00	9 0021	1700 U 35000 U	350 U	350 U	350 U	2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 00 2 00 0	350 UJ	2000	5 - 2 2	350 U	•	. 004.	350 1	
	VALUE	٥		_		_		٠.	9	ki:ř	<u>-</u> '			822	93 Å		<b>k</b> ishiri
	ď	35	1780	2	1700 35000	8	₩.	8	2.			¥	Ä		∰ . •		
M7675005 RFADATA 28SS02801 05-AUG-94	UNITS	ug/kg	<b>69/kg</b>	2 /g	54/kg	3	6 / Kg	5 2	8/8 8/8	, S	ug/kg	63/65 53/55	2 / S	ug/kg	64/69 104/69	63/K9	in N Street Live Mark
RFA 2855 05-A	QUAL	120 U	2 = 8 £	; 2 3 3 8	1700 L	200	20 C	20 n	3 = 8 2	20 62	300	202	200	i lo log <b>e</b> io logei	10 d	200 200 200 200 200 200 200 200 200 200	e Mar Mar
	VALUE										17						
	4	340	1000		1700	340	¥0,8	×	1700	5		,	975			072	ţ
M7675006 RFADATA 285502701	UNITS	ua/ka	ug/kg	59/kg	ug/kg	9/KB	cg/kg	ug/ko	ug/kg	9/Kg	59/kg	ea/ka	64/80 15/79	r9/kg	ug/kg	09/kg	84 /B
RFA RFA 28SSI	1 N	0 O 7	2:	 2	1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,007 1,00 1,00	9 = 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	202	70 0	7 00 00 00 00 00 00 00 00 00 00 00 00 00		33	1700 U.	9 = 9	) }		700 R	0 0 0
	VALUE		i = i						ξ.		. Ę	_					
	2	350		1700	1700	35 QUE	200	32		<b>₹</b>			350				Ā
007 ATA 2601	OS-AUG-94 QUAL UNITS	. in the	64/¢0	69/kg	5/kg	5/kg	19/Kg	, 5 , 5	Se/kg	69/Kg	20/40 20/40	, , ,	64/g	56/kg 56/kg	7	ug/kg	2 3
M7675007 RFADATA 28SS02601	CUAL UNII	11 03	, <u>«</u>	_ > = 8 =	; 2	= : 8:	> = 7 5	200	3	= 8:	3 E	33 88	2 2 2	) 		00 R	3 8
	VALUE			2:		32			2		֚֚֚֚֚֚֚֚֚֚֚֚֚֓֞֜֝֝֓֜֝֝֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟ ֓֓֓֓֓֞֓֓֓֞֓֓֞֞֞	-					
Number: Site Locator	Collect Date:		., xxx	h	Armini	: 0011			. ,								
Lab Sample Number: Sito Locator	Collec	185 185 185					1									,	
Lab				Ł	1 - 1 30,00 1 0 0 4 1	2	2	- 17e	-1-0x1d		zidire			(2) ago		, . , . <b></b>	<b>morene</b>
			1900-00.	Ted in	•	iphthoquino	nitrobenzene	tro-o-toluidine	troculnoline	=======================================	ethylben	ech (orophene	hlorophenol	4-Methylpheno		achi oropropen	and increm
			p-Toluidine Rexachloropr	p-Pherrylery	Safrole	1-Hapt	1.3-0in	5-4-tro-	A-Mitrod	Hethapyr	3,3'-0'	REXECT O	2-Chloro	1-1 H		Hexachlo	2-Acetyl

		ᅵ	350	85.1 81.1 7.1	17 18 18	2	2	2200	320	35	2 2		2	dig.	ad la a re a	· .	320	320				320
		_		Ż				ÿ.				· .		:						, i -		1917
	M7675009 RFADATA 28SS02401 05-AUG-94	NAL UNITS	mg/kg	GZ/Kg	eg/kg	<b>5</b> / <b>k</b> 0	ug/ka		<b>5</b> 6/8	14/kg	64/85	54/g	3/5	54/g	ug/kg	6×/65	<b>5</b> /8	sy/ka	<b>54/89</b>	64/kg	2/3	7
	767 RFAI BSS(	¥		117. 45.						2	1.11 20	~ _	ज्य : <u>इं</u> ट्र	_	-	-		Ż				_
	I NO	٠	n o	<u>∝</u>	그. 옆	2	<b>3</b>	오	<u> </u>	9	= =	<b>7</b>	_ 오	= 2	9	3 9	<b>9</b>	2		•	œ 9	<u> </u>
		VALUE	350	₹	Ž	۲	≝	3500	×	350	R	170	120	¥,	120	2	350	m		. !	≝	-
			340		8	8	8	8	9	340	3					8	340	9	•			340
ate		DL	N.		160	2	2	34000	m	M	m					2	M	M				M
NAVSTA MAYPORT Surface Soil Data	= 4	TS.	g,	9	2	5	2	2	2	2	2	2	2	2	2	2	2	2	ş	2	۶	2
S S	5010 0230 UG-5	NUAL UNITS	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	ug/kg
/STA	M7675010 RFADATA 28SS02301 05-AUG-94	N.	_	~	_	_	-	-	_	_	_	3	3	3	3	_	_	_			<b>-</b>	_
Z 5			340	Ş	8	8	8	8	07	9	9	8	á	9	8	8	6	340	•		8	340
RFA		VALUE	Į°	16	5	19	2	340			-	16	9	רא	160	2		<b></b> 1			16	<b>F</b> 1
			350		8	8	2	8	2	20	22	er ger	.:	×	, 2 :	9	220	220	۲J.	:		220
		ᆿ		Ž,	7	ं		Š					en." Print			<del>.</del>						,
					id. Sign		X			64 KI			i Tibe Vive	v prij Grad		: ****		:	:		 9 %	
	N7675011 RFADATA 28SS02201 05-AUG-94	115	ş	Z	2	3	8	Ş	2	Į.	Š	*	2	E		Š	2	Š	3	2	7	Ž
l	7501 86A1 8022 AUG-	3	5	3		1 3		3		3		ڪڙا جو				Š	ľ	i	3	. 3	3	3
ł	176 185 195 195	3	5	_	•		=	. =	=	=		Ξ	Ξ	Ξ	Ξ	-	=	=			~	•
İ			🛚	5	٤	Ę	Š	1	S	3	8	2	2	350	Ę	2	3	S		Kar Kar	200	350
		VALUE			-							-		 	:	-				Ċ		٠.
	41 4	, <b>&gt;</b>				ij.	-5.7		•			è						٠				
	Site																					
	Lab Sample Number: Site Locator Collect Date:	;																				
			335	a tu eleti	e-5 *	, 2			: .			· . };	Jego			٠			·			
	8 J	5										: :	2.:		×							
ì	E P					79) 140		y V		ig:		3		1								5

17000 1700 35000 350 350 350 1700

350 U 1700 R 1700 U 1700 U 1700 U 350 U 350 U 1700 U 1700 U 1700 U 1700 U 1700 U 1700 U

ᆿ

VALUE

M7675008 RFADATA 28SS02501 05-AUG-94 QUAL UNITS

350

IIT IS ESTIMATED AND 1,4-DICHLOROBENZENE WERE GENERATED FROM THE SVOC (8270) ANALYTICAL RUN.

	<b>a</b>	28 28 28 28 28 28 28 28 28 28 28 28 28 2
	RFADATA RFADATA 28SS02901 05-AUG-94 QUAL INVITS	
		32222222222222222222222222222222222222
	911 A	SUSSESSESSESSESSESSESSESSESSESSESSESSESS
	ā	
	M7675005 RFADATA 28SS02801 05-AUG-94	200755
	7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	25555 2555 2555 2555 2555 2555 2555 25
	5	25.25.25.25.25.25.25.25.25.25.25.25.25.2
ţ	ā	
HAVSTA MAYPORT Surface Soil Data	M7675006 RFADATA 285502701 05-AUG-94	64/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66/60 66
MAVSTA P	M76 RF 2885 05-	2250 2250 2250 2250 2250 2250 2250 2250
		100 100 100 100 100 100 100 100 100 100
	N7675007 RFADATA 28SS02601 05-AUG-94	
	_	0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
	ample Number: Site Locator Collect Date:	700/kg
	Lab Sample Number: Site Locator Collect Date:	et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et les et
	<b>1</b>	(matine case case case case case case case cas
		disstry disstry disstry disstry disstry disstry disstry dispersion colorer colorer colorer dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion dispersion di dispersion dispersion dispersion dispersion dispersion dispersion dispe
		R.G. SVOC (6270-24)  R.G. SVOC (6270-24)  Anilina  bis (2-Chioroethyl) ether  1, 3-Dichlorobenzere  1, 4-Dichlorobenzere  1, 4-Dichlorobenzere  1, 2-Dichlorobenzere  2, 4-Dichloropenzere  2, 4-Dichloropenzere  8 march orcethare  N. Hirobenzere  1 sophorone  2 - Hethylphenol  2 - Frichlorophenol  2 - Dimethylphenol  3 - Simple orcethoxymethare  4 - Chioroaniline  4 - Chioroaniline  4 - Chioroaniline  5 - Simple orcethorophenol  2 - Methylraphthalene  2 - Simple orcethorophenol  2 - Simple orcethorophenol  2 - Simple orcethorophenol  2 - Simple orcethorophenol  3 - Simple orcethorophenol  2 - Simple orcethorophenol  3 - Simple orcethorophenol  4 - Chioroaniline  Acenaghthylane  2 - Sinitroaniline  Acenaghthylane  3 - Sinitroaniline  Acenaghthylane  3 - Sinitroaniline  Acenaghthylane  3 - Sinitroaniline  Acenaghthylane  3 - Sinitroaniline  4 - Sinitroaniline  Acenaghthylane  3 - Sinitroaniline  4 - Sinitroaniline  Acenaghthylane  3 - Sinitroaniline  4 - Sinitroaniline  Acenaghthylane  3 - Sinitroaniline  4 - Sinitroaniline  Acena
l		

			NAVS RFA Surf	NAVSTA MAYPORT Surface Soil Data	ata								
Lab Sample Number: Site Locator Collect Date:	#7675011 #FADATA 26802201 05-AUG-94	<u> </u>	M7 R 28 28 05 VALUE QU	M7675010 RFADATA 285502301 05-AUG-94 QUAL UNITS	<u>م</u>	VALUE		N7675009 RFADATA 28SSO2401 05-AUG-94 QUAL UNITS	16	VALUE	M7675008 RFADATA 28SS02501 05-AUG-94	, w	ಕ
	Site Avion												
6KG SVOC (8270+24)			11 072	24/40	177			10/64	8	350	- -	ug/kg	350
M-Mitrospdisethy(smine	350 5 55/49	200	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 /s	35		320 C	) }	2	320	· = :	ug/kg	350
Antiles	• •		340 U	09/kg	340		350 U	2/2 2/3/3	3 %	350 350	<b>-</b> -	2/2 2/2 2/3	320
big (2-chlorosthyl) ether	50 CG/KG		340 0	56/80 8/80	3		320 E	? ?	32	320	_	ug/kg	320
1,5-Dichlerobenzene	350 U ug/kg	2	340 U	ug/kg	23		٦: د		ر د ک	350 855	<b>-</b> =	ug/kg 18/kg	
	350 C LD/K		0 0 0 7 E	ug/kg ua/ka	3 %			2 2 3 3			, _{&gt;}	2/kg	32
7,2-015810168 <del>52878</del> 2-14+hvlchenol			340 0	ug/kg	2		320 0	2 2	33	350	<b>-</b> :	69/kg	350
bis(2-Chloralsopropyl)ether	- -	<u> </u>	340 5	ug/kg	9,5		350 0	Kg <b>(</b>	2 S		<b>-</b> -	6/2 6/2	32
N-Hitrogo.di-n-propylesine	350 U UQ/Kg		340 0	, 5 2 3 3	3,0		350 U		2	8	· :	ug/kg	350
Mitrobantene	350 U		340 U	ug/kg	25		320 =	5 /S	32	350 551	<b>-</b> =	5/kg	5 E
	320		240 U	5/45 5/45	240		350 0	2 2 2 2 3 3	R		, <u> </u>	5/kg	32
	320 E		340 U	4, kg	340		320 U	mo/kg	25	350	<b>-</b> :	ug/kg	85 55 56
		1. 14 1. 14	1600 U	ug/kg	99	_	_ 2 2	2 ; 2 ;			<b>&gt;</b> =	54/kg	3 5
bia(2-chloroethoxy)methane	350 U 19/kg		340 0	5 6 5 2 5 2 5 2	33		320	? ? ? ?	R	32	-	. 6 . 6 . 6	200
2,4.Dichloropherot			340 U	10 /kg	32		350 G	2/kg	320	350	<b>-</b> :	<b>10/kg</b>	350
Naphthalene	350 L	2 S	2	09/kg	9,70		220 220 220 220	2 2 3 3	28	320		45/kg	200
			340 0	54/kg	340		320 C	54/85 54/85	S :	320	<b>-</b> :	<b>19/kg</b>	320
4-chioro-3-methylphenot	350 U		340 0	64/80 64/80	340		350 350 =	)    }  }	S S	3 2	<b>,</b> >	ug/kg ug/kg	32
2-Rethylnaphthalene	350 U vg/kg	320	340 0	, S	200		350 U		Ž	32	- ت ج	ug/kg	55 E
2,4,6-Trichlorophemol	350 U		340 C	69/kg				2; 2;	25	320	<b>-</b> -	64/48 16/kg	32
Disethylphthalate	1700 U 49/Kg		1600 L	69/g	<u> </u>		) = 	72	2	2	· = :	ug/kg	<u>5</u>
2.chlorozahthalere			340 U	cg/kg	3,5		350 U	2 ! 5	225	350	<b>&gt;</b> =	62/Kg	2 <u>5</u>
	- 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 - 170			64/80 18/80			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		25	320	<b>,</b> =	50 Kg	S S
			200 A	ug/kg	7		350 0	2	S	8	<b>-</b> :	ug/kg	320
	3		_	_	•		3: 2:		7		3 =	<b>19/kg</b> 16/kg	350
cenaphthene	350 c		2 664	64/44 64/64	2 6					<b>1</b> 8	3	ug/kg	}
2,4 pinitrophenat A-Mirrophena					3		ے و	3	2;	1700	<b>-</b>	ug/kg	<u>5</u> 5
Dibenzofuran			<b>9</b> 2		7,0	<b>.</b>	2 2 2 2 2 3	2 : 3 :	78	320	<b>5 5</b>	5 /kg	32
2.4 Dinitrotoluene	350 U ug/kg				i A		320 C		S S S	320	<b>5</b>	ug/kg	320

	Deta
ž	-
Ş	_
7	So
	face
110711	Surf
	₹

					50 KIN	19ce 2011 E	D.101							
Lab Sample Number:	Number:	<u> </u>	M7675011		_	H7675010			M7675009		i	M7675008	9008	
	Site Locator	- 22	RFADATA 285502201			RFADATA 285502301 65-4116-02			285502401 05-416-94			28SS02501 05-Aug-94	285502501 05-Aug-94	
כסון	Collect Date: V	VALUE OF	US-RUG-94 QUAL UNITS	ద	VALUE	QUAL UNITS	4	VALUE	DUAL UNITS	S DL	VALUE	DUAL	QUAL UNITS	DL
4-Chiorophery (-pherylether		S	ug/kg	350	340	ug/kg	340	350	) 		350	350 U	ug/kg	350
Fluoren		350 350 350 350 350 350 350 350	<b>3/9</b>	֭֭֭֭֭֭֭֓֞֞֞֞֝֞֞֞֞֞֓֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞	950		1609	2.5 2.5	33		_	3 20	;	}
4-NITroghiline	3 - 3	38	 	2	99	u ug/kg	1600	2			_	D 002	ug/kg	1700
N-Ritrosodiphenylemine (1)		350	By/6n	350	340	u vg/kg	2	S;	_ <b>⇒</b> :			350 5	54/KG	555 0 555
1,2-Dipherythydrazine		350 €	Ma/ka	25	070	9/kg	₹ 2 *	2 2 2 2			350 450	200	19/kg	320
	.*·*	320 C	9/S	250	250	04/60 04/61		32.05				320 U	, s	32
	,	2 5			1600		1600	12.5	-			1700 U	<b>5</b> /kg	1700
Pentachlorophenol					340	ug/kg	340	350	-	; ;		350 U	ug/kg	320
			97/8 8	320	340	U ug/kg	340	32	_ 			320 C	00/kg	350
Di-n-Buty Dithelete		Œ.	2	350	340	ug/kg	240		2/20			)       	64/Kg	255
, 3 11 - 1 14 _{- 1} 35		320	By/dn		240	29/kg	3 5	2 S			•	320 C	3 /S	32
Pyrene		2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 S		340	2/25 24/25	2		) 			350 U	<b>5</b> 4/8	350
Witylbenzylphinatare		<b>?</b>		700	889	ug/kg	089	73	•			n 069	ug/kg	26
		350 U	<b>6</b> /8	320	340	u ug/kg	340	S.	ु =		0.5	320 C	6 / Kg	5 S
		350 u	2 2 3		9,0	64/80 D	340		_ 	9 (	<b>-</b> -	350 U	1 (A)	25
bis(2-Ethylhexyl)phthelate		320	2 }		7	24/kg	2 6	450	) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A		200	350 U	66/kg	320
y -"-"			81/65	2 C	245		240	120	: =×=			350 U	ug/kg	350
Benzo(b)fluorenthene		0 0CC			340	u va/ke	340	320	· <b>=</b>			350 U	ug/kg	350
JD.		320	ug/kg	320	340	U ug/kg	25	22	<u> </u>			350 u	64/g	320
Indend(1.2.3-cd)Dvrere		350 U		320	340	ug/kg	340	320	<b>-</b> :			350 U	6/Kg	5 S
Diberz(e.h)enthrecene		350 €		320	O S	20/kg	25	25	- -		200	200 200 200 200 200 200 200 200 200 200	64/40 64/40	150
Benzo(g,h, i)perylene		3.05.		ב ב ב	3 5	19/kg	¥ 5				•		5/kg	15 10 10 10 10 10 10 10 10 10 10 10 10 10
2-Picoline		320			24	5 (%)		35	-			350 U	ug/kg	320
Settle Technology (Control		350 U		320	340	ug/kg	3	320	•			320 C	64/80 	320
Acetocherane	•	350 U		200	076	U 49/kg	95		) -		25	350 0	64/80 18/40	350
M-Mitrosopiperidine			<b>26/</b> Kg			100/kg	199				-		5/kg	1700
Phenyl-tert-butylenine		320		32.0	74	c	2	350	·			350 U	<b>5</b> /kg	320
N-attroso-di-n-butylamine		350 L	- <b>5</b>	22	3	U ug/kg	3	9	<b>.</b>		350	350 0	5.4 5.4 5.4	55 655
M-Nitrosodiethylosim		320	20/kg		3, 3		3 5	22			320	320 0	2 5	320
N-Witrosopyrolidins			51/O:		<u> </u>	3	20000		.3			30 PE	64/kg	
1 2 4 Seferent orghanese			2	2	1600	_	<b>3</b>	2			_	ョ: 2:	64/6 64/6	2
Pentachlorobenzene		1007	ug/kg	2	<u> </u>	09/kg	<b>8</b> 5	21				= = = = = = = = = = = = = = = = = = =	5 /S	3 5
1-Naphthylasine			5/2 5/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3	3	35	11.1 Log/kg	<u> </u>	<u> </u>	, 3			388	, 5 , 5 , 5	1
		320		350	340	,	340	350	<b>.</b>			320 €	<b>5</b> /kg	350
		S	_		35		grounds	2	<b>3</b> :		0 N		64/kg	320
4-testroblishenyt		2		į	<u>8</u>	5/80 5/80	1400				1700		54/s	1700
Pentachi oroni trobenzene	100000 100000 1000000				3	_	27	Ä				350 U	54/kg	350
Pronted de	65, 656 4006.	22		i Si	3		XG XG		-			350 U	64/6n	350
7 12-Dimethylbent(AlAnthracer)e	. 2	350		320	3	10/kg	3		<b>3</b> :		25	350 C	64/48 54/48	0 C E
3-Nethylcholanthrame		2	64/80 1	Z .	95	2/6/20	3 5						3/3	<u> </u>
Pyridin				350	<u>₹</u>		33			( ) ( 		_	ug/kg	350
M-MItrosomethylethyletine		28		38	3	U ug/kg	2		_	9		350 U	ug/kg	320
							200.00						•	4

Lab Sample Mumber: Site	mber: Site	M7684004 RFADATA	00% ATA		-	H7684005 RFADATA			M76	M7675012 RFADATA			M7675013 RFADATA		
Locator Collect Date:	Locator it Date: VALUE	28SS01901 06-AUG-94 QUAL UNIT	28SS01901 06-AUG-94 QUAL UNITS	ಕ	VALUE	28SS02001 06-AUG-94 QUAL UNITS	ر م	VALUE		28SS02101 05-Aug-94 Qual units	4	VALUE	28SS021010 05-AUG-94 QUAL UNITS	s	_
4-Chloropheryl-phenylether	X2	1 055 1 055	ug/kg	350	350	U ug/kg		350	710 1	ug/kg	25	98.2	= =	9	33
4-Nitroeniline	{ <b>E</b>	)	? ? ?	22					28	2 Z 3 Z	¥. 8	85	<b>,</b>	9 9	<u> </u>
6.6-Dinitro-2-methylphenol	E:	2 : 2 :	ug/ke	25		u ug/kg		2	コ: 8:	) (Kg	8;	170	<b>&gt;</b> :	<b></b>	8
1 2-0 ichenylhydrazine		) 29	9 <u>9</u> <b>3</b> 3	28	200				2	5 (Kg	25			<b>5</b> 9 <b>5</b>	33
4-Bronophenyi-phenylether		) 	2	3	_	u ug/kg			70 0	2 2	2	38	· >	, 9	3
	H	2 : 2 :	5 2 3	9;	_ :	u ug/kg			740 U	ug/kg	2	8	<b>-</b> :	9	3
(C)		> = 2 S	2 2 2 3 3 3 3 3 3	35		. 49/Kg			2005	3 3 3 3 3	3 5	92,1	09/kg	<b>9</b> 9	
Anthacero		) } }	2   3	<b>3</b>	320	gy/go n		2	2 2 2 2 3		2	32	) <b>&gt;</b>		3
thalate		> :	ug/ka	<b>S</b> ;	320	19/kg	_	S 5	300	<b>8</b>	2	22.5	7/8	9	;
	* **	2 S	6 44 6 46 7 40	38	320			320	25	2 2 3 3	22	22		<b>.</b> 9	33
Butylbenzylphthelate	A	- -2	<b>2 2 2 3</b>	3	320	U ug/kg		350	710 U	ug/kg	2	9			3
		⇒: 89	ug/kg	23	2007	UJ 109/kg		750	7.00 C	64/kg	25	23	<b>-</b> =	9:	23
	**	 28	5 5 5 5 5 5	88	350			202	25		2	32	3 3 3 3 3 3	<b>.</b> 9	33
bis(2-Ethylhexyl)phthalate	<b>X</b>	고: 오!	wo/kg	<b>S</b> ;	350	u ug/kg		22	75 U	2 2 3	2	3	<b>-</b> :		;
Besselhiftenate	<b>*</b>	<b>-</b> =	2/Kg	3 2	25.5	09/kg		350	7.0 C	5 /S	25	35	*** ***	<b>.</b>	33
Benzo(k) fluoranthene	i in	: : =			320	u ug/kg		22.5	70.0		2	88	, _		3
Benzo(a)pyrene	in i	⇒: 9:	By/ga	9;	350	U 09/kg	_	350	2; 2;	<b>69/kg</b>	2;	986	<b>-</b> :	9	9
Dibensia hisothere	X P	> = 7	2 / KB	33		2/kg		35 C	=======================================	6/Kg	25	3 3	04/40 14/40	<b>9</b> 9	33
j	( <i>P</i>	) 2 2	Z/K	3	320	56/kg		Tallin Jawa Liffin	2 2 2	? 2 3	2	38	, ,	, e,	3
2-picoline		2 2	6×/8	92	1700	09/kg			28	- - - - -	**	5. 6.	<b>5</b>		92
Tethy! Reshareaul tonese		)   	20/xa	<u> </u>	250	09/kg		350 350	3 = 2 <b>2</b>	2 2 2 3	Į	35			5
Acetophenone		- - -	2 2 2 3	2	320 (	ug/kg		20	7.0	3	2	3			3
#-#frosocioned		360 500 500 500 500 500 500 500 500 500 5	4/kg	<b>3</b>	350 1	U 46/kg	_		= = = = = = = = = = = = = = = = = = =	\$/\$/ \$/\$	25	360	<b>-</b> :		38
2.6-Dichterohenel		· –	5 /kg	3	350		• 		) ]2	7 <u>9</u> 3 3	12	<u> </u>			<u> </u>
Will trospidinibuty seine	<b>M</b> i	a :	€/kg	<b>3</b>	350 1	04/kg	_	<u>ي</u>	70 U	<u>\$</u>	21	8	7/89	_	3
itrosociathylanna itrosockrajidine	<b>1.6</b>	- - 29	50/kg	35				22 32 0		9 2 <b>9</b> 3	22	33			33
9000		3	, s	2	1700	- ca/kg	_		3480 C	2		170			
1,2,4,5-Tetrachlarobenzene		> = 2	5/¢	25	55	04/kg		2. 2.1	3 2 3 3 3 3	2 <u>2 3</u>	8 X	55	<b>ə</b> :	•	92.5
1-Haphthylanine	<b>.</b>	) ) )	? ?	38	28		- <b>-</b>		2 2 2 3	7 2 }	<b>1</b> 2	\$ £		<b>.</b> .	<u> </u>
		) 29	<b>5</b> /kg	23	1786	04/kg	<del>-</del>	2 2 2	3:	2 3	•	55	3:		971
		33	? ? }	•	320				. 3 2 2 2	7 5 <b>3</b> 5		33		<b>.</b>	3
4-Aminobiphenyi	<b>E</b> !	#: #:	ug/kg	2	1700	19/kg			7400 FT	  -  -	) ()	178 178	3:		
Promitide	<b>:</b>	5 <b>8</b>		38	325						32	3 3		<b>.</b>	3
P-(Dimethylamino)azobenzene		2	Z/kg	8	320	10/kg	_	320	2	3	2	3	U ug/kg		3
7,12-Dimethylbenz(A)Anthracene 3-Methylcholanthrana		> = <del>?</del> 9	ug/ka ce/ka	33	320	1 49/kg		550 350		2 2 2 2 3	25	33		<b>.</b>	33
Pyriding	2	)     Q	?	2	1200		<u>-</u>		2 2 2	2/3	28	<u>5</u>			₹ <u>₹</u>
N-Microsomethylethylemine	<b>3</b> 3	> = 99	5/kg	33	350 1	J 49/kg		350 150	25 2 = 2	14/kg	22	33	2 - S		33
		) }	•							? }	2	}			}
				4											

	_
_	Deta
Ş	
\ \{\text{2}	Soi
≤	ace
	Surfa
_	<u></u>

	Z.	360	17000	<u> </u>	3600	33	3			1700	2	3		98	
H7675013 RFADATA 28SS021010 05-AIE-94	IL UNITS	ug/kg	ug/kg	<b>2</b> 9/kg <b>2</b> 9/kg	ug/kg	ug/kg us/ka	56/kg	59/kg	5 /S	69/kg	5 /kg	69/kg 78/kg	cg/kg		
H76 RF 2855 05-	VALUE QUA	360 U	17000 U	1700 5	36000 U	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	360 U	17000 UJ	368	17000 UJ	2 2 2 2 2 3 2 3 2 4 3 7	360 c	. 00	2 5 2 5 2 7	
	4	710	34,600	88 XX	788	25	2				32	2		13	
M7675012 RFADATA 28SS02101	UAL UNITS	ug/kg	2 5 2 6 3 7 8	9/2 2/2 2/2	3	54/kg	3 3	- Cg/kg	2 5 2 5 2 7	9	2/2	50/kg	(¥,	2 2 3 3	
Z-85	VALUE	710 U	3,000 %	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7.000		200	34000 U	2004 2007	00075	246 2012	70 L	6. BC 6	3400 710 L	
	ಕ	350	₹	02. 06.	32000	350	320		150	<b>\</b>	350	320		95 58	
RFADATA 285502001	JO-AUG-94 RUAL UNITS	ug/kg	04/kg 09/kg	ug/kg	5 /S	ug/kg	ug/kg	- 64/kg		5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5	ug/kg ug/ka	<b>69/kg</b>	69/kg	ug/kg	
#76 #76 2885	VALUE QU	350 U	1700 U	1700 U	35000 U	350 6	350 U	17000 R	1700 UJ	17000 R	1700 130 U	350 0		1700 u 150 u	<b>,</b>
	늄	360		2	3608 1	360	<b>3</b>		2; -	<b>3</b>	3	3		3	
N7684004 RFADATA 285501901	06-AUG-94 Onal UNITS	U vg/kg	CJ (46/49			Z   Z   Z   Z   Z   Z   Z   Z   Z   Z	5/2 2		- <b>25/</b>	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- CE / CE / CE / CE / CE / CE / CE / CE	3 =	2 S	U to/kg	
	ALIE	360	- 1. - 1.	2		3	33	200	2	3.55 3.55	1700	33		1700	*
Lab Sample Number: Site Locator	Collect Date:											(2)			
			Hexach loropropene	p-Phenylenedionine Sefrale	Isosafrole	1.4-Naphthoquinone	5-Hitro-o-toluidine	1,3,5-Trinitrobenzen	Methapyrilene	3, 3'-Dimethy (benziding	Aranite	2-Chlorophenol	4-Hethylphenol	Hexachiaropropene	2-Acetylaminofluo

	-
	_
	Dat
_	=
_	_
¥	
<u> </u>	_
₹.	-
=	Soi
Ξ	×
	67
£	
	å
4	ū
=	=
_	
n	-
?	ž
-	3
=	75
-	
	_
	-
	-
	RFA
	•

qe	Lab Sample Number:	=	H7684015		<b>E</b>	684016		*	7684017		`E'	684018	
	Site	^	RFADATA 28SS01501		- 2	RFADATA 285501601		- 20	RFADATA 285501701		<b>-</b> 82	RFADATA 285501801	
	Collect Date:	. 0	96-VIIC-96		8	- AUG-94		<b>a</b>	5-AUG-94			AUG-94	
		VALUE O	OUAL UNITS	10 11	VALUE	PUAL UNITS	Dľ	VALUE	MAL UNITS	۵	VALUE OL	MAL UNITS	Dr.
De Tolinidine		350 U	Ug/ks	350	350 U	ug/kg	350	370 U	mg/kg	370	360 U	ug/kg	<b>3</b>
Hexacht propropene	edeluiti Status st Status st Status st	1700 L	75		1700 U.			2008 2008 2008 2008	6/ca 6/ca 7/ca		1700 U.		
p-Pherry Lened Lanine			3 3	120	1700	ua/ka	1700	1800 U	(S/Kg	180	1700 U	ug/kg	1700
		32.	7	1.00	1700 L	ua/ka	1700	1800 U	ug/kg	<b>28</b>	1700 to	cg/kg	178 28
	eller T	15000	, oo/k	35000	35000 U	ug/kg	35000	37000 U	5/kg	37000 1	36000 U	<b>1</b> 0/kg	36000
		350	19/km	350	350 U	ca/kg	320	78.	ug/kg	22	360 U	ug/kg	<b>2</b> 60
A 14 14 14 14 14 14 14 14 14 14 14 14 14		350	La/k	320	350 €	ug/kg	350	370 U	ug/kg	2	360 c	ug/kg	9
A Katrinterobenses		350 U	J ca/k		350 U.	ug/kg	ж.	25	5/kg		360 U	ug/kg	
4.21 - rogi(no) (n4.1.0x (de	eri.	17000 I	S/ks		17000 R	ug/kg		18000 #	ug/kg		17000 R	<b>19/kg</b>	•
Hetherori Lene		1700 L	1 CO /k	2	1700 ₺	ug/kg	1700	1800 1800	eg/kg	요 음 음	1700 U	<b>16/kg</b>	002
3 34-Dimethylbenzidine		350 (	1 40/k	350	350 U	ug/kg	320	22	69/kg	25	98	<b>1</b> 2/kg	3
Hexach Lorophene		17000	3/Bn		17000 R	ug/kg	٠	# 00091 # 000091			# 1200 # 2002	US/Kg	
Areaite		1902	× × ×	-	1,007r	09/Kg	350		19/Kg	02.5	5	- 66/kg	360
2-Chlorophenol				720	350 0	64/60 64/61	350	170 1	7 /co/kg	370	360 U	5/kg	360
2- 4 - Methylphenol (2)	٠		3		,	no/ko	Take Take	l Iv• Id	ua/ka		•	ug/kg	
6-Metny prepor		1, Av			•	ug/kg		•	ug/kg			<b>50/kg</b>	
Herent broncomen	. **	1700 L	7/23		1700 U.	l ug/kg		1800 0	04/80 C		1700 U.	ug/kg	;
2-Acetylaminofluorene		350 L	75	350	350 U	ug/kg	320	320 0	9	2	200	08/KB	9
								. :	19.7 19.7 19.7				

S. ESTIMATED
1.4-DICHLOROBENZENE WERE GENERATED FROM THE SVOC (B270) ANALYTICAL RUN.

ಕ	88888888888888888888888888888888888888
M7684018 RFADATA 285501801 06-AUG-94 QUAL UNITS	100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 10
74 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88888888888888888888888888888888888 000000
16	RESERVE CHERRESERVER RESERVERSES
M7684017 RFADATA 285501701 06-AUG-94 QVAL UNITS	77777777777777777777777777777777777777
M768 RFAI 285S 06-A	
ಕ	288 288 288 288 288 288 288 288 288 288
M7684016 RFADATA 28SS01601 06-AUG-94 QUAL UNITS	100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 10
M7 28 28 06 06	358
10	888 888 888 888 888 888 888 888 888 88
M7684015 RFADATA 28SS01501 06-AUG-94 QUAL UNITS	######################################
MALUE OU	350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg 350 U ug/kg
	<b>90</b> / <b>V</b>
Lab Sample Number Site Locator Collect Date	
	BKG SVGC (GZZD+24)  B-Nitroacdimethylamine Phanol  Anilina  Anilina  Anilina  Anilina  Anilina  Bis (Z-Chloroethyl) ether  1,5-Dichlorobenzene  8-mzyl Alcohol  1,2-Dichlorobenzene  8-mzyl Alcohol  1,2-Dichlorobenzene  8-mzyl Alcohol  1,2-Dichlorobenzene  Nitrobenzene  Nitrobenzene  1,2,5-Trichlorobenzene  Nitrobenzene  1,2,5-Trichlorobenzene  Nitrobenzene  1,2,5-Trichlorobenzene  1,2,5-Trichlorobenzene  1,2,5-Trichlorobenzene  2,4-Trichlorobenzene  1,2,5-Trichlorobenzene  2,4-Trichlorobenzene  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,4-Trichlorophenol  2,5-Trichlorophenol  2,5-Trichlorophenol  2,5-Trichlorophenol  2,5-Trichlorophenol  2,6-Trichlorophenol  3,6-Trichlorophenol  3,6-Trichlorophenol  3,6-Trichlorophenol  3,6-Trichlorophenol  3,6-Trichlorophenol  3,6-Trichlorophenol  3,6-Trichlorophenol  3,6-Trichlorop
	W. S. S. S. S. S. S. S. S. S. S. S. S. S.

	<b>a</b>		986	-	_	_		95	20 20 20 20 20 20 20 20 20 20 20 20 20	9;	33	3	98				3			33	<b>.</b>		8				995				9 £		52		•	_						98		•		
	N7684018 RFADATA 285501801 06-AUG-94 GUAL UNITS	ug/kg	64/kg	10/kg	7/67	64/kg	.50 ≥	<b>58/k</b>	<u> 7</u>	Ž,	5	5	2 /2 2 /2	<b>5</b> 8/k	<b>3</b>	2 3	2 /2	7	y/g	<b>2</b>		3	<b>7</b>	3	2/8/	20,00	ug/kg		, 60 X	<b>20/k</b>	9/8/	3	7 ×	24/Kg	y/kg	ug/kg	2/85 24/85	3	<b>5</b> 9/k	7/K	, ×	49/kg				
	M764 RFI 28SS VALUE OUA	18	366	255	3098	360 u	360 U	360 u	1700 U	2 09K	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	200	200	760 ∪	720 U			360 2	360 t	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 9 8 9 8 8	360 U	360 5	3 00 C	= 3 3 3	3092	D 360 U	3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	360	3 09E	2 5	382	1700 U	200	300	_		3098	_	= = \$ \$	2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	n 09£				
	ā	5	25	35	378	25	370	220	1800	370	2	25	2.C	370	740	22.	222	25	378	<u> </u>	2.C	2	22	<b>2</b>		R	2	5	Z T	£i	R:	3	1800	2	38			38	2.5	P.F	1806	2				
	M7684017 RFADATA 285501701 06-AUG-94	us/ka	50 kg	5 / S	) (S	66/kg	) }	, S K	, S	19/kg	64/g	2/2	0 X / S	7 /Kg	ug/kg	ug/kg	2,5	7/kg	. S	ug/kg	9	2	3	<b>8</b> /8	2	7 7 3 3	to/kg	9 : 9 :		3	29/kg	3 °	2	3		)     	2/P		3		7,2 2,2 3,2 3,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4	3	<u>2</u> 3			
	M7684 RFAC 28SSC 06-AL	18	2		3 = 3 =	25	=	 2. 2. 2. 3.	1800 U	320 C	370 U	a :	) = C	320	740 U	⊃ 2:		300	2	3 K	2 = R		a R	<b>2</b>	a: R		2 2 2			370 U	7 P.S.	) = 	988	7 00 T	32	3 2	> 2 2 2 3		) = (2) (2)	3: 2!		e R	= E			
lT Data	ā	350	320	1,000		200	205	320	1700	350	350	i	350	320	710	320	350	250	320	350	320	150	320	1700	320	320	320		350	32	350		5	1700		<b>.</b>	2	1700 180	32	350	350	320	330	(B) 196		
MAVSTA MAYPORT Surface Soil D	M7684016 RFADATA 28SS01601 06-AUG-94	S Park	49/g	ug/kg	19/kg	54/5		15/Kg	10/kg	,	ug/kg	ug/kg	ug/kg	10/kg	4/kg	64/g	ug/kg	64/80 64/80	100/kg	59/kg	<b>19/kg</b>	9/kg	3/3	64/65 C	09/kg	69/kg	, y	ug/kg	5 /S	64/kg	ug/kg	69/kg	3 2	54/kg	64/Kg	5 /s	09/kg	54/kg	09/kg	<b>20/kg</b>	00/kg		ug/kg			
NAVSTA RFA Surfac		VALUE GUAL	320 0	1700	1700 U	) (SE	0 000	350 0	- 62.	350 U	350 U	160	350 U	350 0	710 0	350 U	350 U	350 0	350 U	320 G	350 U	350 U	320 0	1700 U	350 U	55 50 50 50 50 50 50 50 50 50 50 50 50 5	320 U	1700 65	350 U	320 0	350 U	J 002	2007	1700 U	J 904	350 67			350 u	350 U	350 6	350 U	350 U			
		10 of	320	120 120	<u>2</u> ;	5		1 Agr	2007	32	320		320	ב ב ב	25	330	220		35	2	9	250	320	\ <u>E</u>	350	25°	320		25	200	350	2	3 5	2	2	7	2	2		32	2		320			1000
	M7684015 RFADATA 28SS01501 06-AUG-94	OUAL UNITS	2 2 2 3 3 3	ug/kg	03/80	) (2)	24 25	40%		2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	uo/kg	Ma/ka	ug/kg	2 /6/20 24/20	2/kg	-84/8n	ca/ka	5 /6/ 5 / 5		ug/kg	8/9n	2/kg		då y Hje		We/Ke	_	rain Majir	53/65 53/65			67/63 67/63			03/93 			2/kg		u we/ke	- CE/KE				20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	M 82		22 22 23 23	2 2 7		2001 120						25		350 U	2 DCC		350 U	7.6	25 25 25 25 25 25 25 25 25 25 25 25 25 2	720 C		350		3007		7000	Ca. Aas		320	will a				'			100	100	350		350		32			可 机多分子医线
	Lab Sample Number: Site Locator Collect Date:		4-chtoropheryt-phanytether		6-binitro-2-methylphenol	Hi crosod phemy lamine (1)	2-Dighenylhydrazine	-Bronophenyl-phenylether	Hexachlorobenzene	Pentachlorophenot	Phenanthrene				enzylphthalate	2		s(2-Ethylhexyl)Dhthelate	Di-n-octy(phthalate				Dibenz(e,h)anthracene	enzo(g _i h, i)perylens	-Ficoline 	and fonete	en e	**************************************	6-Dichterophenol	H. M. troso. di .n. butyl enine			1,2,4,5-Tetrachlorobenzene	Sentach Orobenzera	2: Legithy Collins	2,3,4,6-Tetrachlorophanol	Phenocetin		Pronanide	p.(Dimethylemino)ezobenzene	7. 16.50 metalyzation	Pyridine	N-Hitroscoothylethylethe		D	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

ᆿ M7684014 RFADATA 28SSO1401D D6-AUG-94 QUAL UNITS 09/kg
09/kg
09/kg
09/kg
09/kg
09/kg
09/kg
09/kg
09/kg
09/kg
09/kg
09/kg
09/kg
09/kg
09/kg
09/kg
09/kg
09/kg ᆸ RFADATA 28SS01401 06-AUG-94 QUAL UNITS VALUE ಕ M7684012 RFADATA 28SS01301 06-AUG-94 QUAL UNITS VALUE 2222222 굼 RFADATA 28SS01201 06-AUG-94 QUAL UNITS VALUE Locator Collect Date: Lab Semple Number:

Surface Soil Data

RFA

		1700	1700 1700 35000	350	350	1700 350 350	1700 350						
	ᆸ	; <del>=</del>	~~ <u>K</u>	. •	- •	•	-						
	N7684014 RFADATA 2885014010 06-AUG-94 GUAL UNITS	ug/kg ug/kg	69/kg 69/kg 69/kg	69/kg 69/kg	56/8 5/8 5/8	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	66/80 19/48 19/48						
	2		1700 U 1700 U 35000 U	320 fr 320 fr	1700 U 1700 U 150 U	250 1700 1700 1350 1350	1700 U 350 U						
	VALUE		- 10				- 60:	·:	. Essay of the	eligi i sessera		ografia," kj	Marin La Marin
	ద	1700	1700 1700 35006	320	350	1700 350 350	1700 350						
	#7684013 #FADATA 28SS01401 06-AUG-94 QUAL UNITS	ug/kg ug/kg	56/45 56/45 56/45 56/45	\$ \$ \$ \$ \$ <b>\$</b> \$ \$	333 325	2 2 2 2 3 2 2 3 3 3	2223						
	M7684013 RFADATA 28SS0140 06-AUG-9	32	2222	220 E	7000 R 1700 UJ 350 U	2000 E 2000 E 2000 E	558 250 250						
	VALUE	1700	700 71 700 700 700 700 700 700 700 700 7	N.W.W.	1780 1780 350 350	17000 1700 350 350	170 350						
2	ಕ	1700	1700 1700 35000	350	350	05t 05t 05t	1700	la de la compania		01.00.000 (000erne)	200 1000000		
MAVSTA MAYPORT RFA Surface Soil Data	M7684012 RFADATA 28SS01301 06-AUG-94 QUAL UNITS	ug/kg ug/kg	ug/kg ug/kg ug/kg	56 56 56 56 56 56 56 56 56 56 56 56 56 5	49/kg ug/kg ug/kg	ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg						
AVSTA I	M7684012 RFADATA 28SS01301 O6-AUG-94 QUAL UNIT	  3>	3		~3>	« > > >							
RFA S	VALUE	350	17000 1700 1700 1700	8888	1700 1700 350	1700 1700 350 850 850	1700 350						
	10	1700	1700 1700 1700	<b>3</b> S	Ş	동정정							
	v		9/8 8/8 9/8	66/48 19/48 19/48	100/kg 100/kg 110/kg	2525	2558 2588 2588 2588 2588 2588 2588 2588						
	M7684011 RFADATA 28SS01201 06-AUG-94 QUAL UNITS	3-	.3.2:										
	VALUE	3,60	<u> </u>	<b>333</b>	<u> </u>	2671 2671 2683 2083							
				general Species (1996) Species (1996)						nati jedi etjedjegik			epsississer of Oktob
	Lab Sample Number: Site Locator Collect Date:												
	S <b>qe</b> 1				- 0x -	<u> </u>							
			Aropere Albain	aulnon sbenzen toluidi			hemol hemol control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control options in the control option in the control options in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control option in the control opti						
		o-Toluidine	Kexach loroproprie p-Phenyl enedlamina Safrole Isosafrole	4-Naphthoquinone 3-Dinitrobenzene Nitro-o-toluidine	3 > Trinitrocentend  - Ill trogulmol Inc-1-oxidethapyril end	3, 3 - Dimethy (bena 10) in Hexechlorophene Arami (e) 2-Chlorophenol	A Nethylphenol  (Alethylphenol  (Spienylamine  Hexachloropropere						
		9:10	SP-PX	W	1 - 2 E	**************************************	4 - 0 E 0						

U . OT DETECTED R = RESULT IS REJECTED

=	Deta	
•	_	
L	-	
5	Sol	
Ξ		
֓֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֡	Surface	
	RFA	

10	1700	1700	36000	360		5	ŧ	1700	33		5 5 8	
M7684009 RFADATA 285501101 06-AUG-94 QUAL UNITS	ug/kg ug/kg	56/kg 16/kg	69/kg	64/g 7/g/	ug/kg ug/ka	69/kg	* * * * * * * * * * * * * * * * * * *	09/kg	69/kg 68/kg	ug/kg ug/ka	ug/kg ug/kg	) }
M77 RI 288 286 06-	360 UJ 1700 U	1700 U	36000 U	390 390 390	360 US	1700 130 130 130 130 130 130 130 130 130 1	17000 R	1700 U	200		1700 U 360 U	
, pr	2	5 <u>5</u>	2009	8		7	3	<u></u> 2;	33		1700 360 360	
N7684010 RFADATA 285501001 06-AUG-94 QUAL UNITS	UJ UG/Kg				07/kg	o co/ke		2/5	2 2 3 3 3 3	100/kg	2/80	
AALUE	360 1700	902. 1.200.	36000	33	<b>3</b>	1700		25	33		5 %	
ដ	350	2001 1700 1700 1700	35000	350	320	1700		1700	320		350	
N7675019 RFADATA 288800901 05-AUG-94 QUAL UNITS	ug/kg ug/kg	9 6 5 6 7 5 7 5 5	3/S	ug/kg ug/kg	ug/kg	(4) (4)		mg/kg	68/kg C8/kg	09/kg	2 / S	
WALUE OF	350 U 1700 R	U 0007t	35000 U	350 U 350 U	350 U	120071	12000 t	1700 U	350 to 350 to	• 1	1700 R	
16	350 1800	- B	35000	320		3 i	. 550 1800	1800	350		1800	
M7698013 RFABATA 28SS00801 10-AUG-94 QUAL UNITS	U 09/kg	UJ 59/kg U 59/kg			2/20		2 S		2% 2% 2%	3	3,5 3,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1	
VALUE	350 1800	18000	3200	350	220	2 <u>2</u> 2	18000	38	350	iza irake Irake Irake	1800	3
Lab Sample Mumber: Site Locator Collect Date:	o-Tolutdine Hexachloropropene	p-Pheryl enedlasine Safrole	seastrole	1,3-0 initrobenzane	1,3,5-Trinitrobenzene	4-Nitroguinoline-1-oxide Methapyrilena	3,3'-Dimethylbenzidine	A TUBELLA CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR C	2-chlorophenol	6-Mathy (phenol	Diphemyleatine Hexachloropropene	

ICHLOROBENZENE WERE GENERATED FROM THE SVOC (6270) AMALYTICAL RUN.

	555 555 556 557 558 558 558 558 558 558 558 558 558
.014 .4016 .14016 .16-94 .UNITS DL	
M7684 RFAC 28SSO 06-AU	28888888888888888888888888888888888888
VALUE	NECESSION SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERV
10 S	
N7684013 RFADATA 28SS01401 06-AUG-94 QUAL UNITS	29666666666666666666666666666666666666
74 F	38888888888888888888888888888888888888
	022 022 022 022 022 022 022 022 022 022
M7684012 RFADATA 268501301 06-AUG-94	
74 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0255 0255 0255 0255 0255 0255 0255 0255
ā	25222222222222222222222222222222222222
M7684011 RFADATA 28SS01201 00-AUG-94	
H76 RF 285 06-1	3323323.2523232325253323333333552523523233
Lab Sample Wumber: Site Locator Collect Date:	
	6. SVOC (8270-24)  8. Nitroacdisacthytismine  Phenol  Aniline  bis (2-thlorocthyt) ether  1, 3-bichlorocenzene  1, 4-bichlorocenzene  1, 4-bichlorocenzene  1, 4-bichlorocenzene  2-Hethylphenol  bis (2-thloroisoprocyt) ether  W. Nitroac-di-n-procytismine  Hexachlorocensene  2-Hethylphenol  Benzol  2, 4-bimethylphenol  Benzol  2, 4-bimethylphenol  2, 4-bimethylphenol  2, 4-bimethylphenol  2, 4-bimethylphenol  2, 4-bimethylphenol  2, 4-bimethylphenol  2, 4-bimethylphenol  2, 4-bimethylphenol  2, 4-binoromylphenol  2, 4-binitrochloroce  2, 4-binitrochloromylphenol  2, 4-binitrochloromylphenol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitchanol  3-Hitch

	6	3883. 388888888888888888888888888888888
ļ	M7684009 RFADATA 28SS01101 06-AUG-94 QUAL UNITS	
	VALUE	
	0 01 94 ITS DL	P99P99P9P9P9P9P9P9P9P9P9P9P9P9P9P9P9P9
	M7684010 RFADATA 28SS01001 06-AUG-94 QUAL UNITS	
	VALUE	33333333333333333333333333333333333333
T	10	88888888888888888888888888888888888888
NAVSIA MAYPORT Surface Soil Data	M7675019 RFADATA 28SS00901 05-AUG-94 QVAL UNITS	
NAVS RFA Surf	WALUE ON	88888888888888888888888888888888888888
	, 9	
	M7698013 RFADATA 28SS00801 10-AUG-94 QUAL UNITS	
	Number: Site Locator t Date: VALUE	25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50
	Lab Sample Number: Site Lostor Collect Date:	
	r ap 2	MKG SVOC (8270-24)  National  Antition  Antition  District (2270-24)  National  1, 4-0 ich lorobenzene  1, 4-0 ich lorobenzene  2-1 ich lorobenzene  1, 2-0 ich lorobenzene  1, 2-0 ich lorobenzene  2-1 ich lorobenzene  1, 2-0 ich lorobenzene  Naticoparone  2-1 ich loropenzene  1, 2-1 ich loropenzene  2-1 ich loropenzene  2-2-1 ich loropenzene  2-3-1 ich loropenzene  3-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1 ich loropenzene  2-4-1
		a syoc (8270-24)  a. Aitroacdisethylasine  Aniline  Aniline  1,3-Dichlorobenzere  1,4-Dichlorobenzere  1,4-Dichlorobenzere  1,2-Dichlorobenzere  2,4-Dichlorobenzere  2,4-Dichlorobenzere  2,4-Dinitrobenzere  2,4-Dinitr
		MKG SVOC (8270  M-Mittee adding  bened  1,3-Dichlord  1,4-Dichlord  1,2-Dichlord  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  1,2,4-Tichl  2,4-Dinitrod  1,3-Hitrophera  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dinitrod  1,4-Dini

=	Data
	Soil
NAVSTA	Surface
_	RFA

Đ.	05. 05. 05.	52	3	360	¥ 5	360	93	Ŗ.		į	3									140	3		į		ŧ	98	į		202	1700	1,00	<b>3</b>	1700	1700 1700	3	360	98			4	ſ
M7684009 RFADATA 28SS01101 06-AUG-94 QUAL UNITS	ug/kg ug/kg	69/kg	2 /s	50/kg	2 9 2 9	ug/kg	ug/kg	19/kg	4/kg	ug/kg	50/Kg	ug/ka	ug/kg	64/go	64/65 C. (14)	09/Kg	56/kg	ug/kg	ug/kg	19/kg	19/Kg	24/kg	ug/kg	00/kg	100/kg	ug/ke	ug/kg	00/kg	og/ko	ug/kg	ug/kg	100/Kg	ug/kg	ug/kg	64/65 54/65	69/kg	ue/ka	ug/kg	ug/kg	03/60 03/60	
M768 RFA 2855 06-A VALUE QUAL	360 U 360 U 360 U	202	2 2 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	3.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55	2 65 2 5 2 5 2 5	360 U	360 E	907	 	90	n - 47	7 27	2	7 :	7 : R:	, - 9 G	9	25	20 7	1700 UJ	200	360 55	360 UJ	1700 U		360	360 52	200	1700 C	1700 U	1700 U	2 5	_	1700 U		3 = 6	200	1700 UJ	3.092	2005 2005	
	38.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5 2	323	33	<b>3</b> ;	3 <u>2</u>	360	<b>3</b> ;	35	₹\$		25	39	38	9 9	3:	35	33	Z	3		3			8; -	3	3		<b>2</b> 9	38	2	2	3	<u>8</u>	- - - -	<b>3</b>	972	3				
M7684010 RFADATA 28SS01001 06-AUG-94 QJAL UNITS	ug/kg ug/kg	2, 2, 2, 2,	5 5 2 3 3 3	2 2 3	92/93 193/93	3	3.	) 2 2 3	? 2 }	Lg/kg	9. 20.	09/kg	2/2	ug/kg	<u>9</u> 3	9./ <b>9</b>	2/25 2/25	- 7k	te/kg	- 44/kg	9 ) 9 !	7 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	uo/ka	ug/ka	2 <u>3</u> 3		1 10/kg	2. 2		)    - 	<b>19/kg</b>	<b>3</b> /2	6/kg	24/g	<b>5</b> /kg	2/2 2/2:		1 54/kg		9/3	
M76 RI 283 284 VALUE QUI	⊃ 3: 092: 092:	3 00 1 1 00 1	= = 3	3	35 25 25 25 25 25 25 25 25 25 25 25 25 25	) 100 100 100 100 100 100 100 100 100 10	⊃ 95 95	3 S	- 2 2	7 98 8	7.02.	35	2000	366	360 U	3 3 3 3	3 3 3	360	260 €	3 82 3			360	) 02. 02.	3 S	, 28 10 10	.n 998	크: 운년		25.	<b>=</b>	2 : 2 :		1 802	3	=====================================	3	138 U	3 88	<b>3</b> <b>3</b> 2 34	
1	350	<u> </u>	200 200 200 200 200 200 200 200 200 20	320	05. 05. 05.	350	320	350	32	350		2 S	320	350	320	220	55 55 55	350	350	1700	320	920 420	350	1700	350 350	920	320		921	200	1700	350		1700	350	350	250	<u> </u>	350	350	%. SE
M7675019 RFADATA 28SS00901 05-AUG-94 QUAL UNITS	ug/kg ug/kg	ug/kg ug/kg	69/kg	ug/kg	ug/kg	ua/ka	. 64/kg	5/kg	5/80 7/80	ug/kg	UJ ug/kg	24/kg		U ug/kg	J ug/kg	gy/kg	08/kg	10/kg		J ug/kg	J Gg/kg	2/83 8/83	2/25	J ug/kg		100/Kg		UJ vg/kg	24/Kg		u ca/kg	ug/kg			u ug/kg	_			U ug/kg	u cg/kg	
AFINE O	222	1786 1786 1987	350	350 u	350 u	באים ב	320 0	350 u	350 1	350 L		350 (	350 1	_	350 L	350 (	350	250	320	1700 1	350 1	350 (	350	1700	350	350	350		1700	92.	1700	350	255	128	350		350	962	350		
둼	350	8 1	8	350	320		20	320		350	E	92		320	350	35	2	200				220				7		\$	26			350	•				350		32		
M7698013 RFADATA 28SS00801 10-AUG-94 MIAL UNITS	ug/kg ug/kg	2/8 2/8	2 X	? ? ? ?	84/8n		77	o wa/ka		,		9/9 1			U VS/KS			2 / Y							Æ	9 X X	3 <b>3</b>		• • • • • • • • • • • • • • • • • • •			<b>-</b>	3:		) =	- -	- ->:	) 	) )		的复数医多种 医二十二
E 60-0	88		720	32	320		Shiring.	350	350		٤	1	21		350		S.	200		1800	320	350		Ţ.,	350	350	9.FE	1800	1800			350		35	150	350	220	3	35	SS.	「金の一丁子に関するがん
Lab Sample Number: Site Locator Collect Date:	4-Chi prophenyl-phenyl ether	nitine for 2-methylphenol					Phenanthrene				4 4 thichlorobenzidine	Benzo(a)anthracene	Chrysere	=	DI-T-CCV PRINCE - A. C.			Indeno(1,2,3-cd)pyrane	Diberz(a, b)enthrecene					#-#-(100001001001001001001001001001001001001		M-Mitroso-di-n-butylanine		olej) Se o	1.2.4.5-Tetrachlorobeniene	Pentach (probenzene	1-Kaphthylamine	2.1 6.6-Tetrachloropherol	Phenacetin	4-4al nobipheny		NTCOMMUNICATION OF THE COMMUNICATION 2-Dimethylbenz(A)Anthracere	3-Hethylcholanthrane	Pyridina	M-Nitrogomernyteinyteine M-Nitrogomernyteinyteine		

	Collect Date:   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc																
1	Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Dates   Collect Date	tab Sample Num	mber: Site	•	47675015 RFADATA			2 "	'675016 FADATA			M767501 RFADAT	<u>~</u> «			17675018 RFADATA	
1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	Loc Collect D	_		26SSU0401 05-AUG-94 NAL UNITS		YAL		15500501 AUG-94 AL UNITS	1	VALUE	28SS006 05-AUG- QUAL UN				:85500701 5-Aug-94 Wal units	ಕ
11. 10.00	1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00	4-Chlorophenyl-phenylether		1400 1400			007		ug/kg	1400		<b>&gt;</b> =	/kg	25	•		55 5
Column	1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00	+ Hitrogrifine		6700			2	6800 U	ug/kg	0089		) )	25	동	25		? <u>₹</u>
Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   C	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	4,6-Dinitro-2-methylphenol		9029	ug/kg		2	O 0089	ug/kg	0089			2	8	_		2
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00	M-M-Introduction (1)	1967 1964 1977	2 5 2 5	8 8 1		85	2021	BX/Bn	202	22	<b>5</b> ⊃:	Z.	£i	_		r i
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00	4-Brosonhenyt-nhenytether		38			35		19/Kg	255		g* : : :: = :	2 5	25			F
1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000   university   1,000	6700   up/4   1000   up/4   1000   up/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   1000   100/4   100/4   100/4   100/4   100/4   100/4   100/4   100/4   100/4   100/4   100/4   100/4   100/4   100/4   100/4   100/4   100/4   1	Hexachlorobenzene	17 - 44 14 - 43 14 - 64 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 73 17 - 7	200			9	1600	8 /g	1400	75	<b>5</b> 9	32	25			3 12
1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways   1400   ways	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	henol		6700		•	2	D 0089	ug/kg	9	3400	75	, k	20,7		_	35
1000   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1700   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100			1400			90	1400 U	ug/kg	1400	710	2	/kg	710	_		3
Column	Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Colo	Acta Lace		8	8×25		58	1,000 L	ug/kg	250	710	3°:	, ko	2;	_		ĸ
100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15   100/15	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100				10/Kg		35		19/Kg		25	5° 5	5. 5.	25	2 2	g/kg	Ĭ
2000 UNIVERSITY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERT	1400 1 W/45   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   14			166	- 54/kg		3		ug/kg	9 9 9	32	33	5.5	25			3 X
100 U	100	Butylbenzylphthalate		1400 L	2 /g		8	_	ug/kg	1400	710	3	/kg	2			3 23
1,000   1,007   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00	1,000   196/45   1,000   196/45   1,000   196/45   1,000   196/45   1,000   196/45   1,000   196/45   1,000   196/45   1,000   196/45   1,000   196/45   1,000   196/45   1,000   196/45   1,000   1,000   196/45   1,000   1,000   196/45   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000	3,3'-Dichlorobenzidine		2800	ug/kg	~	000	7800 n	ug/kg	2800	1400	3	/kg	1400	n 069	ug/kg	8
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   1000   10074   10074   10074   10074   10074   10074   10074   10074   10074	Benzo(a)anthracene Chrosene			8/8 2/8		B 5	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	C9/kg	92	25	<b>5</b> :	8.	25	320 -	ug/kg	<b>#</b>
1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   units   1,000   unit	1000   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400   us/vs   1400	bis(2-Ethylhexyl)phthelate		2004	2/2/2		<b>2</b>	2 0 0 7		907	25	3 9	/ka /ka	22	350		3 X
1,000   ug/kg   1,000   tug/kg   1,000	100	Di-n-octylphthalate	·	1400	1 ug/kg		00		ug/kg	1400	2	5	Ę	2	350 E	64/g	<b>3</b>
1,000   100/15   1,000   100/15   1,000   100/15   1,000   100/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,00/15   1,000   1,00/15   1,000   1,00/15   1,000   1,00/15   1,00	100   10   10   10   10   10   10   1			2021	1 ug/kg		95		ug/kg	6 6 6 6 6 6	25	5 : ===	<b>2</b> ;	2:	350 u	ug/kg	<b>S</b>
1,000   wayka   1,000   1,000   wayka   1,000   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayka   1,000   wayk	1500 U	Benzo(a)pyrena		202	5 /kg		39		58/59 58/59	202	32	3 9 	, k	2	350 1	49/Kg	2 ₩
1,000 U	1,000   \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \( \alpha \) \(\alpha \) \( \alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \) \(\alpha \	Indero(1,2,3-cd)pyrane		904	19/kg		00		ug/kg	1400	2	3	<b>.</b>	2	350 E		32
1400   1	1400 U uarks			82	5 /kg		<b>9</b> 5		8/8n	700	2;	<b>3</b> :	2.	2		ug/kg	ii)
1400 U	1400 U   uu/kg		aj s	2029	32/3		38		5,4 ks	0089				8		56/kg	÷
1,000   1,007   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,000   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,007   1,00	Etty interactivation (1900 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to ug/kg 1400 to			1400	L ug/kg				ug/kg	1.1 W	710	} ::	2				:
Halitotopiparidine	### if troop particles    100	Ethyl methanesul tonate		2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2/S		85		69/kg	95	2;		2	2		ng/kg	Ē
2, -0   chilorophenol	Pleary   1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	N-Witrosopiperidine		38	2/2 2/2	V I	38	1,004	66/g	202	35	9 § 	21			64/69 64/69	
1400 U ug/kg   1400 U ug/kg   1400 U ug/kg   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400	1400 U ug/kg   1400 U ug/kg   1400    1710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710 U ug/kg   710	Phonyl-tert-butylemine		0029	`		2		ug/kg	9	3400	3	2	2400		64/g 06/kg	Ē
1400 U   USF/4   1400 U   USF/4   1400 U   USF/4   1400   T10 U   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   T10   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4   USF/4	1400 U ug/kg			992			3		6 /g	95	22	5 >:	2	2:		ug/kg	in i
14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U ug/kg   14.00   U	1400 U ug/kg 1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400   1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 U ug		s o	202	33		38	2 5 2 5 2 5 2 5 2 5 3 5 4 5 5 6 5 7	2 S	99	2	3 9 	22	2		64/60 16/kg	<u> </u>
Deficiency   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University   Coro University	Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Colo			0 0 1	- X		8		ug/kg	1400	2		) }	2			Ä
The control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co	Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Colo	v.'''	i:. 9		2 2 3		္န		. 69/kg		8 %;	3:	2			_	į
Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   C	6700 U ug/kg 6800 U ug/kg 6800 1 ug/kg 1400 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg 1710 U ug/kg	Pentachlorobenzene		200	3		38		6 /kg			) 		35	_	2/2 2/2	2 5
1400 U   Ug/kg	1400 U	fillaphthylamine		D 0029			暑		ug/kg	999	8		2	8		- 54/go	2
1400 UJ UG/Kg 1400 UJ UG/Kg 1400 UJ UG/Kg 1400 UJ UG/Kg 1400 UJ UG/Kg 1710 UJ UG/Kg 1710 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 1700 UJ UG/Kg 17	1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 170 U. ug/kg 170 U. ug/kg 170 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1700 U. ug/kg 1400 U. ug/kg 1700 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1400 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700 U. ug/kg 1700	Z-Maphthytamine		7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			::: <u>S</u>		69/kg		2; X	3:	2	•	1700 L	ug/ka	ì
6700 UJ ug/kg 6700 UJ ug/kg 6800 UJ ug/kg 6800 J400 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ ug/kg 710 UJ uJ ug/kg 710 UJ uJ ug/kg 710 UJ uJ uJ uJ uJ uJ uJ uJ uJ uJ uJ uJ uJ uJ	### 6700 U.J. Ug/kg 6800 U.J. Ug/kg 6800 U.J. Ug/kg 710 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg 770 U.J. Ug/kg	A, J, J, O TROUBLE TO CONTROL	of the Strong Secure				3		9/83 19/83	<b>3</b>			<b>?</b> §	<b>E</b>		_	<u> </u>
### \$400 U ug/kg 6700 6800 U ug/kg 5400 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U	#### 6700 U ug/kg 6700 6800 U ug/kg 1400 I ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U	f-Aminobipheny.		D 0029					co/kg	J80783			7.7		_		
Describer 1400 U ug/kg 1600 1400 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg	Oberizene 1400 U ug/kg 1400 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U	nani trabenzene		2 : 2 :			28		<b>59/kg</b>	993			2	8		<b>69/kg</b>	5;
Marthracence 1400 U 140/kg 1400 I 1400 U 140/kg 710 U 140/kg 710 350 U 140/kg 710 350 U 140/kg 710 350 U 140/kg 710 350 U 140/kg 710 U 140/kg 710 350 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg 710 350 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg 710 U 140/kg	Marthracene 1400 U sug/kg 1400 1400 U ug/kg 1400 710 U ug/kg 710 350 U ug/kg 710 350 U ug/kg 710 350 U ug/kg 710 350 U ug/kg 710 350 U ug/kg 710 350 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 U ug/kg 710 350 U ug/kg 710 U ug/kg 710 350 U ug/kg 710 350 U	p-(Dimethytamino)azobenzene					3		5 5 7 2	3	2	)	7.9	22		ug/kg	35.
1400 U WG/Kg 1400 I WG/Kg 1400 X100 WG/Kg 710 350 U WG/Kg   1400 U WG/Kg 710 350 U WG/Kg 1400 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg 710 U WG/Kg	1400 U	7,12-Dimethylbenz(A)Anthracene	16). Sec. 1601		(300°) (100°) (100°)		8		ug/kg	1,00	2	3	<u> </u>	2		<b>5</b> /kg	320
Leading 1400 U US/Kg 1400 U US/Kg 1400 U US/Kg 1400 TIO U US/Kg 710 350 U US/Kg 1400 U US/Kg 1400 U US/Kg 1400 U US/Kg 1400 U US/Kg 710 U US/Kg 710 U US/Kg	1400 U ug/kg 1400 U ug/kg 1400 U ug/kg 1400 T10 U ug/kg 710 350 U 350 U 350 U ug/kg 710 350 U	5-Rethylcholanthrage Portidine	5	2	1508 1508		88	_	54/kg	25	252	}	<u>.</u> 2	25	350 U	ug/kg	350
1400 U ug/kg 1400 U ug/kg 1400 U ug/kg	1400 U UQ/kg 1400 U Ug/kg 1400 U Ug/kg 710 350 U	N-Witrosomethylethylemine	7. s	200	2		38		, 5 2, 5 3, 5	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	€	É	, d	3	320 7	5 /2 2 /2 2 /2	255
				⊋ 8	2		8		ug/kg	1400	2	3	2	2	350 U	ug/kg	350
				osy K S			: .			i		 					

=	Data
5	Soil
MAVSTA	2
≨	RFA Sur

	350 17000 1700 3500 350 350 350	1700 350 350	350
016 ATA 0701 16-94 UNITS DL	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg ug/kg ug/kg	ug/kg ug/kg ug/kg
M7675018 RFADATA 285500701 05-AUG-94 VALUE QUAL UNIT	350 U 1700 U 1700 U 1700 U 1700 U 350 U 350 U 350 U 350 U	1700 UJ 350 UJ 17000 UJ 1700 U 350 U	1700 # 350 U
DL VAL	710 3400 710 710 710 710	87.2 X	£
47675017 RFADATA 285500601 05-AUG-94 QUAL UNITS	7,50 7,50 7,50 7,50 7,50 7,50 7,50 7,50		252
MALUE OCI	2,400 2,400 2,400 2,400 2,400 2,400 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000		3400 R 710 U
10	68000 14000 14000 1400 1400	1400 1400 1400	1400
M7675016 RFADATA 28SS00501 05-AUG-94	0 09/kg 0 09/kg 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 09/kg 0 0 0 09/kg 0 0 0 09/kg 0 0 0 09/kg 0 0 0 09/kg 0 0 0 0 09/kg 0 0 0 0 09/kg 0 0 0 0 09/kg 0 0 0 0 09/kg 0 0 0 0 0 09/kg 0 0 0 0 0 09/kg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	::-: ::-:	~ ¬
FILE	1 4004 1 4005 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1 4008 1	6800 6800 6800 6800 6800 1400	- 6800 1400
ā	6700 6700 6700 6700 6700 6700 6700 6700	957 963 963	\$
RFADATA 28SS00401 05-AUG-94		222222 333333 333333	26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20 26/20
	1400 6700 6700 6700 6700 1400 1400	255 255 255 255 255 255 255 255 255 255	9073
Lab Sample Number: Site locator Collect Date:	dimine dimine quinome benzane coluidine	ensistine ensistine herot (2)	
	o-Toluidine Hexach bropropene p-Phenyl enedimina Sefrale 1.6-Naphthoquinon 1.5-Dinitrobonzen 5-Hitro-o-toluididi	4-Kitroguino ing-1- Hethapyritere 3,3-Disethylbenzid Hexachiorophena Aramite 2-Chiorophenol 3-E 4-Hethylphenol	4.Nethylphenol Diphenylamine Hexachioropropers 2.Acetylaminofluo

ERE GENERATED FROM THE SYOC (8270) ANALYTICAL RUM.

	3500 720 720	220
, D		9 to to
M7675014 RFADATA 28SSG0301 05-AUG-94 QUAL UNITS	49/kg 49/kg 49/kg 49/kg	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
RFF 2888 05 - 1 0UAL	333355	3500 R 720 U
VALUE	3500 3500 3500 3500 720 720	ž,
	2 22	<b>6</b> 88
Ð		
M7684003 RFADATA 2855002010 06-AUG-94 QVAL UNITS	222222	2
N7684 RFAL 285501 06-AL	32 <b>4322</b>	
VALUE	2 x 2 2 x x	. 53
>	8 88 8 88	88
ಕ		<b>~</b> · ·
002 ATA 0204 G-94 JNITS	ug/kg ug/kg ug/kg ug/kg	69/kg 69/kg 8
M7684002 RFADATA 28SS00201 06-AUG-94 QUAL UNITS	324322	
VALUE	1800 1800 1800 380 1800 1800	360 L
Š	   E ES	<b>32</b>
<u> </u>	in in in	2 <b>9</b>
178 101 194 115	555555	959
N7684001 RFADATA 28SSG0101 06-AUG-94 QVAL UNITS	3323333	333 33
_	5000 00 00 00 00 00 00 00 00 00 00 00 00	, <b>5</b> 5
ALUE		
ompie Number: Site Locator Collect Date:		
Lab Sampie Number: Site Locator Collect Date:		
rs qe 1	<u>e</u> 8	<u>.</u>
	Menol I	alne opropere alnoftuorene
	itene stropher sphero fethyli	
	Stachic Chief	Acety
	まいま くいりょ	o = A

CHLOROBENZENE WERE GENERATED FROM THE SYDC (8270) ANALYTICAL RUN

		528 528 528 528 528 528 528 528 528 528
	ᆸ	мами им мамимиреничениченичествени предоставлени
	5018 0A1A 00701 UG-94 UNITS	100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 10
	M7675018 RFADATA 288500701 05-AUG-94 QUAL UNITE	350 U
	VALUE	
	01	
	40	100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 10
	M7675017 RFADATA 28S500601 05-AUG-94 QUAL UNITS	
	VALUE	222222222222222222222222222222222222222
	>	00000000000000000000000000000000000000
AT Data	ಕ	
MAVSIA MAYPORI Surface Soil Data	M7675016 RFADATA 28SS00501 05-AUG-94 QUAL UNITS	1 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg
NAVSI RFA Surfe	_	77500 C C C C C C C C C C C C C C C C C C
=	VALUE	
	<b>D</b> F	66866666666666666666666666666666666666
	N7675015 RFADATA 26SS00401 05-AUG-94 QUAL UNITS	100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 100/kg 10
	H7675015 RFADATA 28SS00401 05-AUG-94	
	VALUE	88 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
		8/kg
	Lab Sample Number: Site Locator Collect Date:	
	o c	Section 1 section 1 section 2 section 2 section 2 section 2 section 2 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 section 3 sectio
		tine better the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of th
		SKG SVOC (6270+24)  ## ill troacdimethy! amine Phanol  Anil ine bis (2-Chi orobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 2-Hethylphanol 1, 2-Dichlorobenzene 2-Hethylphanol 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 2, 4-Dichlorobenzene 2, 4-Dichlorobenzene 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 2, 4-Dinitroolomen 3, 4-Dinitroolomen 2, 4-Dinitroolomen 3, 4-Dinitroolomen 3, 4-Dinitroolomen 3, 4-Dinitroolomen 3, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen 4, 4-Dinitroolomen
		MISTORY C. C. C. C. C. C. C. C. C. C. C. C. C.

Collect Date: Walle Collect Date: Walle Collect Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date:	Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application	Lab Sample Number: Site Locator	Number: Site Locator	_	M7684001 RFADATA 28550010	H7684001 RFADATA 285500101			M7684002 RFADATA 28SS00201	002 ATA 0201			7. H. 28. 5.	RFADATA RFADATA 28SS00201D			N7675014 RFADATA 28550301 05-AIG-94	014 ATA 0301 6-94	
1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000		Colle	ect Date:		4-80 60.4-4	UG-94 UNITS	ᆸ	VALUE		UNITS	ᆸ	VALU	ı	AL UNITS	<u>ا</u>	VALUE	SUAL S	UNITS	<u>م</u>
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000															Kana			
		8KG SVOC (8270+24)	ug/kg					•	=	40	7,0		- - -				20 ==	uo/ko	720
170	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	N-Nitrosodimethylamine	•	À	) )   	ug/kg ug/ka	22	¥ ¾	<b>,</b> ,	ug/kg ug/kg	<b>12</b>		3 3 3	2 × ×	(#)		n :	ng/kg	22
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	17.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.0	Antine			- - -	64/kg	25	<b>X</b> :	<b>-</b> :	ug/kg	36.		3 3 3	<b>46/kg</b>	# Þ		= = 2,2	56/KG	32
10	10	bis (2-Chloroethyl) ether		<b>R</b> P	)    -	64/kg	225	¥ %	<b>&gt;</b> =	64/80 CB/K0	¥ 38		3	2 / 2	M		, S	ug/kg	<b>'</b>
1,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,000   100,00	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	1.4-Dichlorobenzene		A	2	58/kg	370	<b>3</b>	] 	ug/kg	38.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5 2		2 . 2 .	<b>5</b>	m i		2°2	59/kg	22
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	Benzyl Alcohol			_ :	6 7 8	2.Y	<b>3</b> 3	) = 0 =	54/kg	2 2			64/20 20/40	หั		25.5	sé,	22
17.0   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00	170   100/14   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   1	1,2-0 ichlorobenzene 2-Mathyl phanol		F	- - - -	2 / K	370	<b>X</b>	) )	5 5 7 5	×		3	ug/kg	i <del>ř</del> i		n :	ug/kg	22
13.00   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10.000   10	Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   C	big(2-Chlorofsopropyl)ether		R	<b>=</b>	ua/kg	370	<b>%</b>	); 	ug/kg	36.		⊃ : 9;	50/kg	A P		2 S	59/Kg 56/kg	32
1000   10074   1007	1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000	N-Nitroso-di-n-propylamine		P	> = 2	64/kg	P. C. C.	\$ <b>%</b>	) <b>)</b>	56/kg Ka/ka	360		38	33	īM		n 02	cg/kg	2
1000   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074   10074	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	Hexachtorostalas		'n	, p	2 /S	370		) )	ug/kg	36		360 1	ug/kg	m i		⊃ : 2,0	ug/kg /kg	22
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000	Isophorane		5	۵: د	ug/kg	370		)   	ug/kg	,	: 	3 3 3	29/kg	÷ ĕ		    		32
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	100   100/14   1500   100/14   1500   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   1000   100/14   100/14   100/14   100/14   10	2-mitroplienol		<b>2</b> 5	5	5 / S	26		) ) )	2 / S	ž		<b>3</b>	. 6 /kg	m		n 02	ug/kg	22
370   100/16   370   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   100/16   360   360   100/16   360   360   100/16   360   360   360   100/16   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   3	170   100/16   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   1			- S			180	_	, D	ug/kg	190		1600 U	ug/kg	<b>E</b>		- : :::::::::::::::::::::::::::::::::::	- 19/kg	325
370 U	370   1 mg/kg   370   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   1 mg/kg   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   36	big(2-Chtoroethoxy)methane			_		370		> : 0 :	ug/kg	36.		2 2 3	3	iñ iñ		  	64/50 64/51	25
370 U         1976 U         370 U         1976 U         360 U         1976 U         360 U         1976 U         360 U         1976 U         360 U         1976 U         360 U         1976 U         360 U         1976 U         360 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U         1976 U	370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16         370 U 199/16<	2,4-Dichiorophanol			2 : 2 :	- 54/kg	25		<b>)</b> =	19/kg	9 %	· · ·		* × ×	'n		2 2 2 2 2	5/kg	25
370 U 100/40         370 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40         360 U 100/40<	100   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   100/16   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170	12,4 Trichlorobenzene		r in	2 2 2 2	64/89 76/49	22		22	5 /kg	Ř	ر  انتخار	3	2/45	m		n 02	ug∕kg	2
370 U ug/kg         370 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg         360 U ug/kg	370 U         196/16         370         360 U         196/16         360 U			17.	2	, S	370		) 	ug/kg	¥,		3;	3	M i		- : 2:2	ug/kg :::/kg	22
370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674         370 U 19674	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	Hexach Coputadiene		A	⊃: 2:	By/dn	25		<b>&gt;</b> =	2/S	\$3		3 3 3		A M		o	3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/	22
570 U         ug/kg         350 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg         360 U         ug/kg <td< td=""><td>370 U</td><th>4-Chloro-3-methylphenol</th><td></td><td>- P</td><td>, 2</td><td>2 S 2 S</td><td></td><td></td><td>) = 2 0</td><td>2 /S</td><td>* 3</td><td></td><td>2</td><td>5</td><td>A</td><td></td><td>n 02</td><td>64/kg</td><td>22</td></td<>	370 U	4-Chloro-3-methylphenol		- P	, 2	2 S 2 S			) = 2 0	2 /S	* 3		2	5	A		n 02	64/kg	22
370 U ug/kg 370 360 U ug/kg 360 1 ug/kg 360 1 ug/kg 360 1 ug/kg 360 1 ug/kg 360 1 ug/kg 360 1 ug/kg 360 1 ug/kg 360 1 ug/kg 360 1 ug/kg 360 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 370 1 ug/kg 37	170   100/14   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   1			15	3	2 2 2 2 2 2			30	cg∕kg			3	2/kg			그 : 2:5	00/kg	25
1500   U	1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/kg   1500   100/k	2,4,6-frichlorophanol			2 2	50/kg	22		> : 0 :	69/kg	93		3 : 3 :	9 9	A P		 	64/ga	32
370 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   1500 th   100 km   100 km   100 km   100 km   100 km   100 km   100 km   100 km   100 km   100 km   100 km   100 km   100 km   100 km   100 km   100	1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to ung/red   1800 to un	Dimethy (phthalate		m è	>: 2:	40/kg	75		<b>9</b>	29/Kg	, <u>2</u>			. 64/s	• 💆		28	رة الأرادة	3500
1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800	1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/kg   1800 to ug/k	2.4.5 Trichlorophenol		<u>.</u>	: : ::::::::::::::::::::::::::::::::::	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	32		9	. 64/s	ž		3 8	, S	PĀ (		⊃ : 024	ug/kg	22
370   146/kg   370   360   146/kg   360   360   146/kg   360   360   146/kg   360   360   146/kg   360   360   146/kg   360   360   146/kg   360   360   146/kg   360   360   146/kg   360   360   146/kg   360   360   146/kg   360   360   146/kg   360   360   146/kg   360   360   146/kg   360   360   146/kg   360   360   146/kg   360   360   146/kg   360   360   146/kg   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360   360	370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1 147/4 370 1	2-Hitroeni (Inc		<b>#</b>	。 名	ug/kg	180 180	_	э: 9:	<b>69/kg</b>	<b>8</b> 5		2 : 2 : 2 :	3			2 5 2 5 2 6 2 7	19/Kg	
1800   1	1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1800   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1 mg/kg   1	Acenaphthylene			2	. 42/Kg	こと		2 G	69/Kg	2 2		)  }	? <u>?</u>	) PT		n 92	eg/kg	22
1800 U. \text{ug/kg}   370   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350   \text{ug/kg}   350	370 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg         350 U         ug/kg <td< td=""><th>7-11-Frenilline</th><td></td><td>. 2</td><td>) 2 2</td><td>, <u>s</u></td><td>3</td><td>•</td><td>- - - -</td><td>64/go</td><td>2</td><td></td><td>2008 1</td><td>) )</td><td><b>₽</b>†</td><td></td><td>3:5</td><td>.g/kg</td><td>22</td></td<>	7-11-Frenilline		. 2	) 2 2	, <u>s</u>	3	•	- - - -	64/go	2		2008 1	) )	<b>₽</b> †		3:5	.g/kg	22
1500 U. ) US/Kg   370   US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/Kg   360   U US/K	1500 U. ug/kg 370 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg 360 U ug/kg	Acenaphthena		•	ے: 22	ug/kg	K	•		54/kg	Ř	_	3 <u>5</u>	2 S 3 S			28	\$ \ \ \ \ \ \ \ \ \	326
370 U         100/kg         370 U         100/kg         360 U         150 U         100/kg         360 U         100/kg         360 U         100/kg         360 U         100/kg         360 U         100/kg         360 U         100/kg         360 U         100/kg         360 U         100/kg         360 U         100/kg         360 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100/kg         100 U         100	370 ii         ug/kg         370 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         36	2,4-Dinitrophero:			3 3 3 8			= <b>5</b>		رو/ الاراد			1800 U.	27/29			200 C	ug/kg	3500
370 U 100/kg 370 360 U 100/kg 360 43 1 100/kg 360 720 U 100/kg 370 U 100/kg 360 720 U 100/kg 370 U 100/kg 360 1 100 U 100/kg 360 1 100/kg 360 720 U 100/kg 370 U 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 370 U 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 370 U 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 370 U 100/kg 370 U 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 370 U 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U 100/kg 360 U	370 U 100/kg 370 360 U 100/kg 360 43 1 100/kg 360 720 U 100/kg 370 1 100/kg 360 1 100 U 100/kg 360 720 U 100/kg 370 1 100/kg 360 1 100/kg 360 720 U 100/kg 370 U 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1 100/kg 360 1	Diberzofuren			ے ا	<b>5</b> /kg	F		) 9	ug/kg	2	٠.	3 3	2 (K			n = 122	ug/kg us/ka	22
370 ii         ug/kg         370 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         360 ii         ug/kg         36	370 L ug/kg 370 360 U ug/kg 360 160 U ug/kg 360 720 U ug/kg 370 1 ug/kg 370 U ug/kg 360 1 ug/kg 360 1 ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1	2,4-Dinitrotolume			- - -	0x/ <b>c</b> n			2 9	6 4/kg	8 13		3	7 2			n 02.	54/kg	2
370 U ug/kg 370 1 ug/kg 150 1 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0 ug/kg 150 0	370 U ug/kg 1370 1 ug/kg 1370 1 ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U ug/kg 1800 U	- - - - - -			) = 	? <u>2</u> } }	ž		9	ug/kg	*		3	<b>B</b> / <b>B</b> / <b>B</b> / <b>B</b> / <b>B</b> / <b>B</b> / <b>B</b> / <b>B</b> / <b>B</b> / <b>B</b> /	<b>M</b> (		= : 2:2	64/80 17/40	22
1800 U	1800 U	Fluoren			ے 2	<b>6</b> 4/2	<u>ج</u>	•		09/kg	y į	- -	3 S	9 ; 9 ;	1			2 /s	3200
370 U 196/kg 370 360 U 196/kg 360 U 196/kg 360 720 U 196/kg 370 U 196/kg 360 U 196/kg 370 U 196/kg 370 U 196/kg 370 U 196/kg 360 U 196/kg 370 U 196/kg 370 U 196/kg 360 U 196/kg 370 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 370 U 196/kg 1800 U 196/kg 1800 U 196/kg 360 U 196/kg 370 U 196/kg 360 U 196/kg 360 U 196/kg 370 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 196/kg 360 U 19	370 U 149/kg 370 360 U 149/kg 360 U 149/kg 360 720 U 149/kg 370 U 149/kg 370 360 U 149/kg 360 U 149/kg 370 U 149/kg 360 U 149/kg 370 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U	4-Illtroant line			- 38	2 <u>3</u>				26/2 26/2	<u> </u>		32	? ? }	2 🕰				3500
370 L 149/kg 370 360 U 149/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 370 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 1800 U 146/kg 1800 U 146/kg 1800 U 146/kg 1800 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/kg 360 U 146/	370 U 149/kg 370 360 U 149/kg 360 U 149/kg 360 U 149/kg 370 U 149/kg 360 U 149/kg 360 U 149/kg 370 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 360 U 149/kg 3				; _ }	? ? }	F			64/kg	2	0	3 3 3	Ma/kg	<b>M</b>		⊃ : 22:	08/kg	22
370 U UQ/kg 370 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 350 U UQ/kg 350 U UQ/kg 350 U UQ/kg 350 U UQ/kg 350 U UQ/kg 350 U UQ/kg 350 U UQ/kg 350 U UQ/kg 350 U UQ/kg 350 U UQ/kg 350 U UQ/kg 350 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 360 U UQ/kg 36	370 U UNIVE 370 360 U UNIVE 360 U UNIVE 360 U UNIVE 360 U UNIVE 360 U UNIVE 360 U UNIVE 360 U UNIVE 360 U UNIVE 360 U UNIVE 360 U UNIVE 360 U UNIVE 360 U UNIVE 360 U UNIVE 360 U UNIVE 360 U UNIVE 360 U UNIVE 360 U UNIVE	1.2-Dipherythydrazine		•	ے: 21	2 / Kg	ri			6/kg	28	<b>-</b>	3 33	3 £				5 /5 2/kg	22
1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 1800 U 18	1500 U warke 1500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500 U warke 3500	4-Bromophery I-pheny lether	000004		) = 2				2.9	2 9 3 9	23	) <b>0</b>	3	<b>5</b>			n 02	ug/kg	22
370 U UALKO 360 U UALKO 360 U UALKO 360 U UALKO 360 U UALKO 360 U UALKO 360 U UALKO 360 U UALKO 360 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U UALKO 370 U	370 U Werking 370 360 U Werking 360 U Werking 360 U		New co	. 2	. s	12/3	<u>\$</u>		) = : (2:	cg/kg	200	01	2001	<b>16/kg</b>	2	_	200 ===================================	ug/kg ta/ka	3200 2200 2000 2000 2000 2000 2000 2000
			505 6		ے 2	2	<b>F</b>		<b>5</b>	ug/kg	2		3				2		2
			وماين					1154							,				

	16	. 6	221	25	22	1,00	220	2	22	22	022	22	220	22 120 100 100 100 100 100 100 100 100 1		120	22	3200	220	22.5	32	Ì	3500	3200	į	3	16.00	25	2	22	3500	22	22	35000	3500	350 50 50 50 50 50 50 50 50 50 50 50 50 5	32	22	93.			)
	M7675014 RFADATA 28SS00301 05-AUG-94 AMAI LHITS	l	2 /k 2 /k 2 /k	U\$/kg	9 4 9 4 9 6	2/kg	ua/ka	ug/kg	ug/kg	<b>19/</b> 49	ue/kg	54/go	5/kg	ug/kg	ue/ka	ug/kg	ug/kg	09/kg	ug/kg	ug/kg	19/kg	ug/ka	<b>cg/kg</b>	5 /kg	09/kg	2/3	00/kg	2 / 2 / 2 / 2 / 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3	ug/kg	<b>19/kg</b>	ug/kg	Ug/kg	<b>19</b> /kg	.s/kg	64/go	64/kg	54/50 7 kg	CG/kg	2/2			
	M76. RFI 28S 28S 05-1	H	32	n 022		1,000	720 U	720 E	250 E	2 2 2 2	D 021	= = 2 2	222	027	2300 U	n 022	220 c	0.005%	120 U	n :		3500 0.3	3200 C	3200 3200 3200 3200	3500 UJ	- S - S - S - S - S	3500 11		n 021	2.2 2.2 2.5 2.5 3.5 4.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	3500 U	⊃ = 82 2	202	3500 F	3200 0	3500 5	302	2 E	70 00SS			
	2		<b>3</b>	3		<b>₹</b>	9	8	<b>3</b>	<b>3</b> 3	<u> </u>	385	3 5	2	35	360	360		3	38	2 2 2	200		38	000	33	1900	33	3	<b>3</b> 3	<u> </u>	<b>3</b> 5	3	2	<b>5</b>	9	33	3	3			
	M7664003 RFADATA 285500201D 06-AUG-94		2 2 2 2 3 2 3 3	ug/kg	2 3	9 <u>9 9</u>	5/4	2 S 3 S	54/g	19/kg	2/2 2/2	54/kg	5 /4 5 /2 5 /2	68/kg	2/Kg	3	by/ka	3		2/3	\$ ?	2 9 2 9 3 9	2.9	- <b>20/</b> Kg	2	33 33	2/2	93/93 93/93 93/93			7 9	200 m				3		3	) } } }			in in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second
 			3 3 3	<b>3</b>		3 E		33	<u></u>	25 25 25 25	200	9	33	. S	1600 L	33	28	3	98	3	3;		1991	35	200	<u> </u>	2	<b>3</b> 3	3	33		3	33	25 25 35 35 35 35 35 35 35 35 35 35 35 35 35		8	2 9 X	3	38			
ate.	ā	<u>ة</u>	<u> </u>	360	99	<u></u>	UYE	2 S	36	992	9	98	95 55 55 55 55 55 55 55 55 55 55 55 55 55	38	1800	2 2	260	9		3	9	3 5	9	085 285 285	<u> </u>	2	<b>3</b>	85 25	3	2			33	1500	<b>V</b>	<u> </u>	2009					
MAVSTA MAYPORT Surface Soil Data	M7684002 RFADATA 28SSD0201 06-AUG-94	OUAL UNITS	ug/kg	- cg/kg	J ug/kg	09/kg	63/65 C	. <b>49/</b> kg		ug/kg	1 C9/Kg	. ug/kg	04/80 04/90	. ug/kg	ug/kg	19/kg	ug/kg	u ug/kg	54/65 54/65		U ug/kg	08/gn ==	ug/kg	09/kg		U 09/kg		0 4/kg		26/kg	5/Kg		26/kg	2/kg	3:		J. 27/6	,	<b>-</b>			)
NAV RFA SUF		WALUE	286 286 286	365	360 1	26		3 2	38	995	360	38	360	25	1800	<u> </u>	365	92	1800	38	36	9 9 9	<u>8</u>	8 8 8 8	9 6 6	32	<u> </u>	-	33		35		33		_		2000		09X	B. Co.	i a ba	66 T
		정	22	25	320	2		370	25	2	222	28	21		1800		22	2	280 25			2							25													
	M7684001 RFADATA 285500101 06-AUG-94	QUAL UNITS	U vg/kg	10/kg	ug/kg	3/3	: .	5/53 5/53	2/87					2	-	<b>.</b>	- -=	U Lg/kg		26/48			Lin	ny fa	2/3 2/3 2-1	ж ( ³	: 		<b>.</b>		3			<b>,</b>	3				) 3 (			
		VALUE	ore.		28	R	2	25	3.5	25	- Par				1800	R:	35		1800	25	25	2		1800 U		S.	25	2	E!		E.		E!		2	<b>2</b> 9	ğ		E	3		
	Lab Sample Number: Site Locator Coilect Date:		Anthracene	of-n-sutylphthalete		Pyrene Rusylberzyiphtholete	1 1 - Dichlorobenzidine	Benzo(a)anthrecene		selate						ate		Acetomenone	Phenyl tert butylamine	2,6-Dichlorophenal	# ## (rose-di-p-totty/esine	M-Witchedovino Idina		Pentachlorobenzene		2.3.4.6-Tetrachloropherol		A: Aminobi menyi Pantachi orgali trobenzene	Pronatice	7.2.61methy(eniro)azobanzebe 7.2.61methy(beny/a)anthracene	3-Kethylcholenthrene	Pyriding.	M-Nitroecochholine	o-toluldine	p-thenyl endite	##100 p	i aceatrole 1 4-machtheolingre	1.3-binitrabenzene	N-Mitro-o-tolulaine 1.5.5-Telnitrabenzene	4-Nitrogulanting-1-oxide		

	7#
MAVSTA MAYPORT RFA Surface Soil Data	M7698012
	30020757
	-

DI.					•		•	•	•	o <	• <del>=</del>	•	•	•	0 4	<b>5 -C</b>			<b>○</b> ∢	<b>3</b>	•				•		•		25		2	2	ne. Sasa
M7698011 RFADATA 285503501 10-AUG-94 DUAL UNITS		<b>8</b> /8	3	2,5 3,5	5/kg	2/S	2 2 2 3	60/kg	63/kg	ng/ka	50/Kg	, y , y	- 54/85 - 54/85	ug/kg	c9/kg	2 / S	3 3	ug/kg	5 3	7 2/9:	/ Z   §	<b>9</b> /2/3/3	2 2 3 3	, <u>8</u>	2/3 3/3/	2 S 3 S	2	2/ <b>3</b>	2 <u>3</u> 5	?	? ? i §	2: 2:	
H769 RFA 2855 10-A QUAL		: :=:	> : = :	)     	9	ے ت	> = • •	: D	ے ص	- - -	) = 	; <del>-</del>		ت و	⇒ : •	) = 0 4	3. <b>4</b> 3	<b>3</b>	⇒ : •••	) =   	) = ) =	_ = `	3 3 6 4	) <b>3</b>	- -	) = 0		<u> </u>	) 25	) 	: a : 2	= • = •	<b>.</b> )
VALUE	1 - 1 0 0 List ( ) 1 - 1 3 3 1 1 - 1 3 1	2	29	2 9		₽.	. v	· •	· <b>L</b>	<b>.</b>	م چ	ž iv	· rv	'n	<b>м</b> (	^ 4		·	·	<b>.</b>	\ <u>_</u>	2	Λ <b>ι</b>		<b>.</b>	~ ~	, n			3		<b>2</b>	
ᆸ																															m	•	
M7698012 RFADATA 28SS03401 10-AUG-94 QUAL UNITS		ug/kg	ug/kg	- 04/kg	ug/kg	ug/kg	69/kg	16/kg	ug/kg	ug/kg	1.9/kg	09/10 109/10	ua/ka	69/kg	ug/kg	ug/kg	6 /6 64/60	ug/kg	ug/kg	5 /K	5 /2 2 /2	ug/kg	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 /S	ug/kg	04/Kg	54/85 SA/85	d/kg	ug/kg	5/5 6/5	2 5 3 5 3 5	40/kg	
M7690 RFAI 285S1 10-AI VALUE QUAL		10 U	10 U	₽ <b>£</b>	<u>2</u> •≠	3 2	Σ	)   	. v	) (2)	n ș	5 r	) L	200	2	⊃: ∵:	o vo	. rv		- -	, <del>5</del>	₽ ·	<b>~</b> •	2 2		~ u	~ ~	. S	٦ <u>.</u>		2009£	8,	r n
> 3		9	2	25	2.2			ΛU	N L/N		n		<b>N.</b>	<b>.</b>	<b>S</b>	<b>(</b> )		v un	<b>v</b>	<b>(</b>		2	<b>V</b> 1. W		•		^ u	\ M	350	8	2"	<b>.</b>	^
M7683005 RFADATA 28SSO3301 06-AUG-94 QUAL UNITS			84/85 =	. wg/kg	2 <u>2</u> 2 2	2 (2) (2) (3)	2/go	9 ! 9 :		U	C C2/kg	Z :		) ) )	2/2	EX/SO D	04/kg			. va/ka	2/kg	2/gs = 2	<b>64/64</b>			2/25 2		2 2 3 3 3 3	5 C C C C	3/2	5/3/3 3/3/3		8 / m 2 / g
A2. 67		9	2 4 8		2	7	<b>•</b>	<b>L</b> V 4	rs lif	· 10	•	₽.	A. N			<b>L</b> T													35	<b>5</b>		5	
Lab Sample Number: Site Locator Collect Date:		<u>\$</u>		8 800			eri Series				÷.				44			81	1330	. : . : : : : : : : : : : : : : : : : :	694.7 12.7	, a. t.	 			/ - 11.8	daga Kunan	- - 	er 1 Nov See See Nove See	1535 1335 3337			3 (445.65) 11 (256.65)
Co		BKG VOC4 (8240+11)		VINVI chloride	Chloroethere	Methylene chtorioe	Carbon disulfide	1-Dichloroethane	-Dichloroethene	DICUIO.	1.2-Dichloroethane	2-Butanone	1,1,1-Trichloroethane	Carbon tetrachtorida	grandichlorometumme	-1 3-Dichlororopene	Trichloroethene	Dibromochloromethene	1,1,2-Trichloroement	trans-1.3-Dichloropropene	Promoform.	6-Hethyl-2-penterons 2-Hermone	trachloroethere	1,1,2,2-Tetrachloroethane		Ethylbeniane	Styrene	Xylenes (total)	Trichloropensent	Acrolein	adamethene	i 4-Dightoromizana Aervionitrila	Dibrammethers
		BKC	5 &	\ <u>\</u>	ธ์	7 C			<u>-</u> (	7.5	1.5	2.8	<u>-</u>	3	2 -	- (	E				<b>.</b>	₹.				T T	Ğ	Ž.		- 4	0	- C	2

<del>=</del>	Data
MAYPORT	Soil
NAVSTA	Surface
_	RFA S

	- 1								
	ᆲ	2 <b>.</b>						2	<b>=</b>
(769801) RFADATA 285503501 10-AUG-94	WAL UNITS	- 46/kg - 48/kg - 46/kg	9 3 9 3 9 3	222 333	ug/kg	2 2 3 2 2 3 3 3 3	2 2 2 3 3 3	- 49/kg	<b>3</b>
Z 10-	VALUE	00 370 0	•		905	-	2=	25 25 25 26 27 27 28	<u>-</u>
	ಕ	360						35	•
7698012 RFADATA 8SS03401 0-AUG-94	AL UNITS	ug/kg ug/kg	64/8 64/8	ug/kg ug/kg	ug/kg ug/kg	49/kg 69/kg	46/kg 18/kg	ug/kg	ug/kg
<u> </u>	VALUE QU	3600 U U 008 U 01		5 5 8 8	520 S	100 R	21 R 10 R	3600 U	<b>1</b> 0
	占	85°	155	2 2 2	<b>.</b>	<b>~</b> §	ng	25	<u>,</u>
RFADATA 28SS03301 06-A16-94	QUAL UNITS	U UQ/Kg U UQ/Kg	722 333 333	- 45/Kg - 45/Kg - 45/Kg		20/kg 00/kg		195 195 195	
	VALUE	350	nuner	2 : 2 :	: : : : : :	. 2	· in <u>c</u>	25	<b>;</b> e
Lab Sample Number: Site Locator	בין ניין בין היין	1,2-Dichlorobenzene 2-chloroethylyinylether	methacrylate  - Frich oropropare 	uty[ alcohol  .2 Tetrachloroathans	olbrono-5-ch origo quant Dibronoethane Bosane	S-Chiaropropens Acetonitrile	Chicoprene (Methacrylonitrile		
		2,2,5	177		i i i	5.5	5 E		2 ≥ 2 ≥

WERE GENERATED FROM THE SVOC (8270) ANALYTICAL RU

ដ	
M7683002 RFADATA 28SS03201 06-AUG-94 QUAL UNITS	
VALUE	
11 A A 901 its de	22222222 22222222222222222222222222222
M7683001 RFADATA 28SSO3101 06-AUG-94 JE QUAL UNITS	
DI VALUE	=====================================
M767503 RFADATA 28SS030010 05-AUG-94 QUAL UNITS	
ALUE 2	====================================
ر م	
M7675002 RFADATA 285503001 05-AUG-94 QUAL UNITS	9999999999999999999999999999999
Number: Site Locator it Date: value	2 2 2000-200000000000000000000000000000
Lab Sample Number: Site Locator Collect Date:	
r.	Chloroschane Proscoschane Proscoschane Niloroschane Chloroschane Chloroschane Carbon disulfide 1,1-Dichloroschane 1,2-Dichloroschane 1,2-Dichloroschane 1,2-Dichloroschane 1,2-Dichloroschane 1,2-Dichloroschane 1,1,1-Trichloroschane 1,2-Dichloroschane 1,1,2-Trichloroschane 1,1,2-Dichloroschane 1,1,2-Trichloroschane 1,1,1-Trichloroschane 1,1,1-Trichloroschane 1,1,1-Trichloroschane 1,2-Dichloroschane 1,1,1-Trichloroschane 1,1,1-T
	BKG VOCa (8240+11) Chloromethane Vinyl chloride Chloroethane Vinyl chloride Chloroethane Lactora Carbon disulfide 1, 1-0ichloroethane 1, 2-0ichloroethane 1, 2-0ichloroethane 2-autanon 1, 1, 1-richloroethane 2-autanon 1, 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 2-autanon 1, 2-pichloroethane 2-autanon 1, 2-pichloroethane 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2-autanon 2

RFA

	2=2	. N. N.	220	52.	~	2	٠ <u>:</u>	===	
ы									
002 NTA 5201 G-94 UNITS	19/kg 19/kg	25	7.5	22	8 8	22	25	2	
7683002 RFADATA 28550320 06-AUG-94	333	333	133	333	33	3 3	5 5	5 5 5	ľ
£ 58.8 £	225	. v v	20.0	, 5 2 2 2 2 3 3	20.2	3	2 t t	222 222	) :
VALUE			7	_	~	_		-	
>	۷ <u>۲</u>	1 <i>(</i> 1 )	·유"	25.		2	œ=	-2:	
ಕ									
1 5 S	2 B	7.2.5	? <b>?</b> ?	22	22	25	2 (kg 2 (kg	225	7
17683001 RFADATA 28SS03101 36-AUG-94	33	33	3	33	3	3	33	33	
285 - 39 A	> = :		, S.	- - -	. O. t	. = • • •	.v.=	- - 2:	<b>&gt;</b>
VALUE			×	; <b>F</b> . 77.	<b>.</b> X	: <b>∓</b> `. ∤∵'	e 1977. Maria		
*	٠٠.	A 10 1		^ <b>○</b> ¥		٠.	νo	0 <u>0</u> 0	- (1) <b>≥</b>
ᆸ			2	Ξ		,5	-	555	
_ -					<b>.</b>			<b>9</b> 9 9	<del>.</del>
N7675003 RFADATA BSS03001D 05-AUG-94 QUAL UNITE	3,3	33	* * * *	3 2 3	33	3 3	56.5 5.65 5.65	33	5
M7675003 RFADATA 2855030011 05-AUG-9 QUAL UNI	30	<b></b>	<b>&gt;</b> -> :	<b></b> :	) er :	<b>-</b>	93	<b></b> :	5
., H	<u>~</u> 5	iv iv i	.5.	~£.	202	, <del>5</del>	. v. 5	55;	2
VALUE									
	20	n n	~ <del>2</del>	7 E	<b>n</b>	. 2	· ^ 2	28	<b>-</b>
ಕ									
102 117 1001 115 1115	40/kg	19/kg 19/kg	2 2	19/kg 19/kg		5 × × × ×	6 4 Kg	33	3 3
M7675002 RFADATA 28SS03001 05-AUG-94 QUAL UNITS									-34) 3
	ve	~ ~		~=	- 2 2 2	25	, <u>v</u> =	<b>5</b>	2
VALUE									
Site Site sator				Mirak.	of attack is	X, ⁴	. ''	specific is	USS41
Leb Sample Mumber: Site Locator Collect Date:	1								
sample Colle			£	. 2			anija Geografia		
s <del>qe</del> i	إ	2	3	the property					
_	Viet Viet	ate Prope	- 20 -	loro Floro	2		•	, 5 ,	Appeng Sala Virensi
	85	ethacrylete richloropro	1,4-Dichloro-2-butene vi alcohol	2-Tetrachloroethane broso-3-chloroprope	sether .		. E	etha I	
	-Dichlorobenzene	yl methacrylete 3-1richleroprope		2-Tetrachloroethane	2-Dibromoethane 4-Dioxene	3-Chloroproper Acetonitrila	Chloroprene Nethecryloni tri	metnyl metnacrytake Pentachloroethane Propionitrile	Vinyi acetate
	10.2	₹.		Z	00	-C	Chloropren Hethacrylo	ente	Ē
	1 🕶 6	e 111. <del></del>	· • •	100	· •••		. <b></b> .	4	

		====×8×××××× ××××××××××××××××××××××××××
	6	
	M7675004 RFADATA 28SS02901 05-AUG-94 QUAL UNITS	
	VALUE	
	ᆸ	
	M7675005 RFADATA 28SS02801 05-AUG-94 QUAL UNITE	
	M7673 RFAC 28SS( 05-AL	
	VALUE	
	1	5555.4×22222 2222222222222222222222222222222
at e	5	·
NAVSTA MAYPORT Surface Soil Data	06 TA 701 -94 NITS	48/48 48 48 48 48 48 48 48 48 48 48 48 48 4
VSTA H	M7675006 RFADATA 28SS02701 05-AUG-94 QUAL UNITS	
RFA SU		55554¥~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	VALUE	
	4	
	ø	999999999999999999999999
	M7675007 RFADATA 28SS02601 05-AUG-94 QUAL UNITS	333333333333333333333333333333333333333
	RF 285 285 05-	<u> </u>
	VALUE	
	ample Number: Site Locator Collect Date:	<b>9</b>
	Lab Sample Number: Site Locator Collect Date:	
ł	Cab	
		interest the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the sec
		(82.60) (82.60) (82.60) (82.60) (82.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60) (83.60
		Transport of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont
		BKG VDCs (6240+11) Chistomethans Sconcethane Vinyl chistoride Chistoride Acetore Acetore Carbon disulfide 1,1-Dichistorethane 1,2-Dichistorethane 1,2-Dichistorethane 1,2-Dichistorethane 1,2-Dichistorethane 1,2-Dichistorethane 1,2-Dichistorethane Carbon tarrachistide Expension 1,1,1-Trichistorethane Carbon tarrachistide Broadichistorethane Carbon tarrachistore 1,2-Dichistorethane Carbon tarrachistore 1,1-Dichistorethane Carbon tarrachistore 1,1-Dichistorethane Carbon tarrachistore 1,1-Dichistorethane 1,2-Dichistorethane Carbon tarrachistorethane 1,2-Dichistorethane 1,1-Z-Trichistorethane 1,1-Z-Trichistorethane Carbon tarrachistorethane 1,1-Z-Trichistorethane

	01	250 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	M7675004 RFADATA 28SS02901 05-AUG-94 QUAL UNITS	09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg
		300 300 300 300 300 300 300 300 300 300
	WALUE	Bennususu us utest
	2	9999999999999
	M7675005 RFADATA 28SS02801 05-AUG-94 QVAL UNITS	
	VALUE	8-nn-8-3-4-5-
ta ta	10	~5~~~55gz
RFA Surface Soil Data	N7675006 RFADATA 28SS02701 05-AUG-94	09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg
	_	2522552525 . 25555
7	) 	
	Z	
	M7675007 RFADATA 28SS02601 05-AUG-94	26566655555555555555555555555555555555
	_	28.00.00.00.00.00.00.00.00.00.00.00.00.00
	Lab Sample Number: Site Locator Collect Date:	
	3 8 <b>981</b>	1,2-Dichlorobenzane 2-chiloroethylvimylether Ethyl methacrylate 1,2,3-Trichloropane trans: 1,4-Dichloro-2-butene addutyl elechol 1,1,2-Tetrachol 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromo-thane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,4-Dionane 1,5-Dionane 1,5
		- ベルー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

NAVSTA MAYPORT

## GENERATED FROM THE SYOC (8270) ANALYTICAL RUN.

_	อีอีอัอิจจันนณนนะ พพพพพพพพพพพซอีอินนพพพพพพพพพ พพพพพพพพพพพพพพพพพพพพพพพพพพ
8 00 17 00 00	19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg
N7675008 RFADATA 28SS02501 05-AUG-94 QUAL UNITS	קלה כב הב הב הב הב הב הב הב הב הב הב הב הב הב
VALUE	5555 588888888888888885558888888888888
	5555 «Иничен неменемертинатичестворя и под 185 годи
001 94 175 101	######################################
N7675009 RFADATA 28SS02401 05-AUG-94 QUAL UNITS	
VALUE	ప్రావాల ములు బాటు బాటు బాటు బాటు సావాల బాటు బాటు స్టేష్ కే ఇంట్రాలు మాలు బాటు బాటు బాటు బాటు బాటు బాటు బాటు బాట
70	ออออนที่พพพพพพ พพพพพพพพพพพพพพพพพพพพพพพพพพพพพพ
	19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19
M7675010 RFADATA 28SS02301 05-AUG-94 QUAL UNITS	
VALUE	5555 - Brannana Samanananana 55 - 25 - 25 - 25 - 25 - 25 - 25 - 25
	ETTE BREEKEN BREEKENENENENET ARRESERRET SER
M7675011 RFADATA 28SS02201 05-AUG-94 DUAL UNITS	22222222222222222222222222
A LINE	
	<b>8</b>
Lab Sample Number: Site Locator Collect Date:	
Lab	
	voca (82.60+11) hioracthana roacathana limit chloride hiorothana carbon disulfide 1.1-Dichlorothana 1.2-Dichlorothana 1.2-Dichlorothana 1.2-Dichlorothana 1.2-Dichlorothana 1.2-Dichlorothana 1.2-Dichlorothana 1.2-Dichlorothana 1.3-Dichlorothana 1.3-Dichlorothana 1.3-Dichlorothana 1.3-Dichlorothana 1.3-Dichlorothana 1.3-Trichlorothana 1.3-Dichlorothana 1.3-Dichlorothana 1.3-Dichlorothana 1.3-Dichlorothana 1.3-Dichlorothana 1.3-Dichlorothana 2-Hestnyl-2-pantanona 2-Hestnyl-2-pantanona 2-Hestnyl-2-pantanona 2-Hestnyl-2-pantanona 2-Hestnyl-2-pantanona 2-Hestnyl-2-pantanona 2-Hestnyl-2-pantanona 2-Hestnyl-2-pantanona 2-Hestnyl-2-pantanona 2-Hestnyl-2-pantanona 2-Hestnyl-2-pantanona 3-yiena (total) 1.3-3-Dichlorobantana Acrolen 1-3-Dichlorobantana Acrolen 1-3-Dichlorobantana Acrolen 1-3-Dichlorobantana Acrolen 1-3-Dichlorobantana
	Skg vocs. (8240+11) Chlorosethane Vinyl chloride Vinyl chloride Chlorosthane Hethylans chloride Acetons Carbon disulfide 1,1-Dichlorosthane 1,2-Dichlorosthane 1,2-Dichlorosthane 1,2-Dichlorosthane 1,1-Irichlorosthane Carbon tetrachioride Echon tetrachioride Francochlorosthane 1,1-Irichlorosthane 1,1-Irichlorosthane Strans 1,3-Dichlorosthane Broandichlorosthane Lichlorosthane 1,1-Irichlorosthane Broandichlorosthane Strans 1,3-Dichlorosthane Broandichlorosthane Erans 1,1-Irichlorosthane Strans 1,1-Irichlorosthane Erans 1,1-Irichlorosthane Strans Chlorosthane Interachlorosthane Erhylbanzane Strrans Chlorosthane Interachlorosthane Inter

	ᆸ				ing the Street		rii. Maa	dan.		
	M7675009 RFADATA 28SS02401 05-AUG-94 QUAL UNITS	U	. <b></b>	U 44/kg		2 2 3 3 2 3	2/2 2/2 1	2 2 2 2 3 3 3	24/20 11 12/40	
ł	VALUE	60 01 01			5. 5.	5 20	<b>8</b> 8	 	2 2 2 2	9 0
ta	10	•		~	_		_		·	
NAVSTA MAYPORT Surface Soil Data	M7675010 RFADATA 285502301 05-AUG-94 QJAL UNITS	ug/kg ug/kg	48/89 18/89	69/kg	09/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	100/kg
	RF6 28S 05-0	3 0 E	νν: > ⊃ :	20.5	, 5 . 3 . 3	210 R	00t U	2 0 2 2	2 £	<u>3</u> 2
RFA	VALUE									
	1	6.	(A (A)	^&`	` <u>_</u>		2	M.		} =
	(7675011 RFADATA 28SS02201 05-AUG-94 MUAL UN1TS	ug/kg ug/kg	56/kg 56/kg	25. 25.	2 S	7.2.3 3.3.3	72. 19:		7 S. 3 S	22 22/2
	M7675011 RFADATA 28SS02201 05-AUG-94	39	22 22	75:	) ) )	 	) ) 	, n :	) - = :	) 
	VALUE			N.	-	N	-			
	Number: Site Locator t Date:		Tallaca			2.0430£	2000 (B	ood8948	sid de vivid à	nedrigge h
	Lab Sample Number: Site Locator Collect Date:				anse opene					
	Ę		•	Į.					•	nejvito Angelio Wan re

2-Chloroethylvirylether Ethyl methacrylete 1.2.3-Trichloropropane trens-1.4-Dichloro-2-butene 1acburyl alcohol 1.1.2-Tetrachloroethane 1.2-Dibromo-3-chloropropane 1.2-Dibromo-1-chloropropane 1.2-Dibromo-1-chloropropane

굼

VALUE

M7675008 RFADATA 28SS02501 05-AUG-94 QUAL UNITS

~8 ~5555

Chloroprene kethecrylonitrile Hethyl methecrylat Pentachloroethare Propionitrile Vinyl scatate

S-chioropropens Acetonitrile

09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg

330 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u 250 u

ಕ	======================================
M7675013 RFADATA 28SS021010 05-AUG-94 QUAL UNITS	
VALUE C	######################################
. 10	TTTT MANAGEMENT TO AND AND AND AND AND AND AND AND AND AND
M7675012 RFADATA 28SS02101 05-AUG-94 QUAL UNITS	
VALUE	Etteasnonnon nunnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
005 041A 02001 06-94 UNITS DL	
M7684 RFAI 28SSC 06-AL	
VALUE	======================================
M7684004 RFADATA 285S01901 06-AUG-94 QUAL UNITS DL	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$
Leb Sample Number: Site Locator Collect Date: VALUE	7 <del>/</del> 65
loo	The contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract o
	BKG voca (8250-11)  Chloromethane Broncomethane Vinyl chloride Chloromethane Vinyl chloride Chlorosthane 1, 1-Dichlorosthane 1, 2-Dichlorosthane 1, 2-Dichlorosthane 1, 2-Dichlorosthane 1, 2-Dichlorosthane 2-Butanone 2-Butanone 1, 1, 1-Trichlorosthane 2-Butanone 2-Butanone 1, 1-Trichlorosthane 2-Butanone 1, 2-Dichlorosthane 2-Butanone 1, 2-Dichlorosthane 2-Butanone 1, 1-Trichlorosthane 1, 1-Trichlorosthane 1, 1-Trichlorosthane 2-Butanone 1, 1, 2-Trichlorosthane 2-Hexanone 1, 1, 2-Trichlorosthane 2-Hexanone 1, 1, 2, 2-Tetrachloroschane 2-Hexanone 1, 1, 2, 2-Tetrachloroschane 2-Hexanone 2-Hexanone 2-Hexanone 1, 1, 2, 2-Tetrachloroschane 2-Hexanone 2-Hexanone 2-Hexanone 2-Hexanone 2-Hexanone 3-Hexanone NAVSTA MAYPORT Surface Soil Data

RFA

=	Data
\$	_
	Soi
-	BCe
HAVST	Surfa
	RFA

	DL	360	in in	220	'n	5 c	~	011	<b>ب</b> ر:	= = ;	<u></u> ==	
M7675013 RFADATA 2855021010	AL UNITS	ug/kg ug/kg	ug/kg	09/kg		49/kg 49/kg	ug/kg ug/ka	ug/kg	2 /8n	<b>5</b> 26/59	ug/kg 130/kg	
7.7 2.8S	VALUE QUA!	360 U	. N. N.	) \$ CC	1 S	5 5 2 2	220 R	110 U	) (2)	==	<b>→</b> • • • • • • • • • • • • • • • • • • •	<b>:</b>
	ᆸ	210		'n		<b>2</b> ^	ara e <b>g</b> e Para ega Para ega	2	4			
RFADATA 288502101	QUAL UNITS	U ug/kg	Z     Z     Z	? \$! } \$!			2/2			2/85 2/85	3	) )
	VALUE	012			- M	5. 5.	22.	`2 `2	· ·	==	0.	
	古	  ÿ.	•	;	7	Ξ		=			=-	_
M7684005 RFADATA 28SS02001	36-AUG-94 Xual units	ug/kg	. 69/15 18 69/15	69/Kg	<b>19/kg</b>	09/kg	ug/kg	64/80 06/80	59/kg 58/kg	69/kg	00/kg	00/ KB
RF 28S	VALUE QUAN	350 U	- W (	) 	750 E	. e	220 R	110 0	. K	===	٠ ا	ב
	*	8:	= <b>'</b> ^ '	no	ć.	5.	Y 1	υŠ	· •	=:	2	
.004 ATA 11901	06-AUG-94 DUAL UNITS DL	ug/kg	5 5 5 5	2/kg 20/kg	54/kg	7 2 1 7 2 1	7 2 3 3	2 9 9 /9r	2 <u>2</u> 2	2		9 7 8
M7684004 RFADATA 285S01901	06-AUG-94	3	- - -	33 33	70 c	) ) : 	, a , o , c	2 - 2 -	: 	) )   	 	<b>3</b>
Lab Sumple Number: Site Locator												
qs1		1.2-Dichlorobenzene	2-Chloroethylvinylether Ethyl methacrylete	1.2.3-Trichloropropene	isobutyl alcohol	1,1,1,2-Tetrachloroethene	1,2.0[brompethane	3-Chloropropene	Chloroprene	Methyl methacrylate	Pentachloroethane Propionitrile	Vinyl scatate

YERE GENERATED FROM THE SVOC (RZ70) AMALYTICAL

			NAV RFA SUF	NAVSTA MAYPORT Surface Soil Data								-
Lab Sempl	Lab Sample Number: Site Locator Collect Date: VALUE	M7684015 RFADATA 288501501 66-AUG-94 QUAL UNITS DL	VALUE	M7684016 RFADATA 28SS01601 06-AUG-94 QUAL UNITS D	3	VALUE	M7684017 RFADATA 28SS01701 06-AUG-94	<b>Z</b>		M7684018 RFADATA 28SS01801 06-AUG-94		
							C I HO TWO	<b>3</b>	ALUE VALUE	WAL UNITS	4	
6KG VICE (OCAU+11) Chioromethere Bronomethere	D / 65		3: 	ug/kg	=:		u worke	=	-	1 U ug/ka	=	
Vinyl chloride Chloroethane				ug/kg ug/kg	==:		9 <u>9</u> 9 2 3 3 3	<b>.</b>		1 UJ 49/kg	-	
Methylene chloride Acetone		)   <b>7</b> 2	3.0	ug/kg ug/kg	- ^ %	<u>-</u>		= <b>^</b>	:		==:	
Certain disulfide 1,1-Dichlorethare		<b>33</b> :	20 m	ug/kg ug/kg	N W			, , ,	<b>.</b> - · • ·			5 W 16
٤		) )	\$ PO PO PO PO PO PO PO PO PO PO PO PO PO	ug/kg ug/kg	<b>10 10 1</b>	EO 103 4	9/9n	<b>WW</b> 1			,	
1,2-Dichloroethare 2-Butanone		<b>&gt;</b> =:		ug/kg ug/kg	<b>,</b> ,		66/48 C6/48	<b>N 60</b>				
			10 PM	ug/kg ug/kg	N IO I	N.W.	20 kg	A IA			<b>IN IN</b>	
1,2-Dichloropropane cie-1,3-Dichloropropane				ug/kg ug/kg	n in ir		26/4	N O U			· ••• ••• •	
			**************************************	ug/kg ug/kg	) NV NV	) 10:10 ) = 3	7 9 9 3 3 3	n w r	n vn v	00/kg	W 100 12	
Forest 3. Dichiorment		5/87 2/87 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	20 C	ug/kg ug/kg	<b>w</b>		) ) )	\ m m	י איז יי		^ <b>v</b> ∩ v	
penterone				<b>ug/kg</b> <b>ug/kg</b> is/kg	N N -	93:		mm;	in in ;			
700 Y 🖪		33:	5 2 2 2 2 2 2 2 2 2 2	ug/kg g/kg	:E^		2 9 2 2 2 3 3		=="	0 14/60 0 14/60 14/60	=="	
Toluene Chlorobenzene		00/kg		ug/kg ug/kg	N W I	>2:		<b>.</b>	, to to		. w.w	
Ethylbenzere Styrene				- 6 / 6 - 6 / 6 - 6 / 6 - 6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 / 6   6 /	, IO IO	) } }		N 40 E	יט יטו ט	09/kg 0 09/kg	N 10 H	
Trichloroftuoromethane 1,3-Dichlorobentene				ug/kg ug/kg	~ ~ ~ ~ ~	73: NW 5	22 33	· ·	, no no é			
Acrolein Iodomethane 1.6-Dichlorobenzane		1 46/kg	101	64/kg 68/kg	\ <b>2</b> =\		723 723	222	8 <b>2</b> =		85=	
Acrylonitrille Dibromomethene		29/29 29/29 1		49/kg 49/kg 49/kg	8 5 7	223 224 224	5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2	85.	85. 25.	U ug/kg U ug/kg U ug/kg	<b>8</b> 5.	
									•		•	
			SSSS 4600 SS									

=	Data
<b>₹</b> 5	Soil
~	face.
HAVST	Surf
	RFA

16	36 22 25 25 25 25 25 25 25 25 25 25 25 25
N7684018 RFADATA 28SS01801 06-AUG-94 QUAL UNITS	09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg
M76 RF 28S 28S VALUE QUA	360 u 11 u 22 u 22 u 22 u 22 u 22 u 3 u 3 u 10 u 10 u 10 u 10 u 10 u 10 u 10 u 10
> a	n-nongren ne neter
N7684017 RFADATA 28SS01701 06-AUG-94 QUAL DHITS	20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20
N768 RFJ 28SS 28SS 28SS 28SS 28SS 28SS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
۰ ۱۵	~t~~v8~t~ ~3 ~tt5t
M7684016 RFADATA 28SS01601 06-AUG-94 QUAL UNITS	09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg 09/kg
M76 285 285 06-	225 22 22 22 22 22 22 22 22 22 22 22 22
5	Standard Lett
M7684015 RFADATA 285501501 O6-AUG-94	1 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 09/kg 10 0
_	
Leb Sample Number: Site Locator Collect Date:	ther 2-butene 8 there opropane
	2-Dichloroberzene Chloroethylylylmylether inyl methacrylate ana: 1,4-Dichloro-2-butene iobutyl alcohol 2-Dibroso-3-chloroethane 2-Dibroso-3-chloropropane 2-Dibroso-thane Chloropropene catonitrila hioropropene ethacrylonitrile ethacrylonitrile ethacrylonitrile ethacrylonitrile ethacrylonitrile forgionitrile

INIT IS ESTIMATED

THE SYOC (8270) ANALYTICAL RUN.

	= ====×===============================	
ᆸ		
M7684014 RFADATA 28SS01401D 06-AUG-94 QUAL UNITS	16	
VALUE		
<b>5</b>	= ===Nooooo oooooooo===oooooo	
M7684013 RFADATA 28SS01401 06-AUG-94		
M7684 RFA 2855 06-A		
1		
_	t tto ynnana nananananattananan asst st	
ā	ਰ <b>ਂ</b>	
	UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg  UB/ Kg	
N7684012 RFADATA 28SS01301 06-AUG-94		
	- たこことの姿でででいたといいできないといいといいといいといいがらした。	
	A LONG TO THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE	
	TTTENNAMAN AMANAMANTTANAMANAMASTES	J.
		wy .w
M7684011 RFABATA 28SS01201 06-AUG-94	<del> </del>	
M7684011 RFADATA 28SS01201 06-AUG-94	25-5-25-25-25-25-25-25-25-25-25-25-25-25	e û Web
	22	100 100 100 100 100 100 100 100 100 100
# <b># 5</b> #		4.4
Number: Site Locator it Date:		
Lab Semple Number: Site Locator Collect Date:		69 H HW.,
as q <del>e</del> 1		
<del>-</del>	(i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de hane) (i.de	:
	trick tricks to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the c	
	Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (8240+11) Ca vaca (824	
	Chloromethere Viryl chloride Chloroethere Viryl chloride Chloroethere Carbon diaulfide 1, 1-Dichloroethere 1, 1-Dichloroethere 1, 1-Dichloroethere 1, 1-Trichloroethere 1, 2-Dichloroethere  1, 2-Dichloroethere 1, 2-Dichloroethere 1, 2-Trichloroethere 1, 2-Trichloroethere 1, 2-Trichloroethere 1, 2-Trichloroethere 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 1, 3-Dichloroethere >1.1	
	And the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o	

NAVSTA MAYPORT Surface Soil Data

RFA

	4	95	•	•	9	220	• :	071	•	•0	110		•	=	= ;	2	=
	M7684014 RFADATA 26SS01401D 06-AUG-94 QUAL UNITS	ug/kg	56/80 8/80	ug/kg	ug/ka	ug/kg	ug/kg	ex/en	04/40 14/40	16/kg	5/kg	<b>19/kg</b>	ug/kg	ug/kg	ug/kg	<b>49/kg</b>	ug/kg
	M7 R 26S 26S 96 VALUE OU	n 9	<b>•</b>	9	<b>7</b>	220 U	<b>□</b> 9	120 U	9 6	¥ 027	110 0	•	<b>¬</b> •	<b>11</b> C	<b>=</b>	7 10 10	=
	ے د	350	- •			82	•	2			) 		•		<b>=</b>	10	
	M7684013 RFADATA 28SS01401 06-AUG-94 QUAL UNITS	ex/s		)       	3	ug/kg	ma/ka	ug/kg	\$/kg	2/kg	7 9	uo/ka		- ug/kg	L Co/kg	l sø/kg	<b>9</b> / <b>2</b>
	VALUE OD 23 - F.	85			-	10 220 U	2	10 120 U	9	220 R	1011		9 9		7 -	10 T	
Deta	ā					~		-			•	-				•	
Surface Soil	M7684012 RFADATA 285501301 06-AUG-94	` I ~	. ug/kg	94/95 1	ua/ka	ca/ka	ea/kg	ug/kg	ug/kg	l ug/kg	09/Kg		es/ka	ia/ka	ua/ka	J ve/kg	ug/kg
RFA Sur	E - 200	350 u	===		) L	2 10 U	7 5	110 1	7 5	210 8	ָרָבְּי בּי	•	-	, =		1101	=
	Z	2		n <b>u</b>	N	7.		2	<b>1</b> 0		•						<b>:</b>
	M7684011 RFADATA 285501201 06-AUG-94	EU UD/KE	ug/kg	2/2	3 S				5 U	0 R Wg/Kg	5/5°	? ! } !				7 5	
	!	ANLUE								2							
	Lab Sample Number: Site Locator Collect Date:	9. hi idi cind dana ana	-Chloroethylvinylether	Ethyl methacrylate	2.3 Trichleropropene	-ana-1,4-01010-10-2-0014614	obuty! #!cohe!		4-010704010-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-		chi propropene	Acetonitrile	hioroprene	Hethecry(on) (r) le	Zethy zethecry lote	Pentach orgethere	Propionitrile Vinyl acetate
			~	표	-	<u>ٿ</u>	<u>.</u>	i.	, <u>-</u> - [		m	2	£	£	=	2	23

HAVSTA MAYPORT

WERE GENERATED FROM THE SYOC (8270) ANALYTICAL RUM.

		::::::::::::::::::::::::::::::::::::::
	009 NTA 1101 G-94 UNITS DL	69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69/kg 69
	M7684009 RFADATA 28SS01101 06-AUG-94	######################################
	VALUE	======================================
	010 0414 01001 16-94 UNITS DL	100
	M7684010 RFADATA 28SS01001 06-AUG-94 QUAL UNIT	======================================
	VALUE	==== ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
PORT oil Data	94 115 DL	48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48/kg 48
NAVSTA MAYPORT Surface Soil Data	M7675019 RFADATA 28SS00901 05-AUG-94 QUAL UN11S	
RFA	VALUE	
	- <u> </u>	
	M7698013 RFADATA 28SS00801 10-AUG-94 9UAL UNITS	
	Lab Sample Number: Site Locator Collect Date:	
	leb Samp	thane (total)  The (total)  The (total)  The property frame in thane and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations and a factor operations are a factor operations and a factor operations and a factor operations are a factor operations and a factor operations are a factor operations and a factor operations and a factor operations are a factor operations and a factor operations are a factor operations and a factor operations are a factor operations and a factor operations are a factor operations and a factor operations are a factor operations and a factor operation and a factor operations are a factor operations and a factor operations are a factor operations and a factor operations are a factor operations and a factor operations are a factor operations and a factor operations are a factor operations and a factor operations are a factor operations and a factor operations are a factor operations and a factor operations are a factor operations and a factor operations are a factor operations and a fact
		ECC VOCA (GZAD-11) Chioromethana Sroacomethana Vinyl chlorida Chioroethana Nethylana chlorida Acetora Carbon disulfida 1,1-Dichloroethana 1,2-Dichloroethana 1,2-Dichloroethana 1,2-Dichloroethana 2-Burana 1,1-Trichloroethana 1,1-Trichloroethana 1,2-Dichloropropena 1,2-Dichloroethana 1,2-Dichloroethana 1,2-Dichloroethana 1,2-Dichloroethana 1,2-Dichloroethana 1,2-Trichloroethana 1,2-Trichloroethana 1,1,2-Trichloroethana 1,1,2-Trichloroethana 1,1,2-Trichloroethana 1,1,2-Trichloroethana 1,1,2-Trichloroethana 1,1,2-Trichloroethana 1,1,2-Trichloroethana 1,1,2-Trichloroethana 1,1,2-Tatrachloroethana 1,1,2-Tatrachloroethana 1,1,2-Dichloroethana
		England (1920-11) Chlorumethere Eromomethere Viryl chloride Chloroethere 1, 1-Dichloroethere 1, 1-Dichloroethere 1, 2-Dichloroethere 1, 2-Dichloroethere 1, 2-Dichloroethere 1, 2-Dichloroethere 1, 2-Dichloroethere 1, 1, 1-Trichloroethere 2-Butsnone 1, 1, 1-Trichloroethere 1, 2-Dichloroethere 1, 1, 1-Trichloroethere 1, 1, 2-Dichloroethere 1, 1, 2-Trichloroethere 1, 2-Trichloroethere 1, 2-Dichloroethere 1, 3-Dichloroethere 1, 3-Dichl

=	Data
AY POR	Ę
₹	<b>8</b>
ST	face
MAVSTA	SE
	RFA

7 <u>6</u>	36 = 3	9 <b>9</b> 02	4 0 5 4 4 6 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	110	4E	£ 5
N7684009 RFADATA 285501101 06-AUG-94 QUAL UNITS	U ug/kg U ug/kg U ug/kg	U 49/kg U 49/kg U 49/kg	00/kg	0 09/kg 0 09/kg 0 09/kg		00/kg 00/kg
VALUE	360 11 6	998	120 6	82° 91° 9	. 422	2=
10	9 <b>5</b>	9 022	929	•		
M7684010 RFADATA 28SS01001 06-AUG-94 QUAL UNITS	0 0 00/kg	2	20 C C C C C C C C C C C C C C C C C C C	6 C C C C C C C C C C C C C C C C C C C	262	
VALUE	21.	, w w 5	120 120 5	2 -	ν <u>Ξ</u>	
ಕ						
M7675019 RFADATA 28SS00901 05-AUG-94 QUAL UNITS	ug/kg ug/kg	. 09/kg	48/kg 68/kg 68/kg	69/kg 69/kg	ug/kg ug/kg	ug/ka ug/ka ug/kg
_	25.	, , , ,	120 120 120 120 120 120 120 120 120 120	220 R 220 R 15 U	. <b>2</b> 1	= = = = = = = = = = = = = = = = = = =
YALUE				and and the second	etak 100	
5						38
M7698013 RFADATA 285500801 10-AUG-94	ug/kg	333 333	5 5 5 5 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	333	\$35 535
M76 RF 28S 28S 10s	8=	W.Y.G.	220 220 220 220 220	* 9 F	- 2 - 2 - 2	350 110 m
Lab Sample Number: Site tocator Collect Date:	1,2-Dichi orobanzene	Ethyl methocrylate 1,2,3-Trichlaropropere	isobuty[ sloohol   1,1,2-terschlorosthane   1,2-terschlorosthane   2-pibromo-3-chloropropere	1,2.0 lbramoethane 1,4.0 loxene 3-thi orgonopene	Acetonitrile Chioroprene Methacrylonitrile	Methy: methorytate Pentachloroethane Propionitrile Vinyi acatale

		=	: <b>=</b>	==	<u>-</u> •	<b>45</b>			•	<b>ن</b> د	^	<b>.</b>	· ••	<b></b>	n 10	'n	<b>.</b>	~ v~	<b>•</b>	~;	==	<b>.</b>	~ v	, L	, v	<b>1</b> 0	w w	<b>~ w</b>	, <del>5</del>	=	320	<u> </u>	
	ᆸ																																
	M7675018 RFADATA 28SS00701 05-AUG-94	o.		64/60 64/60	2/5	ng/kg	ug/kg	59/kg	40/kg	ug/kg	09/kg	(4/kg	54/kg	ug/kg	09/kg	<b>5</b> / <b>k</b>	<b>19/kg</b>	6 /4 8/4 8/4	<b>100/kg</b>	56/kg	2 /2 2 /2	ug/kg	54/kg		5 /kg	ug/kg	64/go	64/60	, % , %	ug/kg	09/kg	10/Kg	
	5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	=======================================	; ===	>: =:	- 9	₹5 C	ر ا	) =	, 2 C C	<b>5</b>	~ : ⊃ •		2	<b>5</b> :	)   	, ~	⊃ :	v v ⊃ ⇒	2	~ :	) = ===================================	2	2 z	ם ייים	, v	2	> =	)   	110.0	_	350 u	)   	`
	VALUE																																
	0 6				<b>-</b>	~		n v	. <b>(</b> )	<b>.</b>	<b>.</b>		<b>.</b>	<b>.</b>	A 4			7 G					n e			•	<b>V</b> 1	7	2			2	
	N7675017 RFADATA 28S800601 05-AUG-94 QUAL UNITS		2 9 2 9 3 9	84/85 28/85	2 2 2 2 3 3	, S	ug/kg	5 .		ug/kg	50/kg	09/Kg	,	<b>19/kg</b>	2 3	? ? ? ?	\$/\$	64/g	3	2.	2/2		<b>19/kg</b>	9 ; 9 ;	2 2 3 3	- 12/30 - 12/30 - 12/30	3	2 / KB	2 5 2 2 3 2 3 2	3	2	2 3 1	<b>,</b>
	NZ RI 288 05- VALUE QUI		>> 	>: =:	) = F <b>4</b>	3,5	⇒: •~:	> =	, w	<b>-</b>	⊃ :	¥ =	) ) )	<b>⊃</b>	⊃ = vn v	) }	3	<b>&gt;=</b>		<b>3</b>		) 3 'S	<b>→:</b>	) : ()	) }	3	<b>-</b>	7:		7		= : £ :	) }
				=;	F °	8	<b>1</b> 0 1	 u	· ·	~	'n	u	n <b>w</b>	<b>I</b>		n I/A	·	ır u	Ň	, ,	ogi Ti	· •	<u>.</u>	^ -	A 14			<u>د</u>	110	=	0071	=	A
Pats	1							_							-	<b>.</b>					<b>.</b>			<b>.</b>				<b>.</b>	<b>.</b>				
NAVSTA MAYPORT Surface Soil Data	M7675016 RFADATA 28SS00501 05-AUG-94 QUAL UNITS	•	5 69/kg	1 ug/kg	. 69/kg	ug/kg	09/kg	6x/8n	64/89 1	J ug/kg	J ug/kg	09/kg	59/80 1 59/80	ug/kg	J ug/kg	03/80 1 03/40	64/ga	J ug/kg		J ug/kg	2/kg		S CO/kg	04/65 11:11:11:11:11:11:11:11:11:11:11:11:11:		2/kg	54/kg	64/85 11.55			_	5 CG/kg	
RFA Sur	AALUE	•	- E	=	= -	28.5	50	~ :	~ ~		5	= -	, w		<u>.</u>	~ ~	Š	<u>.</u>	. ~	, in	==		<b>10</b> 1		<b>.</b>	, iv	•	5		=		₽,	^
	٠ خ		22	9	<b>2</b> ′	~ _2		<b>.</b>	<b>.</b>					· •	in i	^ r	·	TV C			25	<u> </u>	<b>(</b>		<b>^</b>		<b>A</b>	•	35	39	3	2	<b>6</b>
	M7675015 RFADATA 285500401 05-AUG-94 QUAL UNITS				<b>-</b>		) )	. <b>19</b> /kg	20/Kg	2/5	· >		26/kg			2/6		u ve/ke		5 C	> :			5 U ug/kg	5 U 5/kg	7/01	2 c c c c c c c c c c c c c c c c c c c		) = =		) ) )	•	
	VALUE			/ <b>=</b>		^ ¥	7947. Jh.,											(1950) (1											<b>3</b>		3	2	
	Lab Sample Number: Site Locator Collect Date:	<b>59/kg</b>								· .			·		a.J 1521-1	, : , : ; :	ilean Agus Nach																
	Lab	BKG VOC* (8240+11)	Chloromethane	Bromomethane Viryl chloride	Chloroethare	Methylene chloride	Acetone Carbon disulfide	1-Dichloroethane	1.1-Dickloroethene	4-Dichigrating to the	.2-Dichleroethane		1,1-Trichloroethane	Carbon refractioning	2-Dichloropropane	cia-1,3-0 ich loropropere	horachi organithme	1.2-trichloroethane			6-Hethyl-2-pentenone	Hexanone	1.1.2.2-Tatrachloroethane	oluene		Ethylbenzere	Nigned (total)	Trichloroft percent have	3-0 ich iorobensene	Acroiein	A-hichinentene	erytonitrile	Olbronomethern
			5	35	చ్:	Z .	¥ 8	-	<del>-</del>	_	3	N		3 <b>à</b>		٠.	= 6		<b>4</b>	<i>5</i>		<b>~</b>			<b>⊡</b>		n <b>á</b>	· •					•

RFA	MAYSTA MATPORT	
	¥	RFA SU

	ا ۾	~ <del>=</del> 1	N 101 P	, 10, 10,	,5°	<b>v</b>	- 19	v = ;	==	=
N7675018 RFADATA 285500701 05-AUG-94	DUAL UNITS	ug/kg ug/kg	.g/kg .g/kg		69/kg 69/kg	08/kg 08/kg	<b>59/kg</b> <b>59/kg</b>	<b>59/kg</b> <b>59/kg</b>	<b>19/kg</b>	ug/kg
	VALUE OU	5 U 11 U	w w w	210 12	. 5. 	210 H 5 U	110 U		= £	=======================================
	ב	•		`&` 	, <u> </u>		2		-2	
M7675017 RFADATA 26SS00601 05-AUG-94	QUAL UNITS	S U wg/kg	2/67 2/62		2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 U 09/K	5 U UG/K	1 C9/K	
	VALUE	11	N W	20 22 20 22	, e	, 2	<b>.</b> 2		- F	
	TS DL	/kg 14	ug/kg ug/kg	/kg /kg	/kg /kg	/kg /kg	, es	/kg /kg	, ka	22
M7675016 RFADATA 28SS00501 05-AIIG-96	QUAL UNITS	400 U UG/	200	50 U 45	10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to	220 R C C C C C C C C C C C C C C C C C C	10.5	- C		200
	VALUE	005		w S	~ E	n: . •	`8	<b>V</b> 15		32
v <b>€</b> 5 6	175 DL	1, kg	5 6 6 5 7 5	/kg	22 22	<b>3</b> 2:		// Ka	2 S.	5 2 2 2 2 3
H7675015 RFADATA 285500401	UF QUAL UNITS	, 004	3	)		20. 20. 23.	 	3 3 : - > : - \( \frac{1}{2} \)	5 5 2 2 2 2	3
Mumber: Site Locator	Date: VALUE									
Lab Sample Wumber: Site Locator	Collect Date:	1,2-Dichtorobanzene	2-Chloroethylvimylether Ethyl mothecrylete	1, 2, 3 - if i chi di opinione trans - 1, 4 - Dichi oro 2 - butene	1,1,1,2-Tetrach(proethane	1,2-Dibromoethane	3-thloropropers Acetonitrile	Chloroprane Wethacrytonitrile	Methyl methacrylate Pentachloroethane	Propionitrile Vimyl acetate

	5014 0ATA 00301 16-94	11 11 11 11 11 11 11 11 11 11 11 11 11
	#76 RF 2885 05-1	22 - 22 - 22 - 22 - 22 - 22 - 22 - 22
	2 d 2 d 2 d 2 d 2 d 2 d 2 d 2 d 2 d 2 d	
	H7684003 RFADATA 2885002010 06-AUG-94	たれたこのないないないないないないないないないないないないないないないないないからしょう コロコココココココココココココココココココココココココココココココココココ
	P. VALIE	######################################
NAVSTA MAYPORT	102 11A 1201 1-94	222222222222222222222222222222222222222
Z V	•	
	001 ATA 0101 G-94 UNITS DŁ	
	M7684001 RFADATA 28SS00101 06-AUG-94 VALUE QUAL UNITS	
	Lab Sample Number: Site Locator Collect Date: W	<b>5</b>
	-	Chloromethane Economethane Vinyl chloromethane Vinyl chlorodiae Chlorothere chloride Chlorothere chloride Chlorothere chloride 1,7-01chlorothere 1,7-01chlorothere 1,2-01chlorothere 2-Butanone 1,2-01chlorothere 2-Butanone 1,1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATES   NATE	NAVESTA MAYPORT   RFA Surface Soil Data   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7684003   N7694003   N7684003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003   N7694003
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

JERE GENERATED FROM THE SYOC (BZ70) AMALYTICAL RUN

			1.2		6	%	-			5	7.	-	. ¥.	4.5		
	ď				_									_		
R8272004 RFADATA 19SD003	UNITS		<b>30/kg</b>	<b>?</b> ?	<b>7</b>	<b>5</b> /2	Ž	7/Kg	2	5 5 2 3	<b>5</b>	) (	2	Š	<b>10</b> /kg	<b>5</b>
R8277	QUAL		э·	 	<b>-</b>	<b>&gt;</b> =	. =	_	_		<b>-</b>	3:	<b>&gt;</b> =	) <b>)</b>	<b>7</b>	-
	VALUE		7.	2.5	9	×	-	φ.	₽,	. S	7.	Ċ.	<u>.</u>		9.	9.
	VA		· Ni	4, 20 A	70	en e	: <b>1</b> 2	<u>.</u>	<b>•</b> ∶	. <b>2</b> 2	•		2		,);;;	(- 8  (
	ρſ													M		
	118		₽,	10/Kg 10/Kg	2	25	? ?	문	<u>.</u>	2 2	2	₽.	- 	? ₽	2	2
RB272003 RFADA1A 19SD002	AL UMI		2	<u> </u>	2	ê i	7	2	Ž	2 1	2	2	2 5	Ì	è	2
5 e - 5	3		7. 1.2	 	D 20	⊃ = ເລີ່	, 2 , =	42 )	_ 2:	7 2	7	3 •:	3 = 2 =		7 60	-)  -]  0
	VALUE						34.7 45. 1									
			1.2	ti kik	de la	7.	8		≄.	0.	*		J.	3.6		
	6	ļ														
24 C 2	NITS		10/kg	6/kg /kg /kg	Š	10/kg	,	mg/kg	18/kg	70/kg 70/kg	Š	BX/BL	<b>8</b> 4	/kg	mg/kg	19/kg
RB272002 RFADA1A 19SD001D	OUAL UNITS		_	 		_ ·	· -	_	_			3:	- ·		-	- -
	4		1.2	- 8	-	7.	. ¥	Ŗ.	<b>2</b> ;	2.5	<u>.</u>	Ľ.	. ≒	. W	2.3	5.9
	VALUE	<b>.</b>										200				
	7					2	7		=	2				<u>ج</u> ج		uis il uistali
	s		•								•		9,	<b>,</b>		<b>.</b>
R6272001 RFADATA 19SD001	SU-JUN-94 DUAL UNIT		Ş	ž	Ž	Ž	\$ \$	Ž	Ž	Ž	Ž	ž	2		Ž	Ì
R827			<b>9</b>			٠. : د	, , , ,	~				3	⇒ : ••••••••••••••••••••••••••••••••••••	; ; =		~
	VALUE		_	•	•	•					•	Peril		7.9	~	<u>.</u>
: <b>:</b> :: :										i busal Penjah		7 V,				uguriya Libeya Libeya
Number: Site	it Dat	] ;	<b>3</b> 0/Kg													
Lab Sample Number	Coilect Date:							o Mi				16.3 				
Lab S	_		338													
				<u>۽</u> :	. <u>.</u>	<b>5</b> .	§ .	-	-8		5 T	5	<b>.</b>	5	<b>9</b>	
	-			T.		3	5 5	2	Š	3,	Hick	Sele	Į,		Ş	2

NAVSTA MAYPORT RFA Sediment Data

# APPENDIX C RISK EVALUATION CALCULATIONS

## Table C-1 Estimated Human Health Risk Surface Soil Contamination Associated with SWMU 26

Group I and II RFA/SV Report U.S. Naval Station Mayport, Florida

Analyte ¹	Maximum Detected Concentration	Residential Cancer RBC ²	Residential Cancer Risk ³	Residential Noncancer RBC	Residential Noncancer Risk ⁵
Volatile Organic Compounds (ug/kg)					
No Human Health CPCs Detected					
Semivolatile Organic Compounds (ug/kg)					
No Human Health CPCs Detected		<u> </u>			
Pesticides/PCBs (ug/kg)					
No Human Health CPCs Detected					
Inorganics (mg/kg)					
Arsenic	1.6	0.37	4E-6		
Beryllium	0.33	0.15	2E-6		
Total Cancer Risk			6E-6		
Total Noncancer Risk					

¹ The analytes listed exceeded one of the following criteria: a cancer risk of 10⁻⁶ or an adjusted Hazard Quotient of 0.1 based on the February 9, 1995 USEPA Region III Risk Based Concentration (RBC); proposed soil screening levels (presented in document USEPA 9355.4-14FS, dated December 1994); value established by Florida Department of Environmental Protection in their memorandum for Cleanup Goals for Military Sites, dated April 5, 1995.

Notes:

ug/kg = microgram per kilogram

mg/kg = milligram per kilogram

² The residential soil concentration listed represents a cancer risk of 10⁻⁶. The value is from the USEPA Region III RBC Tables dated February 9, 1995. For most analytes, the RBC table assumes a single exposure pathway. For most analytes, the RBC value is based on an ingestion route of exposure.

³ The cancer risk is an estimated value based on the assumptions used in the RBC tables.

⁴ The residential soil concentration for noncancer listed is based on a Hazard Quotient of 1. The value is from the USEPA Region III Risk Based Concentration Tables dated February 9, 1995.

⁵ The total noncancer risk is an estimated value based on the assumptions used in the RBC tables. The noncancer risks are assumed to be cumulative, even though different chemicals may effect different organs.

## Table C-2 Estimated Human Health Risk Subsurface Soil Contamination Associated with SWMU 26

Group I and II RFA/SV Report U.S. Naval Station Mayport, Florida

	renary process				
Analyte ¹	Maximum Detected Concentration	Residential Cancer RBC ²	Residential Cancer Risk ³	Residential Noncancer RBC ⁴	Residential Noncancer Risk ⁵
Volatile Organic Compounds (ug/kg)					
No Human Health CPCs Detected					
Semivolatile Organic Compounds (ug/kg)					
No Human Health CPCs Detected					
Pesticides/PCBs (ug/kg)					
No Human Health CPCs Detected					
Inorganics (mg/kg)				-	
Arsenic	2	0.37	5E-6		
Beryllium	0.23	0.15	2E-6		
Total Cancer Risk			7E-6	<u> </u>	
Total Noncancer Risk					

¹ The analytes listed exceeded one of the following criteria: a cancer risk of 10⁻⁶ or an adjusted Hazard Quotient of 0.1 based on the February 9, 1995 USEPA Region III Risk Based Concentration (RBC); proposed soil screening levels (presented in document USEPA 9355.4-14FS, dated December 1994); value established by Florida Department of Environmental Protection in their memorandum for Cleanup Goals for Military Sites, dated April 5, 1995.

Notes:

ug/kg = microgram per kilogram.

mg/kg = milligram per kilogram.

² The residential soil concentration listed represents a cancer risk of 10⁻⁶. The value is from the USEPA Region III RBC Tables dated February 9, 1995. For most analytes, the RBC table assumes a single exposure pathway. For most analytes, the RBC value is based on an ingestion route of exposure.

³ The cancer risk is an estimated value based on the assumptions used in the RBC tables.

⁴ The residential soil concentration for noncancer listed is based on a Hazard Quotient of 1. The value is from the USEPA Region III Risk Based Concentration Tables dated February 9, 1995.

⁵ The total noncancer risk is an estimated value based on the assumptions used in the RBC tables. The noncancer risks are assumed to be cumulative, even though different chemicals may effect different organs.

## Table C-3 Estimated Human Health Risk Surface Soil Contamination Associated with SWMU 56

Group I and II RFA/SV Report U.S. Naval Station Mayport, Florida

Analyte ¹	Maximum Detected Concentration	Residential Cancer RBC ²	Residential Cancer Risk ³	Residential Noncancer RBC ⁴	Residential Noncancer Risk ⁵
Volatile Organic Compounds (µg/kg)					
No Human Health CPCs Detected					
Semivolatile Organic Compounds ((µg/kg)					
No Human Health CPCs Detected				 	
Pesticides/PCBs (µg/kg)					
No Human Health CPCs Detected				,	
Inorganics (mg/kg)				1	
Arsenic	1.2	0.37	3E-6	1	
Beryllium	0.19	0.15	1E-6	1	
Cadmium	4.3			39	0.1
Chromium	52.3			390	0.1
Total Cancer Risk		1	4E-6		
Total Noncancer Risk					0.2

¹ The analytes listed exceeded one of the following criteria: a cancer risk of 10⁻⁶ or an adjusted Hazard Quotient of 0.1 based on the February 9, 1995 USEPA Region III Risk Based Concentration (RBC); proposed soil screening levels (presented in document USEPA 9355.4-14FS, dated December 1994); value established by Florida Department of Environmental Protection in their memorandum for Cleanup Goals for Military Sites, dated April 5, 1995.

Notes:

ug/kg = microgram per kilogram.

mg/kg = milligram per kilogram.

² The residential soil concentration listed represents a cancer risk of 10⁻⁶. The value is from the USEPA Region III RBC Tables dated February 9, 1995. For most analytes, the RBC table assumes a single exposure pathway. For most analytes, the RBC value is based on an ingestion route of exposure.

³ The cancer risk is an estimated value based on the assumptions used in the RBC tables.

⁴ The residential soil concentration for noncancer listed is based on a Hazard Quotient of 1. The value is from the USEPA Region III Risk Based Concentration Tables dated February 9, 1995.

⁵ The total noncancer risk is an estimated value based on the assumptions used in the RBC tables. The noncancer risks are assumed to be cumulative, even though different chemicals may effect different organs.

## Table C-4 Estimated Human Health Risk Surface Soil Contamination Associated with SWMU 19

Group I and II RFA/SV Report U.S. Naval Station Mayport, Florida

	May port, 1				
Analyte '	Maximum Detected Concentration	Residential Cancer RBC ²	Residential Cancer Risk ³	Residential Noncancer RBC ⁴	Residential Noncancer Risk ⁵
Volatile Organic Compounds (ug/kg)					
No Human Health CPCs Detected					
Semivolatile Organic Compounds (ug/kg)					
No Human Health CPCs Detected					
Pesticides/PCBs (ug/kg)					
No Human Health CPCs Detected					
Inorganics (mg/kg)					
Arsenic	1.2	0.37	3E-6		
Beryllium	0.26	0.15	2E-6	<u> </u>	
Total Cancer Risk			5E-6		
Total Noncancer Risk				<u></u>	

The analytes listed exceeded one of the following criteria: a cancer risk of 10⁻⁶ or an adjusted Hazard Quotient of 0.1 based on the February 9, 1995 USEPA Region III Risk Based Concentration (RBC); proposed soil screening levels (presented in document USEPA 9355.4-14FS, dated December 1994); value established by Florida Department of Environmental Protection in their memorandum for Cleanup Goals for Military Sites, dated April 5, 1995.

Notes:

ug/kg = microgram per kilogram mg/kg = milligram per kilogram

² The residential soil concentration listed represents a cancer risk of 10⁻⁸. The value is from the USEPA Region III RBC Tables dated February 9, 1995. For most analytes, the RBC table assumes a single exposure pathway. For most analytes, the RBC value is based on an ingestion route of exposure.

³ The cancer risk is an estimated value based on the assumptions used in the RBC tables.

⁴ The residential soil concentration for noncancer listed is based on a Hazard Quotient of 1. The value is from the USEPA Region III Risk Based Concentration Tables dated February 9, 1995.

⁵ The total noncancer risk is an estimated value based on the assumptions used in the RBC tables. The noncancer risks are assumed to be cumulative, even though different chemicals may effect different organs.

## Table C-5 Estimated Human Health Risk Surface Soil Contamination Associated with SWMU 28

Group I and II RFA/SV Report U.S. Naval Station Mayport Mayport, Florida

Analyte ¹	Maximum Detected Concentration	Residential Cancer RBC ²	Residential Cencer Risk ³	Residential Noncencer RBC ⁴	Residential Noncancer Risk ⁵
Volatile Organic Compounds (ug/kg)					
4-Chloro-3-methylphenol	55	NA		NA	
Semivolatile Organic Compounds (ug/kg)					
No Human Health CPCs Detected					
Pesticides/PCBs (ug/kg)					
No Human Health CPCs Detected					
Inorganics (mg/kg)					
Arsenic	3.2	0.37	9E-9		
Beryllium	0.2	0.15	1E-6		
Total Cancer Risk			1E-6	<u> </u>	
Total Noncancer Risk				<u> </u>	

¹ The analytes listed exceeded one of the following criteria: a cancer risk of 10⁻⁶ or an adjusted Hazard Quotient of 0.1 based on the February 9, 1995 USEPA Region III Risk Based Concentration (RBC); proposed soil screening levels (presented in document USEPA 9355.4-14FS, dated December 1994); value established by Florida Department of Environmental Protection in their memorandum for Cleanup Goals for Military Sites, dated April 5, 1995.

Notes:

ug/kg = microgram per kilogram mg/kg = milligram per kilogram

² The residential soil concentration listed represents a cancer risk of 10⁻⁶. The value is from the USEPA Region III RBC Tables dated February 9, 1995. For most analytes, the RBC table assumes a single exposure pathway. For most analytes, the RBC value is based on an ingestion route of exposure.

³ The cancer risk is an estimated value based on the assumptions used in the RBC tables.

⁴ The residential soil concentration for noncancer listed is based on a Hazard Quotient of 1. The value is from the USEPA Region III Risk Based Concentration Tables dated February 9, 1995.

⁵ The total noncancer risk is an estimated value based on the assumptions used in the RBC tables. The noncancer risks are assumed to be cumulative, even though different chemicals may effect different organs.

## Table C-6 Estimated Human Health Risk Subsurface Soil Contamination Associated with SWMU 28

Group I and II RFA/SV Report U.S. Naval Station Mayport Mayport, Florida

Analyte ¹	Maximum Detected Concentration	Residential Cancer RBC ²	Residential Cencer Risk ³	Residential Noncencer RBC ⁴	Residential Noncancer Risk ⁶
Volatile Organic Compounds (ug/kg)					
No Human Health CPCs Detected			'		
Semivolatile Organic Compounds (ug/kg)					
Benzo (a) anthracene	210	880	2E-7	l	
Benzo (b) fluoranthene	310	880	4E-7		
Chrysene	270	88,000	3E-9	1	
Dibenzo (a, h) anthracene	180	. 88	2E-6		
Indeno (1,2,3-cd)pyrene	290	880	3E-7	]	
Pesticides/PCBs (ug/kg)					
No Human Health CPCs Detected				ļ	
Inorganics (mg/kg)					
Arsenic	8.3	0.37	2E-5	Ì	
Beryllium	1.3	0.15	9E-6	<u> </u>	
Total Cancer Risk			3E-5	<u> </u>	
Total Noncancer Risk		1		<u>l</u>	<del></del>

The analytes listed exceeded one of the following criteria: a cancer risk of 10⁻⁶ or an adjusted Hazard Quotient of 0.1 based on February 9, 1995 USEPA Region III Risk Based Concentration (RBC); proposed soil screening levels (presented in document USEPA 9355-14FS, dated December 1994); value established by Florida Department of Environmental Protection in their memorandum for Cleanup Goals for Military Sites, dated April 5, 1995.

Notes:

ug/kg = microgram per kilogram. mg/kg = milligram per kilogram.

² The residential soil concentration listed represents a cancer risk of 10⁻⁶. The value is from the USEPA Region III RBC Tables dated February 9, 1995. For most analytes, the RBC table assumes a single exposure pathway. For most analytes, the RBC value is based on an ingestion route of exposure.

³ The cancer risk is an estimated value based on the assumptions used in the RBC tables.

⁴ The residential soil concentration for noncancer listed is based on a Hazard Quotient of 1. The value is from the USEPA Region III Risk Based Concentration Tables dated February 9, 1995.

⁵ The total noncancer risk is an estimated value based on the assumptions used in the RBC tables. The noncancer risks are assumed to be cumulative, even though different chemicals may effect different organs.

## Table C-7 Estimated Human Health Risk Unfiltered Groundwater Associated with SWMU 28

Group I and II RFA/SV Report U.S. Naval Station Mayport, Florida

Analyte ¹	Maximum Detected Concentration	Residential Cancer RBC ²	Residential Cencer Risk ³	Residential Noncencer RBC ⁴	Residential Noncancer Risk ⁵
Volatile Organic Compounds $(\mu g/I)$					
No Human Health CPCs Detected					
Semivolatile Organic Compounds $(\mu g/\ell)$		l 			
No Human Health CPCs Detected					
Pesticides/PCBs (µg/l)				}	
No Human Health CPCs Detected					
Inorganies (µg/l)					
Thallium ⁶	1.5			2.9	0.5
	<u> </u>	<u> </u>			<del>.</del>
Total Cancer Risk				<del> </del>	<u>.</u>
Total Noncancer Risk					0.5

¹ The analytes listed exceeded either a cancer risk of 10-6 or an adjusted Hazard Quotient of 0.1 based on the February 9, 1995 USEPA Region III Risk Based Concentration (RBC)or a screening value as listed in the Florida Department of Environmental Protection "Groundwater Guidance Concentrations," dated April 5, 1995.

Notes:

 $\mu g/\ell = micrograms per liter.$ 

² The groundwater concentration listed represents a cancer risk of 10⁻⁶ based on a 30 year lifetime aggregate exposure. The value is from the USEPA Region III RBC Tables dated February 9, 1995. For most analytes, the RBC table assumes a single exposure pathway. For most analytes, the RBC value is based on an ingestion route of exposure.

³ The cancer risk is an estimated value based on the assumptions used in the RBC tables.

⁴ The groundwater concentration for noncancer listed is based on a Hazard Quotient of 1. The value is from the USEPA Region III Risk Based Concentration Tables dated February 9, 1995.

⁵ The total noncancer risk is an estimated value based on the assumptions used in the RBC tables. The noncancer risks are assumed to be cumulative, even though different chemicals may effect different organs.

⁶ The value is based on thallium as thallium sulfate.

## Table C-8 Estimated Human Health Risk Surface Soil Associated with SWMU 48

Group I and II RFA/SV Report U.S. Naval Station Mayport, Florida

Analyte ¹	Maximum Detected Concentration	Residential Cancer RBC ²	Residential Cancer Risk ³	Residential Noncancer RBC*	Residential Noncancer Risk ⁶
Volatile Organic Compounds (µg/kg)					
No Human Health CPCs Detected					
Semivolatile Organic Compounds (µg/kg)				,	
No Human Health CPCs Detected			·		
Pesticides/PCBs (µg/kg)					
No Human Health CPCs Detected					
Inorganics (mg/kg)					
Arsenic	0.7	0.37	2E-6		
Total Cancer Risk			2E-6	<u> </u>	
Total Noncancer Risk		<u> </u>			

¹ The analytes listed exceeded one of the following criteria: a cancer risk of 10⁻⁶ or an adjusted Hazard Quotient of 0.1 based on the February 9, 1995 USEPA Region III Risk Based Concentration (RBC); proposed soil screening levels (presented in document USEPA 9355.4-14FS, dated December 1994); value established by Florida Department of Environmental Protection in their memorandum for Cleanup Goals for Military Sites, dated April 5, 1995.

Notes:

ug/kg = microgram per kilogram.

mg/kg = milligram per kilogram.

² The residential soil concentration listed represents a cancer risk of 10°. The value is from the USEPA Region III RBC Tables dated February 9, 1995. For most analytes, the RBC table assumes a single exposure pathway. For most analytes, the RBC value is based on an ingestion route of exposure.

³ The cancer risk is an estimated value based on the assumptions used in the RBC tables.

⁴ The residential soil concentration for noncancer listed is based on a Hazard Quotient of 1. The value is from the USEPA Region III Risk Based Concentration Tables dated February 9, 1995.

⁵ The total noncancer risk is an estimated value based on the assumptions used in the RBC tables. The noncancer risks are assumed to be cumulative, even though different chemicals may effect different organs.

## Table C-9 Estimated Human Health Risk Subsurface Soil Contamination Associated with SWMU 48

Group I and II RFA/SV Report U.S. Naval Station Mayport, Florida

Residential

**Residential** 

Analyte,	Maximum Detected Concentration	Residential Cancer RBC ²	Cancer Risk ³	Noncancer RBC	Noncancer Risk ⁵	
Volatile Organic Compounds (µg/kg)						*p216X
No Human Health CPCs Detected		ļ				1 1
Semivolatile Organic Compounds (µg/kg)		1	·			
No Human Health CPCs Detected	,					
Pesticides/PCBs (µg/kg)						
No Human Health CPCs Detected						
Inorganics (mg/kg)						
Arsenic	2.5	0.37	7E-6			
Total Cancer Risk			7E-6		-	_
Total Noncancer Risk			_			_

¹ The analytes listed exceeded one of the following criteria: a cancer risk of 10⁻⁶ or an adjusted Hazard Quotient of 0.1 based on the February 9, 1995 USEPA Region III Risk Based Concentration (RBC); proposed soil screening levels (presented in document USEPA 9355.4-14FS, dated December 1994); value established by Florida Department of Environmental Protection in their memorandum for Cleanup Goals for Military Sites, dated April 5, 1995.

Notes:

ug/kg = microgram per kilogram. mg/kg = milligram per kilogram.

² The residential soil concentration listed represents a cancer risk of 10°. The value is from the USEPA Region III RBC Tables dated February 9, 1995. For most analytes, the RBC table assumes a single exposure pathway. For most analytes, the RBC value is based on an ingestion route of exposure.

³ The cancer risk is an estimated value based on the assumptions used in the RBC tables.

⁴ The residential soil concentration for noncancer listed is based on a Hazard Quotient of 1. The value is from the USEPA Region III Risk Based Concentration Tables dated February 9, 1995.

⁵ The total noncancer risk is an estimated value based on the assumptions used in the RBC tables. The noncancer risks are assumed to be cumulative, even though different chemicals may effect different organs.

### **APPENDIX D**

AFFF MATERIAL SAFETY DATA SHEETS



HSZ MSDS 2247

Page 1 of <u>3</u>

### MATERIAL SAFETY DATA SHEET

		ANSULITE 6% AFFF	(AFC-3)	<u>-</u>
		Quick Identifier	· (In Plant Commo	on Name)
MANUFACTURER'S	Ansul Fire Protection	Emergency		
IAME	Wormald U.S., Inc.	Telephone		5-7411
repared By		Date Prep		
repared by	Safety and Health Depa	artment	November 15, 19	<del>3</del> 85
			:============	:======
ECTION 1 - IDE	NTITY			
			=======================================	=======
Common Name: (U	sed on label		CAS No.	
Trade Name and	Synonyms): Ansulite 65	% AFFF (AFC-3)	<u> </u>	
Chemical		Chen	nical	
	/A This is a mixture.	Fami	ily: Mixture	•
ormula				
	1/A			
<del></del>		-		-
	************		=======================================	=======
SECTION 2 - INC	REDIENTS			
====================================			-======================================	=======
Part A - HAZARD	OUS INGREDIENTS			
Principal Hazar	dous Component(s)	· · · · · · · · · · · · · · · · · · ·	ACGIH Acute T	-
chemical and o	common name(s)) %	CAS No.	TLV Da	
Diethylene Glyc	col Monobutyl Ether l	.7 112-34-5 No	one Dermal LD50	
(Butyl Carbi	itol)			4120 mg/
(500)1 00151			Oral LD50	(rat)
	1.1		6	5560 mg/kg
Part B - OTHER	INGREDIENTS			
Other Component				oxicity
(chemical and d	rommon name(s) %	CAS No	Da	ata
Proprietary mix	xture of hydrocarbon		<del>-</del>	
surfactants, f	luorosurfactants and			
inorganic salt	s not otherwise			
specified, and	water.			
<u> </u>				
			:======================================	========
SECTION 3 - PH	YSICAL AND CHEMICAL CH	ARACTERISTICS (Fir	e and Explosion	Data) ======
Boiling	Specific Gravity	Vapo	or Pressure	
Point: 97 °C	Specific Gravity (H20=1): 1	.02 (mm	Hg): N. D.	
<u></u>	(1120-17:	<u> </u>	<del></del>	
Percent Volati	le Vapor Dens:	ity <u>Solubil</u>		
by Volume (%):	$\frac{1e}{Approx.} 94 \frac{\text{Vapor Dens:}}{(Air = 1)}$	in wate	<u>er:</u> 100%	
			n	_
Evaporation Ra	te		Reactivity i	
(Butyl Acetate	= 1): 0.46	)	<u>Water: Unre</u>	active
<b>y</b>	•			
Appearance and	<b>J</b>			
Odor: Clear s	traw colored liquid, m	ild sweet odor.		
	•			

ANSULITE 6% AFFF (AFC-3) SECTION 3 PHYSICAL AND CHEMICAL CHARACTERISTICS (cont.)

Flammable Limits in None to Flash Air % by Volume: N/A boiling Point:

Extinguisher Media: N/A

Auto-Ignition Temperature: N/A

Special Fire Fighting

Procedures: N/A THIS IS AN EXTINGUISHING AGENT.

Unusual Fire and

Explosion Hazards: None.

SECTION 4 - PHYSICAL HAZARDS

Stability Unstable

[ ] Conditions

Stable

[X] to Avoid: N/A

Incompatibility

(Materials to Avoid): Reactive metals, electrically energized equipment, any

materials reactive with water.

Hazardous Decomposition

Products:

None known.

Hazardous

May Occur [ ] Conditions

Polymerization

Will Not Occur [X] to Avoid: N/A

SECTION 5 - HEALTH HAZARDS

THRESHOLD_LIMIT_VALUE: None established by ACGIH or OSHA.

Routes of Entry

Eye Contact:

May cause mild transient irritation.

Skin Contact:

May cause mild transient irritation.

Inhalation:

Inhalation is not anticipated to be a problem.

Ingestion:

Irritating to mucous membranes. Large oral doses could

produce narcosis.

Signs and Symptoms

Irritation of the eyes, skin and mucous membranes. Acute Overexposure:

Chronic

Overexposure:

Delayed kidney injury, possible liver damage.

Medical Conditions Generally

Aggravated by Exposure: Diseases of the kidney and liver.

ANSULITE 6% AFFF (AFC-3) SECTION 5 HEALTH HAZARDS (cont.)

Chemical Listed ás Carcinogen

National

Toxicology Yes [ ] No [X] Program

I.A.R.C. Monographs Yes[ ] No[X] OSHA Yes [ ]

or Potential 

SECTION 6 - EMERGENCY AND FIRST AID PROCEDURES

Eye Contact:

Flush with large amounts of water; if irritation persists,

seek Medical attention.

Skin Contact:

Wash with soap and water; if irritation persists, seek

Medical attention.

Inhalation:

Remove victim to fresh air. Seek Medical attention if

discomfort continues.

Ingestion:

If patient is conscious, give large amounts of water and

induce vomiting. Seek Medical help.

SECTION 7 - SPECIAL PROTECTION INFORMATION

Respiratory Protection

(Specify Type): Not normally necessary.

Ventilation

Local . Exhaust: Mechanical

Recommended. (General):

Protective

Eye Protection: Chemical goggles recommended.

Gloves: N/A

Other Protective Clothing

or Equipment: Eye wash and safety showers are good safety practice.

SECTION 8 - SPECIAL PRECAUTIONS AND SPILL/LEAK PROCEDURES

Precautions To Be Taken In Handling

and Storage:

Store in original container. Note incompatibility

information in Section 4.

Other Precautions:

Do not mix agents. Avoid skin and eye contact. Avoid

ingestion.

Steps to be Taken in Case Material is

Released or Spilled:

Rinse floor thoroughly with water as material is slippery. Prevent material from entering sewers or

waterways to avoid nuisance foaming.

Waste Disposal

Methods:

Dispose of in compliance with all local, state, and

federal regulations.



Environmental Laboratory

3M Environmental Engineering and Pollution Control

900 Bush Avenue

900 Box 33331

FILM FORMING FOAM (AFFF)

St. Paul, MN 55133-3336 ISPOSAL RECOMMENDATIONS AND HAZARD EVALUATION
612/778 4736

6147

دے فیصل کے میں

### CONCLUSIONS:

Light Water Brand AFFF and ATC wastes are treatable in a wastewater treatment system if disposed of according to 3M recommendations. These products have low toxicity to the microorganisms in wastewater treatment systems even at concentrations much higher than those recommended by 3M. Foaming problems may develop, however, particularly when recommended discharge concentrations are exceeded.

Fluorochemical thermal decomposition products do not present a health hazard during fire fighting nor do they affect the treatability of aquecus fire fighting wastes. The major reasons for this are that during usage, the concentration of fluorochemicals in Light Water AFFF solutions is low and little fluorochemical is burned.

DISPOSAL RECOMMENDATIONS FOR AFFF (AQUEOUS FILM FORMING FOAM) AND ATC (ALCOHOL TYPE CONCENTRATE) WASTES:

3M recommends handling wastes resulting from the use of Light Water AFFF products by pretreatment in an oil/water separator. The oil fraction should be incinerated in a facility designed to accept such wastes. The aqueous fraction should be metered to a wastewater treatment system at a rate sufficiently low so that the concentrations reaching the aeration basin of the wastewater treatment system will not cause excessive foaming. Appropriate discharge rates will be determined by individual circumstances and should follow applicable regulations.

When pretreatment by oil/water separation is not possible, 3M recommends metering wastes to a wastewater treatment system. Since regulations vary, consult applicable regulations or authorities before disposal. In addition, treatment plant operators should be contacted before discharge to determine the capacity of the treatment system and sewage flow rates into the system so that discharge rates can be estimated.

For most AFFF or ATC products used at 6%, 3M recommends adjusting the discharge rate so that the product concentration in the aeration basin of the wastewater treatment system will be less than 100 mg per liter of sewage. For most products used at 3%, 3M recommends a maximum

Date: 9/11/92

Page 1 of 8

These data are intended for the use of a person qualified to evaluate environmental data.





**Environmental Laboratory** 3M Environmental Engineering and Pollution Control

3M LIGHT WATER BRAND AQUEOUS 900 Bush Avenue FILM FORMING FOAM (AFFF) PO Box 33331 St Paul MN 55133-333 DISPOSAL RECOMMENDATIONS AND HAZARD EVALUATION 612/778 4736 (CON'T).

product concentration of 50 mg/L in the aeration basin. Products used at 3% require greater dilution than products used at 6% because the 3% concentrates have higher surfactant concentrations than the 6% concentrates. Product Environmental Data Sheets for products with higher surfactant concentrations may recommend somewhat greater dilution.

In some situations, metered discharge of wastes to a wastewater treatment system is impractical because the small size of the treatment system limits the discharge rate to such an extent that too much time would be required for disposal. 3M recommends two disposal alternatives in these situations: (1) transporting collected waste materials by tank trucks for metered discharge into a larger waste treatment facility, or (2) discharging the waste at a somewhat higher rate with appropriate concentrations of antifoaming agent added to the waste stream to control foaming.

Experiments conducted in the 3M Environmental Laboratory have determined that several antifoaming products are effective at controlling excessive foaming in activated sluge/AFFF mixtures. effectiveness of antifoaming agents, however, will be determined by the specific conditions in the aeration basin in individual wastewater treatment systems.

While this is not an endorsement, the following nine products were found to be the most effective of thirty-one antifoam products tested using activated sludge/AFFF mixtures in laboratory tests:

> GE Silicones 1-800-332-3390

Antifoam Emulsion AF72 Antifoam Emulsion AF93 Antifoam Emulsion AF9020

Henkel 1-800-922-0605 Defoamer WB-209 FoammasterTM DS

Union Carbide 1-800-523-5862 SAG 2001 Organosilicone Emulsion

9/11/92

Date:

Page 2 of 8

These data are intended for the use of a person qualified to evaluate environmental data.



Environmental Laboratory
3M Environmental Engineering and Pollution Control

900 Bush Avenue 3M LIGHT WATER BRAND AQUEOUS
PO Box 33331 FILM FORMING FOAM (AFFF)
St Paul, MN 55133-3331 FILM FORMING FOAM (AFFF)
612/778 4736 DISPOSAL RECOMMENDATIONS AND HAZARD EVALUATION

Wacker Silicones 1-800-248-0063 Antifoam Agent SE-36 Antifoam Agent SWS-214 Antifoam Emulsion SRE

Of these nine products, the most cost-effective were Henkel WB-209, GE Silicones AF9020, Henkel FoammasterTM DS, and Wacker Silicones SRE. The cost analysis used in that study was based on antifoam prices obtained in July, 1992. Price and transport charges may vary which could cause other products to be more cost-effective in some locations.

The antifoam concentration required to limit foaming in laboratory tests on FC-203CF solutions of various concentrations are tabulated below. The products are listed in the table in order of most to least cost-effective. The antifoam concentrations given in the table are intended to serve as estimates since the actual antifoam concentration required to suppress foaming will be determined by the specific conditions in the aeration basin. Where no data are given in the table, the antifoam agent is not recommended for suppressing foam at or above that AFFF concentration.

The antifoam concentrations in the table were obtained in laboratory tests using 3M FC-203CF, but they are the approximate antifoam concentrations required for other 3M AFFF and ATC products used at 3%. For 3M AFFF products used at 6% in water, the antifoam concentrations should be approximately correct for twice the AFFF concentrations given at the top of each column. This is, the antifoam concentrations would be approximately correct for 6% AFFF concentrates at 200, 600, 1000, 1200, 1400, 1600, 1800, and 2200 mg/L in the aeration basin.

The AFFF and antifoam concentrations given in the preceding paragraph and in the table below are for foam control only. Other factors must be considered in selecting rates of discharge to a sewer. 3M recommends a case-by-case determination of the maximum concentrations of AFFF and antifoam to be discharged to a treatment system and subsequently to an aquatic environment. The maximum concentration will depend on a variety of factors, including the conditions in the individual wastewater treatment system and in the receiving watercourse, as well as the dilution factor of the treated wastewater in the receiving watercourse. These factors should be evaluated in

Date: 9/11/92

Page 3 cf 8

These data are intended for the use of a person qualified to evaluate environmental data.



Environmental Laboratory 3M Environmental Engineering and Pollution Control

900 Bush Avenue PO Box 33331 St. Paul, MN 55133-3331 612/778 4736

3M LIGHT WATER BRAND AQUEOUS FILM FORMING FOAM (AFFF)

DISPOSAL RECOMMENDATIONS AND HAZARD EVALUATION

(CON'T)

each situation to ensure that neither the AFFF nor the antifoam will cause harm. Product Environmental Data Sheets on the particular 3M AFFF product(s) will help in this evaluation.

	100	FC-20	3CF Cc 500	ncentr 600	ration 700	(mg/L) 800	* 900	1100
Henkel WB-209	20	100	190				, d es es-	
GE Silicones AF9020	20	100	190	270	430	500	740	1950
Henkel Foammaster TM DS	20	110	200	300	·430	500	690	1600
Wacker Silicones SRE	20	100	190	270	400	490		
Wacker Silicones SWS-214	40	170	430					
GE Silcones AF93	20	100	190	270	430	480	530	1600
GE Silicones AF72	20	100	190	270	430	480	600	1800
Wacker Silicones SE-36	30	140	310	470	580			
Union Carbide SAG 2001	50	220	600					

^{*} See text for precautions and for extrapolating these data to other 3M AFFF products.

9/11/92

Page 4 of 8

Date:

These data are intended for the use of a person qualified to evaluate environmental data.



Environmental Laboratory 3M Environmental Engineering and Pollution Control

900 Bush Avenue 3M LIGHT WATER BRAND AQUEOUS PO Box 33331 FILM FORMING FOAM (AFFF) SL Paul, MN 55133-3331 DISPOSAL RECOMMENDATIONS AND HAZARD EVALUATION 612/778 4736 (CON'T)

In situations where antifoam agents are used to control excessive foaming by 3M products used at 6% in water, 3M recommends adjusting the discharge rate so that the product concentration in the aeration basin of the wastewater treatment system will be less than 1,000 mg/L of sewage. When antifoam agents are used to control foaming by 3M products used at 3%, 3M recommends a maximum AFFF concentration of 500 These maximum concentrations are based on mg/L in the aeration basin. laboratory studies that have shown that 3M AFFF products at or below these concentrations are unlikely to cause toxicity in wastewater treatment systems. The AFFF and antifoam concentrations in the table that are greater than these maximum recommended concentrations are provided to assist customers in dealing with emergency foaming situations or where elevated concentrations are appropriate because of individual circumstances. In all cases, applicable local regulations and the antifoam Material Safety Data Sheet (MSDS) should be consulted before use.

At 3M's own wastewater treatment facilities, foaming caused by Light Water AFFF discharges has been controlled by spraying a dilution of Wacker Silicones Antifoam Emulsion SWS-214 over the aeration basin. This dilution is prepared by mixing one part of SWS-214 in twenty parts The antifoam dilution is sprayed over the aeration basin surface until the desired level of foam control is obtained. This procedure could be used as an alternative to adding the antifoam directly to the AFFF containing waste stream.

### REASONS FOR 3M DISPOSAL RECOMMENDATIONS:

The primary reason for recommending discharge to a sewer is that 3M AFFF wastes are treatable in a biological wastewater treatment system. Light Water AFFF usage wastes are approximately 99% water and therefore have very low concentrations of organic compounds. The dilute nature of the waste makes alternative disposal methods, such as incineration, carbon adsorption, ultrafiltration, or reverse osmosis, both difficult and costly. Moreover, the major components of 3M AFFF usage wastes are a biodegradable solvent, Butyl Carbitol (<1%), and a mixture of biodegradable and partially biodegradable surfactants (<0.3%).

Page 5 of 8

Date:

9/11/92



Environmental Laboratory

3M Environmental Engineering and Pollution Control

900 Bush Avenue PO Box 33331 St. Paul, MN 55133-3331 612/778 4736 3M LIGHT WATER BRAND AQUEOUS FILM FORMING FOAM (AFFF)

DISPOSAL RECOMMENDATIONS AND HAZARD EVALUATION
(CON'T)

Chemicals are generally considered biodegradable when the ratio of their 20-day Biochemical Oxygen Demand (BOD20) to their Chemical Oxygen Demand (COD) is greater than 0.6. The BOD20/COD for Butyl Carbitol was found to be 0.85. There are several biodegradable surfactants in these products and their BOD20/COD ratios were found to lie between 0.74 and There are also surfactants in these products with BOD20/COD ratios less than 0.6. This includes the fluorochemical surfactants and some of the hydrocarbon surfactants. The hydrocarbon surfactants that do not meet this BOD20/COD criteria will likely fully biodegrade given Some fluorochemical surfactants may have both hydrocarbon and fluorochemical portions. The fluorochemical portions of these surfactants are not known to biodegrade, but the hydrocarbon portions are likely to be biodegraded to some degree in most wastewater treatment systems and, like the fully hydrocarbon surfactants, eventually completely biodegrade. Possible fates of the nondegradable materials in wastewater treatment systems include sorption onto the microbial solids or passage out of the system with the treated In any event, their concentration will be very low. Nonbiodegradable fluorochemical materials are used in AFFF products because they are required to make the products work. All effective AFFF products on the market today (and all fluoroprotein products as well) contain fluorochemical surfactants. Finally, laboratory tests on both the individual product components and the product concentrates have determined the low toxicity of these materials to activated sludge bacteria, so discharge to ordinary wastewater treatment systems is reasonable.

Laboratory studies have shown that foaming, not toxicity, is usually the cause of problems from improper disposal of AFFF wastes to wastewater treatment systems. In laboratory studies, wastewater containing FC-600 Light Water AFFF at 1,000 mg/L was treated successfully without toxicity. In that lab study, the foam was physically broken down and returned to the treatment system along with activated sludge solids that came out because of foaming. With these modifications to the normal treatment process, the quality of the treated effluent from the laboratory scale system was not adversely affected. Treatment at this concentration is not recommended, however, because of excessive foaming.

9/11/92

Page 6 of 8

Date:

These data are intended for the use of a person qualified to evaluate environmental data.



Environmental Laboratory

3M Environmental Engineering and Pollution Control

900 Bush Avenue PO Box 33331 St. Paul, MN 55133-3331 612/778 4736 DI

س∈ مالا بند

3M LIGHT WATER BRAND AQUEOUS 31 FILM FORMING FOAM (AFFF) DISPOSAL RECOMMENDATIONS AND HAZARD EVALUATION

(CON'T)

Light Water AFFF wastes resulting from testing the operability of a fire fighting system, such as that installed in a hanger facility, normally don't contain much fuel cr oil. On the other hand, wastes from fire fighting training facilities where hydrocarbon fires are extinguished may contain suspended oil. If oil is present, it should be separated from the waste before discharging the waste to a sewer as described above. If oil is emulsified in the waste, it may be difficult to separate but many oils can biodegrade. Furthermore, emulsified oils are more likely to biodegrade in a wastewater treatment system than are nonemulsified oils.

3M recommends metered discharge of Light Water AFFF wastes to flowing sewers because discharge to an intermittently flowing sewer could cause waste to collect and to be flushed to aeration basins at higher than recommended concentrations. Uncontrolled sewer discharge rates also could result in foam backing out of sewer drains.

#### THERMAL DECOMPOSITION FROM LIGHT WATER AFFF USAGE:

Thermal decomposition products resulting from Light Water AFFF usage present an insignificant hazard. Considerable confusion was caused by a precautionary statement formerly used on Light Water AFFF Material Safety Data Sheets (MSDSs). That statement was frequently misinterpreted as meaning that thermal decomposition products from usage concentration levels could cause a health hazard. The precaution once simply stated: "Thermal decomposition may produce toxic materials, including HF." This statement has now been modified to include: "Decomposition of usage concentrations does not present a hazard."

The former MSDS precaution for Light Water AFFF products is still used on the MSDSs for other 3M products containing fluorochemicals. The statement is used because it is well known that most fluorochemical materials, including such commonly used items as polytetrafluoroethylene (PTFE) coated frying pans, utensils, etc., can liberate toxic fumes including HF or perfluorobutylenes under combustion or pyrolysis conditions. However, this will occur only if very high temperature conditions exist (>300C).

9/11/92

Page 7 of 8

Date:

These data are intended for the use of a person qualified to evaluate environmental data.



Environmental Laboratory

3M Environmental Engineering and Pollution Control

900 Bush Avenue

900 Bush Avenue

900 Bush Avenue

FILM FORMING FOAM (AFFF)

St. Paul, MN 55133-333 ISPOSAL RECOMMENDATIONS AND HAZARD EVALUATION
612/778 4736

(CON'T)

Furthermore, formation of hazardous concentrations of thermal by-products is more likely in fluorocarbon containing products with high fluorine content (65 or 70%), but the fluorochemical content of 3M AFFF products is very low. For example, FC-206CF Light Water AFFF concentrate contains only about 1.1% fluorine, and when diluted to the usage concentration, it contains only about 0.06% fluorine. Thus, from a combustion or pyrolysis product hazard perspective, PTFE, which is widely known as a nontoxic, inert material, would be far more hazardous.

There are other reasons that make the production of hazardous concentrations of thermal degradation products during fire fighting with Light Water AFFF very unlikely. Most importantly, little of the fluorochemical would burn or thermally decompose. The reasons for this are that the product rapidly covers and extinguishes the fire, and the high percentage of water absorbs considerable heat, thereby cooling and limiting the decomposition of the dissolved fluorochemical.

The 3M Industrial Hygiene Department conducted a test to confirm the lack of hazard from fluorochemical combustion when Light Water AFFF is used in fire fighting. The test was designed to simulate a "worst case" situation by maximizing the chance of fluorochemical combustion. The test burned a 2-3 inch layer of FC-203CE Light Water AFFF foam in a 10 square foot pan of gascline inside a 20 by 20 foot wide and 15 foot high open topped concrete building. To cause the fluorochemical in the Light Water AFFF product to burn, the test operator had to stir vigorously the foam and gasoline, an atypical procedure. Stirring broke the foam barrier and allowed combustion that would normally have been extinguished by the foam. Even under this worst case situation, two HF measurements taken above and near this fire were only 0.23 and 0.16 parts per million (ppm). While not directly applicable to this situation, these measurements were below the Threshold Limit Value for HF of 3 ppm, a concentration judge not to present a health hazard for nearly all persons.

Thus, fluorochemical decomposition products from Light Water AFFF present an insignificant risk when compared to the many other hazardous decomposition products resulting from a fire. Light Water AFFF products certainly play a much more significant role in reducing the toxicity hazards of fire situations by rapidly cooling and extinguishing a fire and by covering and preventing the volatilization of other potentially toxic materials.

Date: 9/11/92

Page 8 of 8

These data are intended for the use of a person qualified to evaluate environmental data.

#### 11. "Light Water" Brand Concentrates

#### A. Physical Properties

The selection of the proper "Light Water" Agent is important for optimum performance of any fire protection system. Typical physical properties of "Light Water" Concentrates are listed in Table II-1. 6% Concentrate is designed to be mixed at 6 parts concentrate with 94 parts water. 3% concentrates are designed to be mixed at 3 parts concentrate with 97 parts water. The 3% freeze-protected concentrate is protected to  $-15^\circ\text{F}$  ( $-26^\circ\text{C}$ ) with a mirrimum use temperature of  $0^\circ\text{F}$  ( $-18^\circ\text{C}$ ).

The Alcohol Type Concentrate (ATC) is designed to be mixed at 3 parts concentrate with 97 parts water when used on non-polar hydrocurbon flammables. For polar solvents or alcohols, ATC is designed to be mixed at 6 parts concentrate with 94 parts water.

Table 11-1.
Typical Concentrate Properties

	Naminal	9	necific Gr	avity		viscosity.	CS	Minimum	Freezis	PΗ
"Light Water" Concentrate	Uy: Concentration	77°F (25°C)	40"F (4 4"C)	-10° F (-23.5° C)	77°F (25°C)	40°F (4.4°C)	·10°F (-23.3°C)	Use Temp. fr (°C)	Point *F (*C)	77°F (25°C)
AFFF	6%	1.01	1.02	_	2	5	_	35 (1.7)	25 (-1)	В
AFFF	196	1.10	_	. <del>-</del>	12.2	31.0	-	35 (1.7)	20 (-5.7)	8
AFFF (Freeze Protected)	3%	1.C <del>-6</del>	1,06	1.03	8	16	90	0 (-18)	- 15 (-25)	8
AFFF	3%	1.04	1.05	_	4	9		35 (1,7)	25 (-1)	R
AFFF/ATC	3%/6%	1.02	_	-	2000	3220		35 (1.7)	28 (-2)	8

#### B. Storage and Stability

### 1. "Light Water" AFFF

"Light Water" Brand Concentrates may be stored in their shipping containers without change in their original physical or chemical characteristics. Freezing and thawing have no adverse effect on product performance, though slight stratification may result, in which case moderate agitation before use is advised. The non-freeze protected concentrates proportion satisfactorily in ordinary equipment between 35° and 120° F (2° and 49°C). Freeze protected concentrate, with a freeze point of -15° F, proportions satisfactorily in ordinary equipment between 0° and 120° F (-18° and 49°C).

Long-term thermal aging of the *concentrates* at 150°F (65°C) has shown no adverse effect in performance. Therefore, a lifetime of at least 20 years could be expected when stored in suitable containers. Storage of *premixes* is not generally recommended for periods beyond 5 years.

Storage of concentrates or premixes in unlined mild steel tanks is not recommended as a general practice. No serious *concentrate* poisoning from metals of construction has occurred. However, as with any other aqueous material, there is the possibility of rust and scale formation in mild steel tanks. Storage of *premixes* in contact with mild steel (and to some extent, aluminum) will result in eventual agent poisoning. Recommendations for materials of construction are given in Section V, "Materials of Construction." Contact your local 3M sales representative for advice on unusual storage conditions.

Post-it" brand fax transmittal	memo 7671 per pages . 5
" Scott Newman	From Thou Hold
Co.	Ca
Dept,	Phone #
Fox 4	Fez #

#### 2. "Light Water" ATC

U 02 1 152 713

In storing and handling "Light Water" ATC, certain recommendations are necessary, When stored in accordance with these recommendations, "Light Water" ATC has good stability. Unlike the regular "Light Water" Brand Concentrates, there are some limitations to its shelf-life. Annual inspection of systems as prescribed in NFPA II is recommended. Additionally, storage and handling recommendations include the following:

- Storage in mild carbon steel tanks is not recommended.
- Long term handling with mild carbon steel pumps and piping is not recommended.
- Evaporation of the concentrate should be prevented through the use of pressure/vacuum vents on all storage vessels.
- ATC Premix Systems have shelf lives limited to two years.
- Contamination with other agents must be avoided.

#### C. Agent Testing

Simple test procedures to determine quality of stored concentrate and premix solutions are given in Tables II-2, II-3 and II-4. These tests evaluate solution strength, foam quality and film quality and should be run about once a year on any stored "Light Water" AFFF. Failure of the stored agent to meet the requirements of any one of these tests could be reason for adjustment or replacement. Consult your 3M Fire Protection Systems representative for further action if this occurs.

1. Determination of Solution Strength

"Light Water" 6% Concentrate is designed for use at 6% in water, but performs satisfactorily at solution strengths from 5 to 7%. To assure operation near the nominal 6% level, construction of a refractive index versus percent concentration curve is recommended (see Table II-3 and II-4). This procedure, involving small amounts of solution and little time is particularly useful for checking out proportioning equipment. A similar procedure can be used for "Light Water" 3% Concentrate or "Light Water" ATC.

Determination of Agent Foam Quality

A simple field test to determine foam quality is given in Table II-2.

Table II-2
Foam Test for Determining "Light Water" Agent Quality

The procedure developed for field testing of premixes consists of the following:

- a. With a 10 ml, pipet or 10 ml, syringe add precisely 10 ml, of premix to a 100 ml, graduate cylinder. (Preferred type has ground glass stopper.)
- b. Place stopper in the graduate, and shake hard and rapidly 25 times
- With a spatula push any foam clinging to sides of graduate down into the foam bulk.
- d. Read volume of top level of foam.
- e. If toam volume is less than 40 ml., the eyent should be replaced.

#### 3. Determination of Agent Film Quality

The film formation and sealability test procedure of MIL-F-24385B (paragraphs 3.3.1 and 4.7.6) should be used to evaluate film quality. Failure to pass this test indicates the agent should be replaced.

A simplified version of this test has been developed and is more convenient for field testing. The procedure is as follows:

- To a glass petri dish (60 mm, diameter) add cyclohexane or cigarette lighter fluid to give a depth of 1/8".
- Place dish on black surface and under a tamp if possible so as to aid in observing the frim spread.
- With a medicine dropper carefully place three drops of premix on fuel surface at center of dish.
- d. With aid of reflected light observe the spreading film.
- e. After one minute, pass a lighted probe over the surface of fuel. Be sure to have a smothering plate handy in case of ignition.
- f. If no film is observed or if ignition occurs, the agent should be replaced.

Note: "Light Water" Agent testing service is available through the Fire Protection System feet-Service Laboratory. Refer to your authorized distributor or sales representative for sampling instructions and Tech-Service forms.

#### Table II-3 The Determination of Concentration by Refractive Index

The American Optical 1 portable refractometers (Catalog Nos. 10419, 10440 and 10441) are useful instruments for determining the agent concentration of "Light Water" AFFF in both fresh and sea water solutions. The method is rapid and requires only a small amount of solution.

The operator first should familiarize himself with the instrument and its use. This is the best accomplished by reading the instruction manual and preparing test solutions of known concentrations. The use of this instrument is facilitated when accompanied by the following list of materials (field kit):

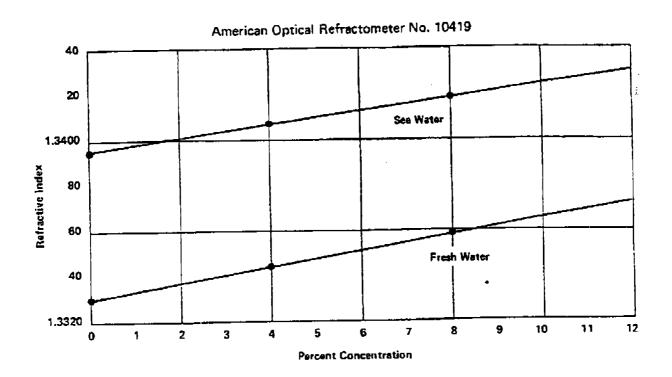
> 1 cc. Syringe 25 ml. Graduate Medicine Droppers Cleansing Tissues Graph — Refractionieter Reading vs. % Concentration (See Table H-4)

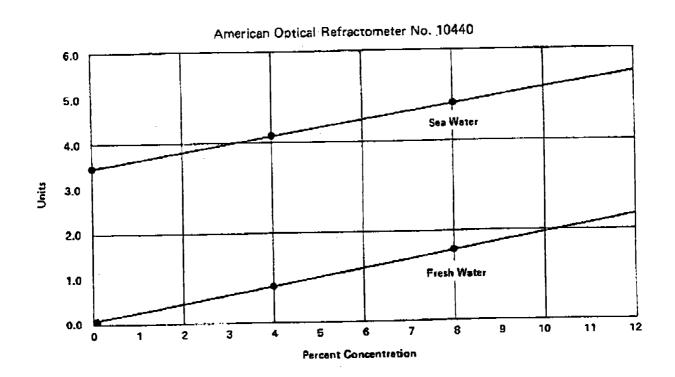
To prepare for field testing, it is necessary to construct a graph plotting the refractometer reading vs. concentration using the portable refractometer. The reference graph should include the plats for tresh and sea water solutions. A minimum of three points is necessary for each agent. This can tic accomplished by preparing two accurate test solutions as 4% and 8% (or 5% and 10%). The refractometer reading of these two solutions and of the water only provide the three points. When plotted on the graph paper, the reference line drawn through the points should be straight. It is suggested that the above procedure be repeated several times to assure familiarization and confidence in the instrument.

To insure accuracy in the field, it is advisable to prepare the two known solutions with the test agent and water at the site and determine their refractemeter readings. The solutions can be prepared using the materials listed in the above traveling field kit.

if the refractomater readings of these solutions fall on the plotted reference line, concentrations are read directly at the reference line intersect. If the readings differ, a new reference line should be drawn and used for determining the concentration of the proportioned solution.

Attuched to this instruction bulletin are sample graphs plotting retractometer readings and percent concentrations. Reference lines are included for "Light Water" Agent with both fresh and sea water solutions. These curves are illustrative only. It is necessary to construct actual curves in the field.


Refractometer No. 10419 is a precision instrument and has the accuracy of a laboratory bonch model. Catalog No. 10440, though not as precise an instrument, is accurate within 1/2% concentrate level and is very suitable for adjusting proportioning systems. Catalog No. 10441 is also suitable for adjusting proportioning systems, It is suggested that No. 10419 be used when greater accuracy is required.


:721**G** 

Misco Prod. - Cleveland, Ot. 800 358-1100 DWR Scientific S.F. CA. 415-448-7150 WINN Oil G. Fullerton, Ca. 213-334-0231 Richmond M. 804-264-7506 GEN. Medical

LYKES PASCO Dadelity, 7/9 904-567-5211

TABLE II-4
Typical Refractometer Reading vs. Concentration "Light Water" AFFF Solutions - Sample Curves





#### D. Water Considerations

"Light Water" Concentrates are designed for use with fresh or sea water. No problem has been encountered using brackish water or water containing a high concentration of minerals or organics. However, it is not advisable to dilute Concentrate with water containing wetting agents or corrosion inhibitors. If this situation is difficult to avoid, contact your local 3M representative for a recommendation.

#### E. Compatibility With Other Class "B" Extinguishing Agents

Occasionally "Light Water" Agents must be applied to a fire simultaneously with protein or fluoroprotein foam. Tests have shown that "Light Water" Agent can be used with either in any sequence of operation. Their use in combination detracts from the efficiency of "Light Water" Agents, but enhances the performance of protein or fluoroprotein foams.

"Light Water" Concentrates should not be mixed with concentrates of other manufacturers.

"Light Water" Agent's compatibility with dry chemical agents has popularized twin unit systems. Both types of agents contribute superior knockdown; "Light Water" Agent secures against reflash while dry chemical suppresses three-dimensional fires.

#### F. Limitations of "Light Water" AFFF Use

Like all water-based foams, "Light Water" Agent is not suitable for fires involving "live" electrical equipment (Class "C") or fires of materials that react violently with water, such as socium metal (Class "D").

"Light Water" Agent is also not recommended for use on fires involving liquified gases, such as propane, as severe boiling and increased vapor release will occur due to the latent heat of the water draining from the foam. Recent test work shows some success with high expansion foams in retarding the vaporization rate of such liquified gas spills. "Light Water" Agent may also be used in high expansion devices to gain similar reduced vapor evolution rates.

Caution should be exercised in applying "Light Water" Agents to vessels containing hot oils, asphalts, etc., which are well above the normal boiling point of water after burning for an extended period of time. The water in the premix may cause violent frothing and even forceful expulsion of a port on of the contents.

"Light Water" AFFF is not intended for hazards involving polar solvents or alcohols in depth. The use of "Light Water" ATC is recommended for these hazards.



### G. Safety, Handling, and Environmental Impact

"Light Water" Brand Concentrates may be classified as practically non-toxic orally based on acute oral LD₅₀ values in rats. The concentrates have also been found to be essentially non-irritating to the skin of albino rabbits. Eye irritation of albino rabbits is limited to mild and conjunctival irritation. Eye "wash-out" with water immediately following contact is recommended and should arrest/reverse the irritation process.

3M is conducting an ongoing program to evaluate and assess the environmental impact of its newland existing products. Where possible, all "Light Water" Agents have been tested in accordance with the "Standard Methods for the Examination of Water and Wastewater," 13th Edition, 1971. Conclusions from these tests are:

- 1. "Light Water" Agents are biodegradable.
- "Light Water" Agents can be treated in biological treatment system.
- "Light Water" Agents exhibit low toxicity to aquatic organisms.

For example, oxygen uptake tests have shown that no microbial inhibition will occur at concentrations less than 1000 mg./l. for 6% concentrate (16,000 mg./l. for 6% solutions). A conventional activated sludge pilot plant was successfully operated using a feed source which consisted of a mixture of settled domestic sewage and "Light Water" Agent.

Acute toxicity data on various aquatic organisms show that the dilution of the applied solutions in firefighting situations should be sufficient to insure no adverse effect on aquatic life.

An evaluation of your specific situation should be based on the particular circumstances and factors involved and should include consultation with the appropriate pollution control agencies.

When environmental proporties of the "Light Water" Concentrates are needed, contact Fire Protection Systems, 5M.

## APPENDIX E

DREDGE MATERIAL DISPOSAL CORRESPONDENCE



### STAFF CIVIL ENGINEER DEPARTMENT NAVAL STATION

MAYPORT, FLORIDA 32228-0067

IN REPLY REFER TO:

N4A 7 Apr 95

From:

John Veal, Deputy Staff Civil Engineer

To:

Eunice Ford, CEASJ-DP-I

Subj: REMOVAL OF MATERIAL IN UPLAN. DISPOSAL AREAS AT NAVAL STATION

MAYPORT, FLORIDA

- 1. During our fonecon today you outlined two alternatives for overcoming potential regulatory issues regarding removal and disposal of material from the spoil areas. In the first alternative NAVSTA would take the responsibility for coordinating with the Environmental Protection Agency for necessary approvals. Under the second approach the Corps of Engineers would advise the Environmental Protection Agency of the Corps' plans to remove and dispose of the material, and then proceed absent specific objections from EPA. Under the second alternative the COE would initiate appropriate correspondence and otherwise work whatever issues might arise.
- 2. I have discussed these approaches with Mike Davenport and Cheryl itchell in our Environmental Division, and we agree that using the COE s our agent in coordinating with the EPA is the preferred alternative. Therefore, you are requested to move forward with removal and disposal of the spoil material after the EPA has been advised of the plan. you provide NAVSTA with information correspondence, and in general keep Cheryl Mitchell abreast of progress so that she may keep her partnering group current on the status of the dredge spoil areas.

3. You are requested to identify in-house costs required to proceed

John Veal

ct: Lcdr. Tomlinson Mike Davenport Cheryl Mitchell

Ford

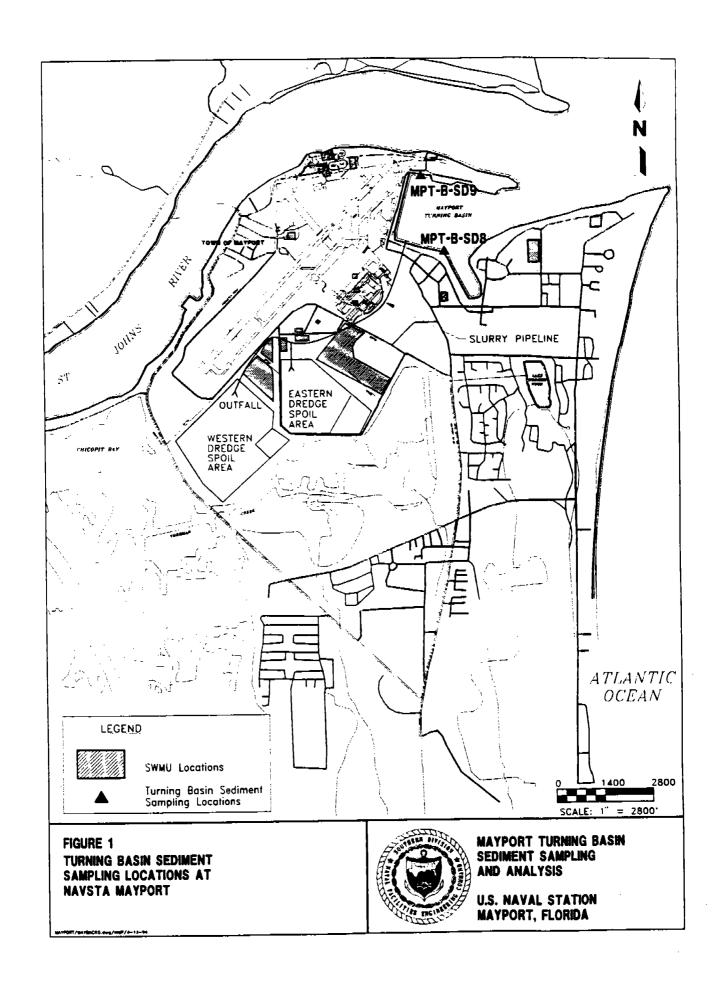
Planning Division Environmental Branch

SUBJECT: Mayport Naval Station Dredged Material Disposal Areas

Joseph R. Franzmathes
Director, Waste Management Division
U.S. Environmental Protection Agency, Region IV
345 Courtland Street NE.
Atlanta, Georgia 30365

Dear Mr. Franzmathes:

The Engineering Division of the Staff Civil Engineer Department at the U.S. Naval Station, Mayport, Plorida, has requested the Jacksonville District, U.S. Army Corps of Engineers, to provide Architect/Engineer (A/E) design services for removal of dredged material from upland disposal areas D/A-N and D/A-O. Construction includes the removal of dredged material and separation of recyclable material for use in road asphalt mix, concrete, etc. and disposal of non-recyclable material in a landfill. The intention of this project is to provide capacity for future maintenance dredging of the Mayport basin.


The project is scheduled to start at the end of calendar year 1995 or the beginning of 1996. The project will take approximately 1 year to complete.

Sincerely,

Richard E. Bonner, P.E. Deputy District Engineer for Project Management

bcc: CESAJ-DP-I

# APPENDIX F MAYPORT TURNING BASIN 1993 SAMPLING EVENT



## Table 1 Volatile Organic Analytes not Detected by TCLP Analysis in Sediment Samples Collected from the Mayport Turning Basin

Technical Memorandum Mayport Turning Basin Characterization Activities NAVSTA Mayport, Mayport, Florida

Sample M				Sediment	Sediment
Location/S	Sample No.:			MPT-BG-SD08	MPT-BG-SD09
Date Sam	pled:	<del>, , , , , , , , , , , , , , , , , , , </del>		2-Dec93	2-Dec93
CAS RN	Common Name	Regulatory Level	Laboratory detection Level	Conc.	Conc.
71-43-2	Benzene	0.05	0.25	< 0.25	< 0.25
78-93-3	2-Butanone	200.0	100.0	< 100.0	< 100.0
56-23-5	Carbon Tetrachloride	0.50	0.25	< 0.25	< 0.25
108-90-7	Chlorobenzene	100.0	50.0	< 50.0	< 50.0
67-66-3	Chloroform	6.0	3.0	< 3.0	< 3.0
107-06-2	1,2-Dichloroethane	0.50	0.25	< 0.25	< 0.25
75-35-4	1,1-Dichloroethene	0.70	0.35	< 0.35	< 0.35
127-18-4	Tetrachloroethene	0.70	0.35	< 0.35	< 0.35
79-01-6	Trichloroethene	0.50	0.25	< 0.25	< 0.25
75-01-4	Vinyl Chloride	0.20	0.10	< 0.10	< 0.10

CAS RN = chemical abstract service registry number.

## Table 2 Semivolatile Organic Analytes not Detected by TCLP Analysis in Sediment Samples Collected from the Mayport Turning Basin

Technical Memorandum
Mayport Turning Basin Characterization Activities
NAVSTA Mayport, Mayport, Florida

Sample Ma	etrix:			Sediment	Sediment
Location/S	Sample No.:		T.	MPT-BG-SD08	MPT-BG-SD09
Date Samp	oled:			2-Dec-93	2-Dec-93
CAS RN	Common Name	Regulatory Level	Laboratory detection Level	Cone.	Conc.
106-46-7	1, 4-Dichlorobenzene	7.5	3.75	< 3.75	< 3.75
121-14-2	2, 4-Dinitrotoluene	0.13	0.065	< 0.065	< 0.065
118-74-1	Hexachlorobenzene	0.13	0.065	< 0.065	< 0.065
87-68-3	Hexachlorobutadiene	0.5	0.25	< 0.25	< 0.25
67-72-1	Hexachloroethane	3.0	1.5	< 1.5	< 1.5
95-48-7	2-Methylphenol	200	100	< 100	< 100
108-39-4	3-Methylphenoi	200	100	< 100	<100
106-44-5	4-Methylphenol	200	100	< 100	< 100
98-95-3	Nitrobenzene	2.0	1.0	< 1.0	< 1.0
87-86-5	Pentachiorophenol	100	50	< 50	< 50
110-86-1	Pyridine	5.0	2.5	< 2.5	< 2.5
95-95-4	2, 4, 5-Trichlorophenol	400	200	< 200	< 200
88-06-2	2. 4, 6-Trichlorophenol	2.0	1.0	< 1.0	< 1.0

Notes: Concentrations are reported in milligrams per liter.

CAS RN = chemical abstract service registry number.

## Table 3 Pesticide and Herbicide Analytes not Detected by TCLP Analysis in Sediment Samples Collected from the Mayport Turning Basin

Technical Memorandum
Mayport Turning Basin Characterization Activities
NAVSTA Mayport, Mayport, Florida

Sample Ma	itrix:			Sediment	Sediment
Location/S	ample No.:			MPT-BG-SD08	MPT-BG-SD09
Date Samp	led:			2-Dec93	2-Dec93
CAS RN	Common Name	Regulatory Level	Laboratory detection Level	Conc.	Conc.
57-74-9	Chlordane	0.03	0.015	< 0.015	< 0.015
72-20-8	Endrin	0.020	0.010	< 0.010	< 0.010
58-89-9	Gamma-BHC (Lindane)	0.40	0.20	< 0.20	< 0.20
76 <del>-44-</del> 8	Heptachior	0.0080	0.0040	< 0.0040	< 0.0040
1024-57-3	Heptachlor Epoxide	0.0080	0.0040	< 0.0040	< 0.0040
72-43-5	P. P'Methoxychlor	10.0	5.0	< 5.0	< 5.0
8001-35-2	Toxaphene	0.5	0.25	< 0.25	< 0.25
94-75-7	2, <b>4-</b> D	10.0	5.0	< 5.0	< 5.0
93-76-5	2. 4, 5-TP (Silvex)	1.0	0.5	< 0.5	< 0.5

Notes: Concentrations are reported in milligrams per liter.

CAS RN = chemical abstract service registry number.

## Table 4 Inorganic Analytes not Detected by TCLP Analysis in Sediment Samples Collected from the Mayport Turning Basin

Technical Memorandum
Mayport Turning Basin Characterization Activities
NAVSTA Mayport, Mayport, Florida

Sample Mar	trix:			Sediment	Sediment
Location/Sa	emple No.:			MPT-BG-SD08	MPT-BG-SD09
Date Sample	led:			2-Dec-93	2-Dec-93
CAS RN	Common Name	Regulatory Lavel	Laboratory detection Level	Conc.	Conc.
7440-38-2	Arsenic	5.0	2.5	< 2.5	< 2.5
7440-39-3	Barium	100	50.0	< 50.0	< 50.0
7440-43-9	Cadmium	1.0	0.5	< 0.5	< 0.5
1333-82-0	Chromium	5.0	2.5	< 2.5	< 2.5
7439-92-1	Lead	5.0	2.5	< 2.5	< 2.5
7439-97-6	Mercury	0.2	0.1	< 0.1	< 0.1
7782-49-2	Selenium	1.0	0.5	< 0.5	< 0.5
7440-22-4	Silver	5.0	2.5	< 2.5	< 2.5

Notes: Concentrations are reported in milligrams per liter.

CAS RN = chemical abstract service registry number.

#### Table 5 Volatile Organic Analytes Detected in the **Mayport Turning Basin Sediment Samples**

Technical Memorandum Mayport Turning Basin Characterization Activities NAVSTA Mayport, Mayport, Florida

Sample D	elivery Group;		1	1	1	1
Sample M	latrix:		Sedi	ment		' Ment
Location/	Sample No::		MPT-B	G-SD08	MPT-8	
Date Sam	pled:		2-De	c93	2-De	
CAS RN	Common Name	Units	Conc.	Qual.	Conc.	Qual.
67-64-1	Acetone	<i>µ</i> g/kg	63	BJ	45	BJ
110-75-8	2-Chloroethylvinylether	µg/kg	14	J	~	-
<b>78-83-</b> 1	isobutyl Alcohol	<i>µ</i> g/kg	86	BJ	11	BJ.
75-09-2	Methylene Chloride	µg/kg	50	BJ	17	BJ

CAS RN = chemical abstract service registry number. Notes:

 $\mu$ g/kg = micrograms per kilogram.

Conc. = concentration.

- = concentration less than the contract Required Quantitation Limit (CRQL).

Qual. = qualifier.

J = estimated concentration.

B = analyte detected in a corresponding blank.

## Table * 6 Semivolatile Organic and Pesticide Analytes Detected in the Mayport Turning Basin Sediment Samples

## Technical Memorandum Mayport Turning Basin Characterization Activities NAVSTA Mayport, Mayport, Florida

		, , , , , , , , , , , , , , , , , , ,	-ypon, 1,011			
Sample Di	elivery Group:		13/3	16PS	13/31	16PS
Sample M	atrix:		Sedir	nent	Sedir	nent
Location/S	Sample No.:		MPT-B	3-SD08	MPT-BO	3-SD09
Date Samp	oled:		2-De	c <b>93</b>	2-De	c. <b>-9</b> 3
CAS RN	Common Name	Units	Conc.	Qual.	Conc.	Qual.
83-32-9	Acenaphthene	µg/kg	_	·	91	J
120-12-7	Anthracene	<i>µ</i> g/kg	170	J	440	J
56-55-3	Benzo(a)anthracene	µg/kg	350	J	3,000	
191-24-2	Benzo(g,h,i)perylene	µg/kg	-		1,000	J
205-99-2	Benzo (b) fluoranthene	<i>µ</i> g/kg	470	ЛX	5,400	x
207-08-9	Benzo(k)fluoranthene	<i>µ</i> g/kg	470	JX	5,400	x
50-32-8	Benzo(a)pyrene	<i>µ</i> g/kg	_		2,100	
218-01-9	Chrysene	<i>µ</i> g/kg	370	J	2,900	
53-70-3	Dibenz(a,h)anthracene	<i>µ</i> g/kg	-		290	J
206-44-0	Fluoranthene	µg/kg	660	J	7,300	
86-73-7	Fluorene	µg/kg	-		110	J
193-39-5	indeno(1,2,3-cd)pyrene	µg/kg	-		1,000	
85-01- <b>8</b>	Phenanthrene	µg/kg	_		3,100	
129-00-0	Pyrene	<i>µ</i> g/kg	770	J	6,100	
117-81-7	Bis (2-ethylhexyl)phthalate	µg/kg	470	E	200	ВЈ
84-74-2	Di-n-butylphthalate	µg/kg	160	J	160	J
106-46-7	1, 4-Dichlorobenzene	µg/kg ·	_		110	J
319-85-7	Beta - BHC	<i>µ</i> g/kg	5.6	Р	15	ρ
50-29-3	4, 4'-DDT	µg/kg	_		6.4	

Notes:

CAS RN = chemical abstract service registry number.

 $\mu$ g/kg = micrograms per kilogram.

Conc. = concentration.

- = concentration less than the contract Required Quantitation Limit (CRQL).

Qual. = qualifier.

J = estimated concentration.

B = analyte detected in a corresponding blank.

X = indistinguishable coeluting isomers.

P = > 25 percent difference for detected concentrations between two GC columns, lower value reported.

### Table 7 Inorganic Analytes Detected in the Mayport Turning Basin Sediment Samples

#### Technical Memorandum Mayport Turning Basin Characterization Activities NAVSTA Mayport, Mayport, Florida

ı	Delivery Group:		937	 366		
Sample N				ment		366
Location/	Sample No.:			G-SD08		ment
Date Sam	pled:		J	c93	į.	G-SD09
CAS RN	Common Name	Units	Conc.		2-00	c. <b>-93</b>
7440-38-2	Arsenic	mg/kg	26.8	Qual.	Conc.	Qual.
7429-90-5	Aluminum	mg/kg	12,500		5.1	
7440-39-3	Barium	mg/kg	19.9	J	3,120 157	
7440-70-2	Calcium	mg/kg	26,900	•	125,000	
7440-47-3	Chromium	mg/kg	34.3		356	
7440-48-4	Cobalt	mg/kg	-		1.4	J
7440-50-8	Copper	mg/kg	712		55.8	J
7439-89-6	Iron ,	mg/kg	17,000		5,810	
7493-92-1	Lead	mg/kg	15.3		99.1	
7439-95-4 7439-96-5	Magnesium	mg/kg	9,030		3,370	
440-02-0	Manganese	mg/kg	264	- 1	96.6	
440-02-0	Nickel	mg/kg	17.4	J	_	
782-49-2	Potassium	mg/kg	3,620		821	J
440-23-5	Selenium	mg/kg	7.6		~	
440-62-2	Sodium Vanadium	mg/kg	35,100		7.890	
140-66-6		mg/kg	34.2		8	J
	Zinc	mg/kg	171	[	995	

Notes: CAS RN = chemical abstract service registry number.

μg/kg = micrograms per kilogram.

Conc. = concentration.

- = concentration less than the contract Required Quantitation Limit (CRQL). Qual. = qualifier.

J = estimated concentration.

# APPENDIX G GROUNDWATER ELEVATION DATA

Table G-1 Appendix G, Potentiometric Surface Survey

\$2000								(1000) (1000)		XXXX		W	S)(S)(S)	(*COS)		3500000 35000000	Storens	stanti.				500000	*******	ener:	en en en en en en en en en en en en en e	2555000	3000000	A0000	e propose	200
LEVEL	/94	ELEV	(MSL)		5.05	4.69	2.21	3.41	3.06						4.79	2.94	3.93	6.01			5.34					2.02	1.60		3.29	
WATER LEVE	4/19/94	DEPTH	(TOC)		11.91	12.20	4.90	8.36	7.98						4.64	6.76	6.56	4.54			4.68					3.40	3.91		3.40	
LEVEL	94	ELEV	(MSL)		6.04		2.87	4.06	3.68						4.99	3.36	4.42	6.64			6.10					2.59	2.26		3.48	
WATER LEVE	3/14/94	DEPTH	(TOC)		10.92		4.24	7.71	7.36						4.44	6.34	6.07	3.91			3.92	:				2.83	3.25		3.21	
LEVEL	/94	ELEV	(MSL)		6.94		3.44	4.75	4.26						6.06	3.41	4.51	6.89			6.37					2.74	2.50			
WATER LEVE	2/14/94	DEPTH	(TOC)		10.02		3.67	7.02	6.78						3.37	6.29	5.98	3.66	2		3.65					2.68	3.01			
	7	ELEV	(MSL)	9.37	16.96	16.89	7.11	11.77	11.04	10,33	7.56	17.20	8.29	9.91	9.43	9.70	10.49	10.55	10.49	10,50	10.02	6.83	6.65	5.77	5.73	5.45	5.51	7.57	69.9	6.73
	>	NORTHING	STPLN	2200963.68	2202286.9	2202618.3	2203345.2	2202891.0	2202846.0	2199297.5	2199855.4	2199038.7	2199896.7	2200114.4	2199779.9	2197403.6	2197405.6	2200144.7	2200338.7	2200345.5	2200333.6	2200458.0	2200460.6	2198820.77	2198829.9	2198211.9	2198209.6	2200319.6	2200286.8	2200289.0
	×	EASTING	ST PLN	372958.91	372829.0	372520.3	372912.0	373338.7	372166.0	365498.7	368573.7	364604.9	365011.2	365958.5	365492.5	365934.4	365926.7	365838.5	366127.7	366127.4	366391.8	367585.3	367584.9	368639.90	368644.3	368319.8	368318.3	365692.6	365475.2	365475.4
			WELL/LOCATION	MAY-265-5	MPT-1-1	MPT-1-2	MPT-1-P1	MPT-1-P2	MPT-1-P3	MPT-2-1	MPT-2-2	MPT-2-3	MPT-2-4R	MPT-2-5	MPT-2-6	MPT-2-7D	MPT-2-7S	MPT-2-8	MPT-2-9D	MPT-2-9S	MPT-2-10	MPT-2-15-DR	MPT-2-15-SR	MPT-2-MW-111	MPT-2-MW-11S	MPT-2-MW-12D	MPT-2-MW-12S	MPT-2-MW-13S	MPT-2-MW-16D	MPT-2-MW-16S

Table G-1 Appendix G, Potentiometric Surface Survey

	<b>2000</b>	8 <u>7</u> 888														200,038 1			*****							88 80 		<b>X</b>	***		<b>3</b> %
LEVEL	/94	ELEV	(MSL)		4.35	3	D.4													2	E.										
WATER LEVE	4/19/94	DEPTH	(TOC)		77 6	5 6	3.72																								
EVEL	94	ELEV	(MSL)		1 95 7	3	4.52																								
WATER LEVE	3/14/94	DEPTH	(TOC)			\$.7	3.21																								
LEVEL	96	ELEV	(MSL)			4.61	4.69																								
WATER LEVE	2/14/94	DEPTH	COC			2,98	3.04																				·				
		고 1 글		7500		7.79	7.73	7.83	6.51	6.37	32.50	32.09	7.56	7.19	8.09	5.22	5.36	32.29	31.78	32.07	32.35	32.41	7.99	17,36	9.43	8.91	9.08	9.14		•	9.33
	>	NOPTHING F				2197412.0	2197409.6	2197417.06	220055.45	2200556.08	2200025.53	2199688.94	2200051,54	2199562.64	2199568.02	2199413.41	2199408.85	2199025.95	2198858.49	2198863.75	2198091.42	2198100.29	2197395.60	2198675.14	2199942.71	2200720.64	2199944.99	2199939.63	2200580.26	2200575.95	2201367.39
	>	A EACTINIC N				365773.2	365775.4	╄	386068.67	366069.80	366211.19	366630.67	367896.59	365528.11	365528.11	368953.87	368950 54	365636.75	367458.00	367452.88	367495.39	367500.15	366591.50	364986.80	364774.65	365514.38	364246.62	364241.07	364816.58	364813.13	365495.74
		<u> </u>		*****		MW-17D	WW-17S	MW - 171	-2-AMV-18!	-2-MM-18S	-2-MM-19S	MW-20S	MPT-9-MW-21S	MW - 221	MDT_2_MW_22S	SECTION STATE	AAA/_ 23i	MILET SERM - 24S	MW-25	MDT = 2-MW - 25S	MPT_2_MW_26!	-2-WW-26S	MW-27	MPT-2-MW-28S	-MW-29S	-MW-30S	-2-MW-311	11	-2-MW-32	MPT-2-MW-32S	MDT_9_MM-331
			,	WELL/LUCATION		MPT = 2 = MW = 17D	MPT-2-MW-17S	MPT-2-MW-17	MDT 2	MPT - 2	MPT-2-	MPT-2-MW	MPT _2_	MPT -2-MW -22	MDT_2_	MOTON	INC TAIN 2 I JIM	MF 1 FG	MPT = 2=MW = 25	MDT-9-	MPT-5-	MPT-2-	MPT-2-	MPT-2	MPT-2-MW	MPT-2-MW-	MPT-2-	MPT-2-	MPT-2-	MPT-2-	MPT-2-

Table G-1 Appendix G, Potentiometric Surface Survey

8000	(A)	(1777) (1777)	22 KG				80000					***			800 miles			e	<b>3850000</b>	·····	20.00 TO	*****		ordere	aruti	8481881	0.80	::::::::::::::::::::::::::::::::::::::	2000	Stock
EVEL	94	ELEV	(MSL)															8.83	8.04	3.65	-0.02	3.80	2.86	8.21	10.28	10.70				
WATER LEVE	4/19/94	DEPTH	(TOC)															23.10	24.70	3.50	5.12	4.15	3.49	23.97	21.74	21.15				
EVEL.	94	ELEV	(MSL)													5.15		11.28	200	2.27	2.04	4.33	3.06	11.06		16.28				
WATER LEVE	3/14/94	DEPTH	(TOC)													2.60		20.65		4.88	3.06	3.62	3.29	21.12		15.57				
****			***						****							0	*****	99	19	8	S.	53	2	23		8				
! LEVEL	4/94	ELEV	(MSL)													5.10		16.66	13.79	2.58	2,	4.53	3.12	15.23		17.00				
WATER LEVE	2/1/	DEPTH EL	(TOC)					·		!					·	2.65		15.27	18.95	4.57	2.81	3.42	3.23	16.95		14.85				
	7	ELEV	(MSE)	10,81	10.46	7.40	7.36	7.47	7.57	7.58	6.84	6.93	8.38	8.16	8.14	7.75	7.97	31.93	32.74	7.15	5.10	26.7	6.35	32.18	32.02	31.85	32.75	11.87	7.57	6.51
	>	NORTHING	STPLN	2202541.83	2202536.55	2200285.60	2200281.06	2200986.02	2200981.47	2200977.04	2201740.28	2201735.35	2202412.40	2202418.08	2202402.71	2199063.9	2198464.0	2198074.8	2198966.8	2201086.7	2200321.5	2197396.9	2197417.0	2197566.0	2195899.8	2196198.9	2196870.3	2199402.7	2200319.46	2200551.45
	×	EASTING !	ST PLN	366613.91	366609.38	363450.20	363445.31	364166.15	364162.25	364158.18	364906.60	364902.28	365571.52	365576.46	365562.98	365497.2	365498.3	363421.2	364241.4	366452.8	367964.8	366597.0	367731.9	362977.9	363415.5	364395.6	365157.0	367408.9	365692.60	366068.69
			WELL/LOCATION	MPT-2-MW-341	MPT-2-MW-34S	MPT-2-MW-351	MPT-2-MW-35S	MPT-2-MW-36D	MPT-2-MW-361	MPT-2-MW-36S	MPT-2-MW-371	MPT-2-MW-37S	MPT-2-MW-38D	MPT-2-MW-381	MPT-2-MW-38S	MPT-2-P1	MPT-2-P2	MPT-2-P3	MPT-2-P4	MPT-2-P5	MPT-2-P6	MPT-2-P7	MPT-2-P8	MPT-2-P9	MPT-2-P10	MPT-2-P11	MPT-2-P12	MPT-2-P13	MPT-3-MW/3S	MPT-3-MW/8I

Table G-1 Appendix G, Potentiometric Surface Survey

98000	856088		92300			eriotei eniotei		e e e e e e e e e e e e e e e e e e e	ániatis						w.		XXXXX		(A)		33 / 33 / 33 / 33 / 33 / 33 / 33 / 33	Make,		\$ 3830					66 W.C.	
LEVEL	/94	ELEV	(MSL)			0.37	1.53		1.39		1,41		3.61		5.23		1 54	+C.1	0.47	21.0	-									
WATER LEVE	4/19/94	DEPTH	(TOC)			9.82	12 98	10.21	13.29	12 17	10.49	dN	9 68	25:5	77.7		00 11	3.5	88	CR'R										
EVEL	94	ELEV	(MSF)			1.03	1 07	10:1	1 73	2:-	151		4 17	11.4	20.0	0.27	3.63	1.89												
WATERLEVE	3/14/94	DEPTH	(TOC)			9 16	20.01	17.01	11.91	14.00	1.30	SO.O.	2	21.6	0 10	0.73	7.92	12.54	9.40											
I EVEI	704	FIEV		(50m)		205	20.5				4.75	01	00 1	4.00	0,1	7.16	4.36			4:34										
WATERIEVE	2/14/94	NEDTH		(201)		0 17	*- 'o				17.07	C1.U1	N S	3.63		5.84	7.21			8.78										
		7 2	ATC: A	(MOL)	100	200	10.19	13.93		13.72		11.90		13.29	13,34	13.00	11.57	11.73		13.12	12.55	13.11	11.46							10.03
	>		<u>5</u>	SI PLN	00 022000	SU.OCCUNZZ	2204730.6	2204968.2	ICT DEPTH	2205069.4	CT DEPTH	2205098.29	ICT DEPTH	2203931.17	2203937.57	2203928.57	2204828.90		JCT DEPTH	2205160.82	2204961.31	2205154.03		<b>3</b> 1		_	2205389.96	2205362.05		2205227.24
	;		<u>5</u>	SI PLN		366069.80	366284.7	366261.8	FREE PRODUCT DEPTH	366363.4	FREE PRODUCT DEPTH	366255.02	FREE PRODUCT DEPTH	366641.27	366645.09	366639.77	366149.22	366601.35	FREE PRODUCT DEPTH	366882.67	366890.10	366823.89	366493.34	FREE PRODU	366969.93	366852.94	366852.94	366701.22	366578.64	366393.49
		_		WELL/LOCATION		MPT-3-MW/8S		-2**	2	-3 **	=3	4 **	4-	1-5DD	-5	52	- A	1 **		8-1	MPT-8-MW9	MPT-8-MW10	MPT-8-MW11 **	MPT-8-MW11	MPT-8-MW12	MPT-8-MW13	-8-MW13S	MPT-8-MW14	8-1/15	
				WELL/L		MPT-3	MPT-8-	MPT-8-2**	MPT-8-2	MPT-8-3 **	MPT-8-3	MPT-8-4 **	MPT-8-4	MPT-8-5DD	MPT-8-5	MPT_R_ES	MDT_B_G	MIT I WIT TANK	MDT A-7	MPT	MPT-8	MPT-	MPT-	MPT-	MPT	MPT	MPT	MPT	MPT-8-1	MPT-8-N

Table G-1 Appendix G, Potentiometric Surface Survey

<u> </u>			******	****		8008		****		****			<b>***</b> ******					******	2500					*****			<u> </u>	*** <u>*</u>		
LEVEL	/94	ELEV	(MSL)				5.87	1.57	1.67	3.67	4.63	6.37	3.53	1.10	96'0	1.01	1.76	1.01	0.92	3.90	5.46	5.87	4.36	5.69		6.92				
WATER LEVE	4/19/94	DEPTH	(TOC)				7.02	11.13	11.50	11.00	9.37	8.50	10.89	12.29	10.57	11.21	8.92	11.15	9.50	6.07	7.60	6.92	6.05	4.19		2.74				
EVEL	94	ELEV	(MSL)				6.98	2.08	2.22	6.78	10.82	7.39	1.76	1.27	1.08		2.25	1.36	0.89	0.81	5.95	5.98	4.58	5.90	6.47	7.36				
WATER LEVE	3/14/94	DEPTH	(TOC)				6.01	10.62	10.95	7.89	3.18	7.48	12.66	12.12	10.45		8.43	10.80	9.53	9.16	7.11	6.81	5.83	3.98	3.57	2.30				
LEVEL	/94	ELEV	(MSL)				77.7	2.55	2.82	8.07	11.35	8.15	2.10				2.50	1.39	1.19	1.07		6.18	4.69	5.95	6.70	7.36	-			
WATER LEVE	2/14/94	DEPTH	(TOC)				5.12	10.15	10.35	09'9	2.65	6.72	12.32				8.18	10.77	9.23	8.90		6.61	5.72	3.93	3.34	2.30				
	7	ELEV	(MSL)	10.89	8.80	5,24	12.89	12.70	13.17	14.67	14.00	14.87	14.42	13.39	11.53	12.22	10.68	12.16	10.42	9.97	13.06	12.79	10.41	9.88	10.04	99.6	8.56	10.47	9.29	9.65
	>	NORTHING	ST PLN	2205125.44	2205001.92	2205168.89	2204936.81	2205240.42	2205051.43	2204484.88	2203955.67	2203359.60	2205218.76	2205465.38	2205507.62	2205413.58	2204745.46	2205130.88	2205331.99	2205342.93	2202051.50	2201306.77	2200862.19	2201085.38	2201499.20	2201904.44	2201097.10	2202014.26	2201869.31	2201731.67
	×	EASTING		366229.49	366161.36	366196.36	367186.01	368584.22	368103.65	367807.85	367285.99	366739.47	367081.42	367012.32	367182.99	367665.52	365963.80	369851.23	369902.23	369802.75	368004.04	367476.40	367740.56	367688.02	367718.67	367684.00	367844.66	367393.65	367548.90	367454.53
			WELL/LOCATION	-MW17	-8-MW18S	-8-MW19	J-P1	-P2	-8-P3	-8-P4	-8-P5	-8-P6	-	-2	£.	-P1	)-P1	1-MW-1	MPT-11-MW-2	I-MW-3	3-1	1-2	3-3	MPT-13-MW-4	-13-MW-5	-13-MW-6	3-MW-7	-13-MW-8	MPT-13-MW-9	MPT-13-MW-10
			WELL/LC	MPT-8-MW17	MPT-8-	MPT-8	MPT-8D-P1	MPT-8-P2	MPT-8-	MPT-8-	MPT-8-	MPT-8-	MPT-9-1	MPT-9-2	MPT-9-3	MPT-9-P1	MPT-10-P1	MPT-11-MW-	MPT-11	MPT-11	MPT-13-1	MPT-13-2	MPT-13-3	MPT-13	MPT-13	MPT-13	MPT-13-MW-	MPT-13	MPT-13	MPT-13

Table G-1 Appendix G, Potentiometric Surface Survey

					energy of	000000	******	alberto.	8000000	neciesti	800,0000			30.864.	-000000	<b>125</b> (6) (	*****	(Septiment)	80 80	888-85	X8086		Addition			*****	Sectors		XXXX	<b>8</b> 66	•
EVEL.	94	ELEV	(MSL)		6.50	6.23	5.27	3.31	7.40	1.46	1.63	1.56	1.21	10.0					4 45	454	7.75	2	0.03	2	1.55	3	2 A9	271	360		
WATER LEVEL	4/19/94	DEPTH	(TOC)		4.54	3.95	4.04	3.14	2.76	6.10	7.01	4.94	4.50	6.53					00 03	0.00	0.32	4.32	0.79	10.15	41 00	3:1-	ao a	2.00	255	2	
SVEL	4	ELEV	(MSL)			6.43	6.14	3.67		1.59	2.06	2.00	2.69	6.59					0	5.30	57.0	8.12	01	0.00	4.00	83.1	2 67	5.37	3.27	4.0	
WATER LEVEL	3/14/9	DEPTH EI	(TOC)			3.75	3.17	2.78		5.97	6.58	4.50	3.02	5.55					6	85.7	5.54	CS:1	1000	10.07	30.01	CS. L		4.40	C4.40	4C.7	
		LEV			7.99	6.58	6.43	4.02	8.61	1.84	2.29	2.08	1.90	7.46						6.03	6.01	8.65		1.02	70.	1.57		4.19	3.64	10.6	
WATERIEVE	2/14/94	OFPTH	(30)		3.05	3.60	2.88	2 43	1.55	5.72	6.35	4.42	3.81	4.68						7.25	4.82	1.42		9.63	39.6	11.07		3.78	4.08	2.14	
		_ -			11 04	10 18	931	6.0	10 16	7.56	8.64	6.50	5.71	12,14	11.77	11.26	12.18	12.45	12.37	13.28	10.83	10.07	10.51	10.65	11.19	12.64	14.65		7.72		6.70
	>	NICETHING I			2201715 OR	2201407 11	2201301 35	2201301.33	22021 20 08	2202120.03	2203726.01	2203675.56	2204016.18	2203210.74	2202904.36	2203086.80	2203165.15	2203378.84	2203377.06	2204181.74	2203728.61	2202423.37	2199534.45	2205467.99	2205439.14	2205253.48	2205968.20	2201071.35	2201113.61	2200638.40	2200765.09
	>		CT DING O		1 2 3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3000/3.04	30/1/3/02	300000000	36/113.33	300073.40	374680 54	374024 70	375562 21	365726.19	365941.84	365641.31	365778.92	365767.26	365771.49	365689.15	365419.53	365853.46	362689.15	367483.22	367599.09	367542.02	367272.91	369942.21	370630.28	366582.71	366541.22
				WELL/LUCATION P		MP1-13-P1	MPI -13-P3	MP1-13-P4	MPT-13-P5	MP1-13-F6	MP1-14-1	MF1-14-14	MP!-14-F!	MF 1 - 14-1 2	AADT 15_MW2S	MPT-15-MW3S	MPT-15-MW4S	MPT-15-MW5	MPT-15-MW5S	MPT-15-P1	MPT-15-P2	MPT-15-P3	MPT-15-P4	MPT-16-2	MPT-16-3	MPT-16-MW-1D	MPT-16-MW4S	MPT-17-P1	MPT-17-P2	MPT-22-MW-1	MPT-22 1-25

Table G-1 Appendix G, Potentiometric Surface Survey

70000		المعادلة المعادلة	es es co	9908000		inch.	w	10.22±1	600000°	nes de	. October									Ċ											
LEVEL	/94	ELEV	(MSL)															2.93													
WATER LEVE	4/19/94	DEPTH	(TOC)															6.68													
LEVEL	3/14/94	ELEV	(MSL)														1.50														
WATER LEVE	3/1/	DEPTH	(TOC)														10.40			<i>i</i> ,											
!LEVEL	2/14/94	ELEV	(MSL)															3.51													
WATER LEVE	2/1/	DEPTH	(TOC)															6.10													
	<b>Z</b>	ELEV	(MSL)		5.85	6.88	7.05	7.21	11.85	8.97	7.50	7.19	7.19	14.66	14.59	10.08	11.90	9.61	12.15		10.61		13.45		14.88		14.87		15.66		14.34
	>	NORTHING	ST PLN		2200738.10	2200620.96	2200519.84	2200554.29	2204661.18	2201436.19	2199050.39	2199057.82	2199064.76	2204505.60	2206144.00	2205369.66	2205411.61		2204912.59	JCT DEPTH	366304.88 2205010.74	JCT DEPTH	2205026.60	<b>JCT DEPTH</b>	366462.32 2205084.36	JCT DEPTH	2205153.22	ICT DEPTH	366617.42 2205191.68	<b>ICT DEPTH</b>	2205099.05
	×	EASTING	ST PLN		366351.90	366292.19	366203.95	366329.36	365615.58	367377.77	372334.05	372332.38	372330.80	366904.01	368037.97	366493.83	366783.91	364658.45	366232.15	FREE PRODUCT DEPTH	366304.88	FREE PRODUCT DEPTH	366405.18	FREE PRODUCT DEPTH	366462.32	FREE PRODUCT DEPTH	366412.44	FREE PRODUCT DEPTH	366617.42	FREE PRODUCT DEPTH	366561.47
			WELL/LOCATION		MPT-26-MW1S	MPT-26-MW2S	MPT-26-MW3S	MPT-26-MW4S	MPT-28-MW1S	MPT-56-MW1S	MPT-B-MW1D	MPT-B-MW11	MPT-B-MW1S	S-1	MPT-S-1R	1-2	S-3	S-4	TPW-1 **	IPW-1	FPW-2**	TPW-2	TPW-3 **	TPW-3	TPW-4 **	TPW-4	TPW-5 **	TPW-5	TPW-6 **	1PW-6	TPW-7 **

Table G-1 Appendix G, Potentiometric Surface Survey

WATER LEVEL	66	DEPTH ELEV (MSL)										*
WATERIEVEL	3/14/94	DEPTH ELEV										
1	1	DEPTH ELEV	- 1888									
		NORTHING ELEV	ST PLN (MSL)	FREE PRODUCT DEPTH	366661.61 2205114.02 14.65	FREE PRODUCT DEPTH					05.11	
		EASTING	WELL/LOCATION ST PLN	IDW - 7 FREE PRO	**		SACE CO.	2000	SIAFF GAGE MO	STAFF GAGE NB	FI IFI PIER STAGE	

7

Table G-1 Appendix G, Potentiometric Surface Survey

	(10)(S)	>			4.64	4.35	2.41	3.20	3.38		3.91			2000	6.36	2.92	1.48	7.04	7		6.82			2.62	666	2.48	.73	6.01	2.60	
LEVEL	1/94	ELEV	(MSL)												9	•4	7				•					C		9	2	
WATER LEVE	7/24/94	DEPTH	(TOC)		12.32	12.54	4.70	8.57	7.66		3.65			_	3.07	6.78	6.01	3.51			3.20			3.15		2.94	2.78	1.56	4.09	
		Ω			6	4									(0					80000						(0)				****
EVEL	4	ELEV	(MSL)		4.59	4.64									4.96						l					2.16	1.87			
WATER LEVE	7/1/94	DEPTH	(DOT)		12.37	12.25									4.47											3.26	3.64			
					æ	15	2.35	93	13							7	32	<b>£</b>			17	:	****			<b>38</b>	).(		21	*
LEVEL	94	ELEV	(MSL)		8	4.51	2,	3.39	3,							3.(	3.82	5.99			5.47					2.38	2.(		3.21	2.94
WATER LEVE	5/13/94	DEPTH	(TOC)		8.38	12.38	4.76	8.38	7.91							99.9	6.67	4.56			4.55					3.04	3.50	İ	3.48	3.79
	7	ELEV	MSL)	9.37	16.96	16.89	7.11	11.77	11.04	10.33	7.56	17.20	8.29	9.91	9.43	9.70	10.49	10.55	10.49	10.50	10.02	6.89	6.65	5.77	5.73	5.45	5.51	7.57	69.9	6.73
				63.68	2202286.9	2202618.3	2203345.2	2202891.0	2202846.0	2199297.5	2199855.4	2199038.7	2199896.7	2200114.4	2199779.9	2197403.6	2197405.6	2200144.7	2200338.7	2200345.5	2200333.6	2200458.0	2200460.6	20.77	2198829.9	2198211.9	2198209.6	2200319.6	2200286.8	2200289.0
	>	NORTHING	ST PLN	2200963.68	2202	2202	2203	2202	2202	2199	2199	2199	2199	2200	2199	2197	2197	2200	2200	2200	2200	2200	2200	2198820.77	2198	2198	2198	2200	2200	2200
	×	EASTING	Ş	372958.91	372829.0	372520.3	372912.0	373338.7	372166.0	365498.7	368573.7	364604.9	365011.2	365958.5	365492.5	365934.4	365926.7	365838.5	366127.7	366127.4	366391.8	367585.3	367584.9	368639.90	368644.3	368319.8	368318.3	365692.6	365475.2	365475.4
		EAS	ST PLN	37	(C)	E	3	3	<u>د</u>	6	9	6	C	6	6	6	6	6	(2)	6	6	6	(L)	36	3	(E)	9	6		
			TION									ļ. 										-DR	-SR	1-11	2-MW-11S	2-MW-12D	1-12S	1-13S	T-2-MW-16D	1-16S
			WELL/LOCATION	MAY-265-5	1-1	1-2	1-P1	1-P2	<b> </b>	2-1	-2-2	2-3	MPT-2-4R	2-5	2-6	2-7D	.2-7S	-2-8	-2-9D	MPT-2-9S	2-10	MPT-2-15-DR	MPT-2-15-SR	MPT-2-MW-11	2-MM	2-MM	-2-MW-12S	-2-MW-13S	2-MM	-2-MW
			WELL	MAY-	MPT-1-1	MPT-1	MPT-	MPT-	MPT-	MPT-2-1	MPT-	MPT-2-3	MPT-	MPT-	MPT-2-6	MPT-	MPT-	MPT-	MPT-	MPT-	MPT-2-10	MPT-	MPT-	MPT-	MPT-:	MPT-	MPT-	MPT-	MPT-	MPT-

Table G-1 Appendix G, Potentiometric Surface Survey

200000	00000000		eesees.		a filosopa	380000	SS SS SS SS SS SS SS SS SS SS SS SS SS	SS:SC						engine.	88000	90000	X IYYY	3842	SSS 8 G SS	*****		XXX.	:000;;		8888		78.2E	)   	o to the	<b>X</b>	\$000 <u> </u>
EVEL	94	ELEV	(MSL)	419	4.07	4.73	2.86	4.04	2.42	7.23	11.08	3.81		0,0	2.48	0.35	8.13	2.46	9.03	3.28	12.36	2.66	10.77	5.71	6.24	2.56	7.48	0.48	2.34	2,70	4
WATER LEVE	7/24/94	DEPTH	(TOC)		3.72	3.00	4.97	2.47	3.95	25.27	21.01	3.75			2.74	5.01	24.16	29.32	23.04	29.07	20.05	5.33	65.9	3.72	2.67	6.52	1.66	7.91	10.15	6.63	0.83
EVEL	-	ELEV	(MSL)		4.31	3.83														T de											
WATER LEVE	7/1/94	DEPTH	(TOC)		3.48	3 90																									
I EVE	76/	FIFV	(ISW)	(Ecm)																											
WATERIEVE	5/13/94	DEPTH		(SOL)																											
	_	7 2	ATC:	(MOL)	07.7	7.73	C J. 7	7.00	0.0	200	32.50	7.56	7.19	8.09	5.22	5.36	30.00	24 7B		12		1	47.95	1	0.45			7 00		12.43	_
	>		2	SI PLIN	0000000	2197412.0	2197409.0	219/41/.00	220055.45	2200250.UB	2200025.53	2199000.94	2199562.64	2199568.02	2199413.41	210040R R5	2100055 95	04 000E0 40	_	_	<u></u>	_	_	#1.C/00012			_	-+		22005/3.95	+
	;		<u>5</u>	SI PLN		365/73.2	365//5.4	365767.72	366068.67	366069.80	366211.19	305030.07	36552R 11	26552R 11	268053.87	2000000	300300.04	300000.00	36/458.00	30/402.00	30/493.33	36/500.15	366591.50		$\perp$		364246.62	364241.07	364816.58	364813.13	365490.50
				WELL/LOCATION		MPT-2-MW-17D	2-MW-17S	MPT-2-MW-171	-2-MW-18I	-2-MW-18S	MPT-2-MW-19S	2-MW-20S	MPT -2-MW -215	1 - Z - MINV - ZZ I	2 - MIN - 220	-Z-WW-Z-	-2-MW-23	-2-MW-243	MPT-2-MW-251	MPT-2-MW-255	MPT-2-MW-261	MPT-2-MW-26S	MPT-2-MW-271	MPT-2-MW-28S	-2-MW-29S	T-2-MW-30S	MPT-2-MW-311	MPT-2-MW-31S	MPT-2-MW-321	MPT-2-MW-32S	MPT -2-138
				WELLA		MPT-	MPT-	MPT-	MPT-2	MPT-2	MPT-	MPT	MPT				MPT	MPI	MPT	H L	MPT	MPT	MPT	MPT	MPT	MPT-	MPT-	MPT-	MPT-	MPT-	MPT-2-

Table G-1
Appendix G, Potentiometric Surface Survey

				MATCO I CAC	10/01	WATER I EVE	1 5/5	WATER! EVE	E/E
			1	WAILI	יייי דיייי		ן רר ירר מיי		ָרָרְיִּרְ פַּיִּרְיִּרְ
	×	>	Z	5/13	8/94	7/1/94	. 1	7/24/94	/94
	EASTING	NORTHING	ELEV	DEPTH E	ELEV	DEPTH	ELEV	DEPTH	ELEV
WELL/LOCATION	ST PLN	ST PLN	(MSL)	(TOC)	(MSL)	(TOC)	(MSL)	(тос)	(MSL)
MPT-2-MW-34I	366613.91	2202541.83	10.81					13.70	-2.89
MPT-2-MW-34S	366609.38	₽-						1.15	9.31
MPT-2-MW-351	363450.20	1	7.40					4.80	2.60
MPT-2-MW-35S	363445.31	2200281.06						1.90	5.46
MPT-2-MW-36D	364166.15	2200986.02						5.40	2.07
MPT-2-MW-361	364162.25	2200981.47	7.57					5.55	2.02
MPT-2-MW-36S	364158.18	2200977.04	7,58					3.55	4.03
MPT-2-MW-371	364906.60	2201740.28	6.84					5.15	1.69
MPT-2-MW-37S	364902.28	-						2.50	4.43
MPT-2-MW-38D	365571.52	2202412.40	8.38					6.23	2.15
MPT-2-MW-381	365576.46	2202418.08						5.25	2.91
MPT-2-MW-38S	365562.98	2202402.71	8,14					2,69	5.45
MPT-2-P1	365497.2	2199063.9		2.72	5.03				
MPT-2-P2	365498.3								
MPT-2-P3	363421.2	2198074.8		24.03				25.04	6.83
MPT-2-P4	364241.4	2198966.8	32.74	25.15	2 7.59			26.02	6.72
MPT-2-P5	366452.8	2201086.7	7.15	4.82	2.33			3.71	3.44
MPT-2-P6	367964.8	2200321.5	5.10	3.06	2.04			2.45	2.65
MPT-2-P7	366597.0	2197396.9	7.95	2.40				3.74	4.21
MPT-2-P8	367731.9	2197417.0	6.35	3.44	2.91			2.94	3.41
MPT-2-P9	362977.9	2197566.0	32.18	25.23	6.95			26.20	5.98
MPT-2-P10	363415.5	2195899.8		24.00				27.51	4.51
MPT-2-P11	364395.6	2196198.9		25.36	6.49			26.01	5.84
MPT-2-P12	365157.0	2196870.3	32.75						
MPT-2-P13	367408.9	$\dashv$						1.56	10.31
MPT-3-MW/3S	365692.60	_							
MPT-3-MW/8I	366068.69	2200551.45	6.51						

Table G-1 Appendix G, Potentiometric Surface Survey

WATER LEVEL	7/24/94		(TOC)		10.03 0.16			12.05				0.01 3.48		0.00	0.00		00.01	10.20										
WATER LEVEL	7/1/94	NEDTH EI EV					0		0		11.11		9		60		9		*									
WATERIEVE	E/12/04	5	DEPIH ELEV		96.0		11.97 2.00		11.92 1.80		10.21 1.69		9.53 3.76		8.12 4.88		9.57 2.16	<b>2</b>										-1
	, ,	<b>7</b>	<u> </u>	SI PLN (MOL)		2204730.6 10.19	2204968.2 13.93		2205069.4 13.72	<u> </u>	2205098.29 11.90	JCT DEPTH	7	2203937.57	2203928.57	<u> 1 -                                  </u>	2205103.19	UCT DEPTH	05160.82	2204961.31 12.55	2205154.03 13	2205203.57 11.46	FREE PRODUCT DEPTH	-	2205389.96	2205389.96	2205362.05	70 0
nayport, i ionda			EASTING	WELL/LOCATION ST PLN	MPT-3-MW/8S 366069.80	_a_1 366284.7	**	MPT_8_9 FREE PRODUCT DEPTH	4.4	MPT_R_3 FREE PRODUCT DEPTH	**		00		d		44	Ü		MPT_R_MW9 366890.10	0	#				0	366701.22	

Table G-1 Appendix G, Potentiometric Surface Survey

****	*****			ĸ	æ			<u>,</u>	က	4	0	4	6			8	ည	8	S	<u></u>	က	C)	4	ري ري	-	<b>(</b> 0	8.680		*****	
LEVEL	/94	ELEV	(MSL)	1.2	1.68			1.67	2.13	5.64	8.70	5.94	1.49			0.88	1.95	1.2	1.02	1.0	6.13	6.3	5.24	5.0	6.71	7.28				
WATER LEVE	7/24/94	DEPTH	(TOC)	9.64	7.12			11.03	11.04	9.03	5.30	8.93	12.93			11.34	8.73	10.90	9.40	8.90	6.93	6.47	5.17	4.83	3.33	2.40				
EVEL	4	ELEV	(MSL)										1.20	0.64	0.47			1.13	0.66	0.63										***
WATERLEVE	7/1/94	DEPTH	(TOC)										13.22	12.75	11.06			11.03	9.76	9.34										
EVEL	94	ELEV	(MSL)				5.65	1.77	1.96	5.45	5.30	6.26	1.75	1.51	1.55	1.31	2.07	1.39	1.48	1.43		5,71	4.27	4.80	6.25					
WATER LEVE	5/13/94	DEPTH	(TOC)				7.24	10.93	11.21	9.22	8.70	8.61	12.67	11.88	96.6	10.91	8.61	10.77	8.94	8.54		7.08	6.14	2.08	3.79					
	7	ELEV	(MSL)	10.89	8.80	5.24	12.89	12.70	13.17	14.67	14.00	14.87	14.42	13.39	11,53	12.22	10.68	12.16	10.42	9.97	13.06	12.79	10.41	9.88	10.04	99.6	8.56	10.47	9.29	9.65
	>	5 NE	STPLN	2205125.44	2205001.92	2205168.89	2204936.81	2205240.42	2205051.43	2204484.88	2203955.67	2203359.60	2205218.76	2205465.38	2205507.62	2205413.58	2204745.46	2205130.88	2205331.99	2205342.93	2202051.50	2201306.77	2200862.19	2201085.38	2201499.20	2201904.44	2201097.10	2202014.26	2201869.31	2201731.67
	×	<u>ত</u>		366229.49	366161.36	366196.36	367186.01	368584.22	368103.65	367807.85	367285.99	366739.47	367081.42	367012.32	367182.99	367665.52	365963.80	369851.23	369902.23	369802.75	368004.04	367476.40	367740.58	367688.02	367718.67	367684.00	367844.66	367393.65	367548.90	367454.53
			WELL/LOCATION	MPT-8-MW17	MPT-8-MW18S	MPT-8-MW19	MPT-8D-P1	MPT-8-P2	MPT-8-P3	MPT-8-P4	MPT-8-P5	MPT-8-P6	MPT-9-1	MPT-9-2	MPT-9-3	MPT-9-P1	MPT-10-P1	MPT-11-MW-1	MPT-11-MW12	MPT-11-MW-3	MPT-13-1	MPT-13-2	MPT-13-3	MPT-13-MW-4	MPT-13-MW-5	MPT-13-MW-6	MPT-13-MW-7	MPT-13-MW-8	MPT-13-MW-9	MPT-13-MW-10

Table G-1 Appendix G, Potentiometric Surface Survey

Y Z NORTHING ELEV ST PLN (MSL 2201715.98 1 2201497.11 10 2201301.35		5/13/94 DEPTH ELE (TOC) (MS	ELEV	7/1/94 DEPTH ELE	ELEV MSI)	7/24/94 DEPTH E (TOC) (	ELEV (MSL)
<b>₩</b>		2	ELEV	DEPTH	ELEV MSI)		ELEV (MSL)
	_		1010	(CE	( IV.		(MSL)
	,		(MOL)	7201			
1715.98 1497.11 1301.35							
1497.11	11.04	4.58	6.46			4.17	6.87
1301.35	10.18	4.97	5.21			3.57	0.0
1019 93	9.31	3.93	5.38			2.38	0.33
3113	6.45	3.02	3.43			00.	1.00
2202120.09	10.16	2.75	7.41	1		4.7	9.02
2203770.87	7.56	5.75	1.81	6.22	1.34	5.43	200
2203726.01	8.64			26.90	1.74	4 53	4 97
2203675.56	6.50	4.66	1.84			4.33	5 4
2204016.18	5.71	3.97	1.74			4.10	5.7
2203210.74	12.14					0.00	17.C
2202904.36	11.77					30.02	5.48
2203086.80	11.26					2.00	0,40
2203165.15	12.18					0.71	2 50
2203378.84	12.45					0.00	2 87
2203377.06	12.37					00.0	20.0
2204181.74	13.28	9.14	4.14			9.62	200
2203728.61	10.83	6.50	4.33			4 00	4.03
2202423.37	10.07	2.92	7.15			06.7	5.5
2199534.45	10.51			3	07.0	300	200
2205467.99	10.65	9.62	1.03	10.46	0.19	10.00	690
2205439.14	11.19	9.68	1.51	10.70	24.0	4 00	A7 0
2205253.48	12.64	10.93	1.71	11.93	0.71	08.1	5 5
2205968.20	14.65	:		9.45	5.20	9.65	3 8
2201071.35	7.97	5.08	2.89			4.74	3.5
2201113.61		00 7	D 7.4			4.43	87.E
2200638.40	7.72	4.90	1			000	
2200765.09	7.72	3.56	3.59			2.68	4.4/

Table G-1 Appendix G, Potentiometric Surface Survey

I EVE	7/24/94	ELEV	(MSL)	3.94			7	1.93		2.42		1.98		11.47	1.04			4.15		1.61		1.54		1.38					
WATERLEVE	7/2	DEPTH	(TOC)	1.91	2.50	1,48	2.58	9.92		5.08	4.54	5.21		3.12	9.04		6.52	8.00	NP	9.00	ď	11.91	ď	14.42	13.35				
WATERIEVE	7/1/94	ELEV	(MSL)							i				10.94		0.73	1												
WATE	1/2	DEPTH	(TOC)											3.65		11.17													3
WATER LEVEL	5/13/94	ELEV	(MSL)																										
WATE	5	DEPTH	(TOC)																÷										
	7	ELEV	(MSL)	5.85	6.88	7.05		_	15.1	7.50						L	_			10.61		13.45		14.88		14.87		15.66	
	>	NORTHING		2200738.10	2200620.96	2200519.84	2200554.29	2204661.18	2201436.19	2199050.39	2199057.82	2199064.76	2204505.60	2206144.00	2205369.66	2205411.61	_	2204912.59	UCT DEPTH	2205010.74	<b>UCT DEPTH</b>	2205026.60	<b>JCT DEPTH</b>	2205084.36	JCT DEPTH	2205153.22	JCT DEPTH	2205191.68	
	×	EASTING	ST PLN	366351.90	366292.19	366203.95	366329.36	365615.58	367377.77	372334.05	372332.38	372330.80	366904.01	368037.97	366493.83	366783.91	364658.45	366232.15	FREE PRODUCT DEPTH	366304.88	FREE PRODUCT DEPTH	366405.18	FREE PRODUCT DEPTH	366462.32	FREE PRODUCT DEPTH	366412.44	FREE PRODUCT DEPTH	366617.42	
			WELL/LOCATION	MPT-26-MW1S	26-MW2S	MPT-26-MW3S	26-MW4S	MPT-28-MW1S	MPT-56-MW1S	B-MW1D	MPT-B-MW1	MPT-B-MW1S		S-1R				1 **	0	2**	2	3 **	6	4 * 4	4	5 **	5	9 **	
			WELL	MPT-	MPT-	MPT-	MPT-	MPT-	MPT-	MPT-	MPT	MPT-	S-1	MPT-S-1R	S-2	S-3	S-4	TPW-	TPW-1	TPW-2**	TPW-2	TPW-3 **	TPW-3	TPW-4	TPW-4	TPW-5 **	TPW-5	TPW-6 **	

Table G-1 Appendix G, Potentiometric Surface Survey

Mayport, Horica						CLANA	בְּרֵבְי	WATED!	<u>ה</u> /ה
				WATER		WAIER		WAILIN	ן ראַ
	>	>	7	5/13/94	104	7/1/94	94	7/24/94	/94
		•	ـــــــــــــــــــــــــــــــــــــ	D ITUL	/ 10	DEPTH	FIFE	DEPTH	ELEV
	EASTING	<u>5</u>	ELEV	1 1 1 1	ברכא	- CC		: ززز	(IV)
				(10C)	(MSC)	() () ()	(MOL)	(201)	(MOL)
WELL/LUCATION									
			_					AN M	
TPW-7	FREE PRODUCT DEPTH	JCT DEPTH						07 67	1 55
T 0 +*	366661 61	366661 61 2205114.02	14.65					2 :	3
0- 11	20000	114040				0.00		2	
TPW-8	FREE PRODUCI DEFIN	JCI DEPIH							
CTACE CAGE CG				-					
משטרו מעום									
STAFF GAGE MU									
STAFF GAGE NB									
10.10			1.30						
FUEL PIEH STAGE			3						

Table G-1 Appendix G, Potentiometric Surface Survey

EVEL	14	ELEV	(MSL)				4.04		3.62		4.80	9.12			6.28	3.77	5.11				7.04			2.95		3.31	4.04	6.79		
WATER LEVE	9/21/94	DEPTH	(TOC)				3.07		7.42		2.76	8.08			3.15	5.93	5.38				2.98			2.82		2.11	1.47	0.78		
LEVEL	94	ELEV	(MSL)	5.16	5.16		2.24	3.50	3.17			8.72		7.06	5.23	4.00	5.89				6.41			2.05		2.32	2.10	5.65		
WATERLEVE	8/30/94	DEPTH	(TOC)		11.80		4.87	8.27	78.7			8.48		2.85	4.20	5.70	4.60				3.61			3.72		3.10	3.41	1.92		
LEVEL	/94	ELEV	(MSL)																					·						
WATER LEVE	8/17/94	DEPTH	(TOC)															·												
	Z	ELEV	(MSL)	9.37	16.96	16,89	7.11	11.77	11.04	10.33	7.56	17.20	8.29	9.91	9.43	9.70	10,49	10.55	10.49	10.50	10.02	68.9	6.65	5.77	5.73	5.42	5.51	75.7	69.9	6.73
	>	<u>9</u>		2200963.68	2202286.9	2202618.3	2203345.2	2202891.0	2202846.0	2199297.5	2199855.4	2199038.7	2199896.7	2200114.4	2199779.9	2197403.6	2197405.6	2200144.7	2200338.7	2200345.5	2200333.6	2200458.0	2200460.6	2198820.77	2198829.9	2198211.9	2198209.6	2200319.6	2200286.8	2200289.0
	×	<u> </u>		372958.91	372829.0	372520.3	372912.0	373338.7	372166.0	365498.7	368573.7	364604.9	365011.2	365958.5	365492.5	365934.4	365926.7	365838.5	366127.7	366127.4	366391.8	367585.3	367584.9	368639.90	368644.3	368319.8	368318.3	365692.6	365475.2	365475.4
			WELL A OCATION	MAY-265-5	MPT-1-1	MPT-1-2	MPT-1-P1	MPT-1-P2	MPT-1-P3	MPT-2-1	MPT-2-2	PT-2-3	MPT-2-4R	MPT-2-5	MPT-2-6	MPT-2-7D	1 t	MPT-2-8	11	MPT-2-9S	MPT-2-10	MPT-2-15-DR	MPT-2-15-SR	MPT-2-MW-111	MPT-2-MW-11S	MPT-2-MW-12C		MPT-2-MW-13S	MPT-2-MW-16D	MPT-2-MW-16S

Table G-1 Appendix G, Potentiometric Surface Survey

Mayport, Florida							į	LOTTAGE	
				WATER LEVEL	LEVEL	WATER LEVE	LEVEL	WAIEHLEVE	רענו
	;	>	· <b>^</b>	8/17/94	75/	8/30/94	/94	9/21/94	94
	×		_ 7	NEDTU	EI EV	NFPTH	ELEV	DEPTH	ELEV
	EASTING	NOTIFIED	בוני	חבים ח	֓֞֞֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	1		()	
NOITAGO N LIBAN	ST PI N	ST PLN	(MSL)	(20C)	(MSL)	(20I)	(MOL)	7001	(WOL)
	0 001-100	04074490	7 79			3.20	4.59	3.08	4.71
MPT-2-MW-17D	3.67/505		7 73			2.87	4.86	2.38	5.35
MPT-2-MW-17S	365//5.4	219/409.0	7.83			4.87	2.96	4.30	3.53
MPT-2-MW-1/I	31.101.000	+	3 4			3.78	2.73		
MPT-2-MW-181	366068.67		10.0			2.58	3.79		
MPT-2-MW-18S	366069.80	4	1			20.40	12.10	22.65	9.85
MPT-2-MW-19S	366211.19	-	32.30			11.38	20.71	14.74	17.35
MPT-2-MW-20S	366630.67	<del>-</del>				4 00	3.56		
MPT-2-MW-21S	367896.59	-	00.7			A OR	291	4.80	2.39
MPT-2-MW-22	365528.11					7.00	10.2 10.3	91 C	5.91
MPT-2-MW-22S	365528.11		8.09			0.73		- 80	3.40
MPT-2-MW-23S	368953.87	7 2199413.41				2.32	2.30	1.02	2 4
100 1444 O 101	26R050 54	2199408.85	_			3.15		2.10	9.0
MF1-Z-MW-23	20000000 20000000000000000000000000000		L			19.30	12.99	22.23	10.0 <del>6</del>
MFI-Z-MW-Z43	303000		↓					28.11	3.67
MPI -2-MW-251	30.4500		1			28.28	2.78		
MPT-2-MW-25S	30/402.0	-				6.20	26.15	29.15	3.20
MPT-2-MW-261	36/485.38					29.80		12.34	20.07
MPT-2-MW-26S	367500.15					5.41		4.80	3.19
MPT-2-MW-271	366281.50	-+				6.28	_	6.24	11.12
MPT-2-MW-28S	364360.80		$\perp$			3.58		1.35	8.08
MPT-2-MW-29S	364774.65	5 2193942.71				3.08	5.83	29'0	8.24
MPT-2-MW-30S	365514.36		_			6.35		5.75	3.33
MPT-2-MW-311		_				2.26		0.20	8.94
MPT-2-MW-31S		-	2000			7.75		7.15	1.24
MPT-2-MW-32	_	+			Ø	2.60		0.25	12.24
: 1: 1	364813.13	∔				6 45	2.88	5.72	3.61
MPT-2-102-331		-				200		0.10	
MPT-2-1	365490.50	0 2201361.44	9.47			Z05			
)									

Table G-1
Appendix G, Potentiometric Surface Survey

WATER LEVEL	9/21/94		(TOC) (MSL)	100	5.33 5.48	-0.30										0.25 7.89					3.42	ļ			26.12 6.06		25.95 5.90				
LEVEL	94	ELEV	(MSL)		-1.04	8.25	2.66	5.12	3.01	2.05	4.01	1.92	4.93	2.24	2.59	4.83	5.17		6.70	3:74	2.47		4.86		5.84		4.54				
WATER LEVEL	8/30/94	DEPTH	(TOC)		11.85	2.21	4.74	2.24	4.46	5.52	3.57	4.92	2.00	6.14	29.57	3.31	2.58		25.23	29.00	4.68		3.09		26.34		27.31				
LEVEL	/94	ELEV	(MSL)																												
WATER LEVEL	8/17/94	DEPTH	(TOC)			:																									
	7	ELEV	(MSL)		10.81	10.46	7.40	7.36	7.47	7.57	7.58	6.84	6.93	8.38	8.16	8.14	7.75	7.97	31.93	32.74	7.15	5.10	7.95	6.35	32.18	32.02	31.85	32.75	11.87	7.57	6.51
	>	NORTHING			2202541.83	2202536.55	2200285.60	2200281.06	2200986.02	2200981.47	2200977.04	2201740.28	2201735.35	2202412.40	2202418.08	2202402.71	2199063.9	2198464.0	2198074.8	2198966.8	2201086.7	2200321.5	2197396.9	2197417.0	2197566.0	2195899.8	2196198.9	2196870.3	2199402.7	2200319.46	2200551.45
	×	EASTING	STPLN		366613.91	366609.38	363450.20	363445.31	364166.15	364162.25	364158.18	364906.60	364902.28	365571.52	365576.46	365562.98	365497.2	365498.3	363421.2	364241.4	366452.8	367964.8	366597.0	367731.9	362977.9	363415.5	364395.6	365157.0	367408.9	365692.60	366068.69
			WFLL/LOCATION		MPT-2-MW-34	MPT-2-MW-34S	MPT-2-MW-35I	MPT-2-MW-35S	MPT-2-MW-36D	MPT-2-MW-361		MPT-2-MW-371	MPT-2-MW-37S	MPT-2-MW-38D	MPT-2-MW-38	MPT-2-MW-38S	MPT-2-P1	MPT-2-P2	MPT-2-P3	MPT-2-P4	MPT-2-P5	MPT-2-P6	MPT-2-P7	MPT-2-P8	MPT-2-P9	MPT-2-P10	MPT-2-P11	MPT-2-P12	MPT-2-P13	MPT-3-MW/3S	MPT-3-MW/8I

Table G-1
Appendix G, Potentiometric Surface Survey

								D/ATCD 1 D/A	
				WATER LEVEL	EVEL	WAIEHLEVE	רבעבר	MAICH	1
	>	>		8/17/94	34	8/30/94	/94	9/21/94	94
			↓ 1 }	NE DE LA	E EV	DEPTH	ELEV	DEPTH	ELEV
	EASTING F		ברני סרני			200	AICIN	(LOC)	
WELL / OCATION S	STPLN	ST PLN (	(MSL)	(TOC)	(MSL)	(30t)	(MOL)	()	7
	00 050550	POWERR DR	R 37						
MPI-3-MW/85	_	00000000000000000000000000000000000000	10 10	08.0	0.39	10.01	0.18	7.87	2:32
MPT+8+1	366284.7	2204130.0	2 0	10.3a	1.79	12.81	1.68	11.20	3.14
MPT-8-2 **	366261.8	7.204905.Z	25.5	07.07		1218		10.72	
MPT-8-2	FREE PRODUCT DEPTH	CI DEPIH		12.10		0000	4 E4	11 45	2.79
MPT_8_3 **	366363.4	2205069.4	13.72	13.05	3	02.20	5	10.05	
- C	FREE PRODUCT DEPTH	CT DEPTH		12.20		12.09		10.03	000
** *	SARSER NO	220FN9R 29	11.90	10.30	39:1	10.52	1.38	9.50	2002
le B	SOUGHANDS	CT DEPTH		dN		10.52		2	
	20074 07	00000117	13.99			9.99	3.30	9.15	4.14
MPT-8-500	300041.27	2000007 57	10.04			9.68	3.66	8.20	5.14
MPT-8-51	366645.09	75778837.57	10.0			A R7		6.81	6.19
MPT-8-5S	366639.77	2203928.57	13.00					S	5.57
MOTOLE	366149.22	2204828.90	11.57	7.90	3.67	\$7.00 \$2.00	2	3 6	0 40
0 0 1 44 0 7 44	366A1135	2205103.19	11.73	10.60	1.56	10.47	1.73	9.58 6.58	00
7 0	FOCE PROPINITY DEPTH	ICT DEPTH	-	10.10		9.92		χ. Σ	
/-9-	בחבב ו ווסבי	1000E1E0 80	12 19	9 45	3.67	9.95	3.17	8.15	4.97
MPT-8-8	300002.07	2203100.02	10.55	7 10	5.45	7.37		5.20	7.35
MPT-8-MW9	366890.10	2204501.31	16.00	14 45	401	1104		9.55	3.56
MPT-8-MW10	366823.89	2205154.03	1.5	11.00	1 24	11 03		9.44	2.70
MPT-8-MW11 **	366493.34	75.5U25U22	- 1.40	27.1		100		8.65	
MPT-8-MW11	FREE PRODUCT DEPTH	CT DEPTH		20.00	0	44 60	1 41	10.25	2.68
MPT-8-MW12	366969.93	2205289.81	12.93	11.61	1,32	70.11	-	881	2.52
MPT-8-MW13	366852.94	2205389.96	11.33		3	40 46	4 18	8.55	2.78
MPT_R_MW13S	366852.94	2205389.96	11.33	10.27	97.1	10.13	-   '	200	37.0
MOT O LAMAN	36870122	2205362.05	10.72	9.75	0.97	9.58	1.14	8.7	27.0
Mr. 1 -0 - WIVE 14	926578 64	╄	L					C4.)	10.7
ICI MM-8-IJM	200370.07	┿		9.78	0.91	9.28	1.14	7.29	2.75
MFI-8-MW155	SOCCESS: 45 SECONDS	LAT DEDTU	_	9.01		8.83		7.28	
Ĭ	TATE PROS	1 000 DEF 111	$\downarrow$	36.0	0.75	9.14	0.89	7.62	14
MPT-8-	366393.49	220527.24	10.05	9.6					

Table G-1 Appendix G, Potentiometric Surface Survey

Table G-1 Appendix G, Potentiometric Surface Survey

					7.36	3 3	5	77.7	20 0	3 0	0 0	3.32	2.33		8.80	7.36	53	5.18	5.74	5.12	4.89		7.26	3.95	9	2.38	8.		4
EVEL	94	ELEV	(MSL)		7			4	C	V C	2	2	7		<b>∞</b>	_		2	S	. 2	4		7			7			
WATER LEVEL	9/21/94	DEPTH	(TOC)		0 80	202	2.00	2.23	1	4.7	5.45	3.18	2.72		2.97	3.90	4.59	7.27	6.63	8.16	5.94		3.25	6.70	9.93	10.26	7.59		30
EVEL	94	ELEV	(MSL)		00 0	0.23	6.82	0.63			2.01	1.83	1.56	5.35	6.73	5.47	5.69	3.78	4.18	3.83	4.27	7.18	5.74	1.37	1.23	1.78	5.39	3.08	200
WATER LEVEL	8/30/94	DEPTH	(TOC)		000	3.03	2.49	5.82			6.63	4.67	4.15	6.79	5.04	5.79	6.49	8.67	8.19	9.45	6.56	2.89	4.77	9.28	96.6	10.86	9.26	4.89	7 7 7
FVFI	94	ELEV	(MSL)											5.71	7.02	5,80	6.00		4.33						0.93	1.64			
WATER! EVE	8/17/94	DEPTH	TOC	200										6.43	4.75	5,46			8.04						10.26	11.00			
		ELEV L	(ISW)	7	11.04	10.18	9.31	6.45	10.16	7.56	8.64	6.50	5.71	12.14	11.77	11.26	12.18	12.45	19.37	13.28	10.83	10.07	10.51	10.65	11.19	12.64	14.65	7.97	
	>	NORTHING E			2201715.98	2201497.11	2201301.35	2200912.23	2202120.09	2203770.87	2203726.01	2203675.56	2204016 18	2203210 74	2202904.36	2203086.80	2203165 15	2203378 84	2202377 06	2204181 74	2203728.61	2202423.37	2199534 45	2205467.99	2205439.14	2205253.48	2205968.20	2201071.35	
	>	A FACTING N			366075.64	367715.82	368068 63	367115.33	366879.48	374860.12	374680.54	374024 70	275569 91	965796 10	365041 A4	265641 31	365778 92	303110.3E	303/01.20	363771.43	365419 53	365853 46	362689 15	367483 22	267599 09	367542 02	367272 91	369942.21	
				WELL/LOCATION	MPT-13-P1	MDT_43_03	-13-F3	-13-P5	-13-P6	MDT-14-1	MI 1 14 2	MIT 17 E	- 1-1-1-	MF1-14-F2	-13-1 - 45- 4840C	MILITAL TANADO	TANAMAC	Mr 13-140	ICMM-CL-1-IM	CCMM-CL-IAM	MP1-13-F1	MF1-13-F2	MPI-13-15	MF1-13-F4	MF1-10-2	MF ( - 10 - 0	MIT 1- 10-MIN 10	MIT 1 - 10 - MITTER	
			į	WELL	MPT-	MOT	MPI	MPT	MPT	TOM	TOM	TON		_ 	Σ	1	Z E	Σ Σ	MF	Σ.	Z E	- L Σ	E E	Σ :	Σ	2	Σ   2	_ 	TOV

Table G-1 Appendix G, Potentiometric Surface Survey

					į		Ç		0
				WAIEHLEVE	LEVEL	WAIEHLEVE	LEVEL	WAIENLEVE	בעבר
	×	>	7	8/17/94	/94	8/30/94	//94	9/21/94	94
	EASTING	NORTHING EL		DEPTH	ELEV	DEPTH	ELEV	DEPTH	ELEV
WELL/LOCATION	ST PLN	ST PLN	_	(TOC)	(MSL)	(TOC)	(MSL)	(TOC)	(MSL)
MPT-26-MW1S	366351.90	2200738.10	5.85			2.26	3.59		
MPT-26-MW2S	366292.19	2200620.96	6.88			2.72	4.16		
-26-MW3S	366203.95	2200519.84	7.05			2.28	4.77		
MPT-26-MW4S	366329.36	2200554.29	7.21	-		2.88	4.33	1.31	5.90
MPT-28-MW1S	365615.58	₩	11.85			9.93	1.92	99.8	3.19
MPT-56-MW1S	367377.77	2201436.19	8.97			2.50	6.47	<b>2.</b>	7.68
MPT-B-MW1D	372334.05	2199050.39	7.50						
MPT-B-MW11	372332.38	2199057.82	7.19						
MPT-B-MW1S	372330.80	2199064.76	7.19						
	366904.01	2204505.60	14,66						
MPT-S-1R	368037.97	-	14.59	*		4.50	10.09	1.40	13.19
	366493.83	├_	10.08	8.82	1.26	8.89	1.19	7.41	2.67
	366783.91	2205411.61	11.90	11.02	0.88	10.80	1.10	9.00	2.90
	364658.45	2199526.50	9.61			6.43	3.18	5.94	3.67
	366232.15	2204912.59	12.15	7.92	4.23	8.28	3.87	6.52	5.63
	FREE PRODUCT DEPTH	UCT DEPTH		NP		NP		NP P	
	366304.88	2205010.74	10.61	9.10	1.60	9.08	1.64		
	FACE PRODUCT DEPTH	UCT DEPTH		9.00		8.95			
-	366405.18	2205026.60	13.45	11.85	1.60	11.72	1.73	10.32	3.13
	FREE PRODUCT DEPTH	<b>UCT DEPTH</b>		₽		NP		ď	
	366462.32	2205084.36	14.88	14.20	1.44	13.98	1.61	12.78	2.90
	FREE PRODUCT DEPTH	UCT DEPTH		13.32		13.15		11.85	
	366412.44	2205153.22	14.87	14.09	1.34	13.99	1.36	12.92	2.92
	FREE PRODUCT DEPTH	UCT DEPTH		13.44		13.43		11.79	
	366617.42	2205191.68	15.66	15.00	1.43	14.72	1.48	14.57	2.98
	FREE PRODUCT DEPTH	UCT DEPTH		14.10		14.09		12.37	
	366561.47	2205099.05	14.34	12.76	1.59	12.72	1.71	11.49	3.23

Table G-1 Appendix G, Potentiometric Surface Survey

dyport, rising					į	CHANGE	ָבָילָב <u>ו</u>	MATEDI	ת/ט
		I		WAIEH		WAIER LEVEL	LEVEL	WAILI	1
	>	>	_	8/17/94	/94	8/30/94	/94	9/21/94	94
	CACTINIC	NORTHING	ָּ בַּאַי	DEPTH	ELEV	DEPTH	ELEV	DEPTH	ELEV
		ST PIN (MSI)	MSI)	TOC	(MSF)	(TOC)	(MSL)	(TOC)	(MSL)
VELL/LUCATION			7-2-1						
		CERC BOOM ICT NEETH		12.75		12.62		11.05	
FW-/	דות בו דוטט			i	4 67	49.78	1 87	10 15	4.50
	366661.61	366661.61 2205114.02	14.65	12.30	70.1	12.70	5	2 2	
PW-8	FREE PROD	FREE PRODUCT DEPTH		NP P		d N		CI.UI	
TAFF GAGE CG									
STAFF GAGE MU									
STAFF GAGE NB								40.60	00.0
-UEL PIER STAGE			1.30					10:00	0.0
							333	550	

# APPENDIX H RESPONSE TO REGULATORY COMMENTS

#### PROJECT REVIEW COMMENTS

Resource Conservation and Recovery Act (RCRA)
Facility Assessment Sampling Visit Report
Groups I and II SWMUs
U.S. Naval Station
Mayport Florida

#### INTRODUCTION

ABB Environmental Services, Inc, (ABB-ES) under the Comprehensive Long-term Environmental Action Navy (CLEAN) Contract, No. N62467-89-D-0317, is conducting a Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) on behalf of the U.S. Navy at Naval Station (NAVSTA) Mayport, Florida. This investigation is being conducted in accordance with the Hazardous and Solid Waste Amendment (HSWA) permit No. FL9-170-024-260, issued by the U.S. Environmental Protection Agency (USEPA) on March 25, 1988 and revised and reissued June 15, 1993.

The purpose of this document is to respond to comments made in correspondence dated June 6, 1995 and June 7, 1995, by the Florida Department of Environmental Protection (FDEP) to Department of the Navy, Southern Division Naval Facilities Engineering Command, concerning the Final Resource Conservation and Recovery Act Facility Assessment Report, Group I and II Solid Waste Management Units, U.S. Naval Station Mayport, Florida, dated April 1995. Comments by the U.S. Environmental Protection Agency (USEPA) were discussed in a NAVSTA Mayport Partnering Meeting on June 22, 1995, and are documented in the minutes for the meeting. USEPA's comments are addressed in revisions to the report. The report is organized to include:

- Section 2.0 contains responses to comments made by FDEP's Technical Review Section in correspondence dated June 6, 1995; and
- Section 3.0 contains responses to comments made by FDEP's Natural Resource Trustee in correspondence dated June 7, 1995; and
- Section 4.0 contains response to comments made by FDEP's Technical Review Section in correspondence dated August 21, 1995.

Resource Conservation and Recovery Act (RCRA)
Facility Assessment Sampling Visit Report
Groups I and II SWMUs
U.S. Naval Station
Mayport Florida

#### Response to FDEP Comments in Correspondence Dated June 6, 1995

There are several references to the Federal National Contingency Plan (NCP) where it is stated that "for carcinogen, a lifetime excess cancer risk in the range of 10⁴ .... to 10⁴ represents concentrations that are protective of human health." The Department has, as a goal, cleanup levels for individual carcinogens corresponding to an incremental cancer risk of 10⁴ for the most-exposed individuals. Because cancer risk from multiple agents is additive and sites rarely involve exposure to only one carcinogen, the cumulative cancer risk posed by contaminants at most sites should be considered and the above statement from the NCP is not consistent with the stated position of the State of Florida with respect to acceptable risk levels.

At the time the report was prepared, USEPA and FDEP had conflicting guidance on presentation of excess cancer risks for carcinogens. During a meeting held on May 1, 1995, FDEP provided guidance that remedial goal options (RGOs) proposed for a site should include values representing an excess lifetime risk of 10⁻⁶ for carcinogens or a hazard quotient of 1 for noncarcinogens. However, the purpose of this report is not to provide RGOs but to assess whether a RCRA Facility Investigation (RFI) is required for the site by confirming whether contamination is present at concentrations that may pose an adverse risk to human health or the environment. Therefore, target analytes detected in the media sampled (soil, sediment, surface water, groundwater) were screened against criteria that included excess lifetime risk values of 10⁻⁶ for carcinogens and hazard quotients at .1 or 1 for noncarcinogens. Excess lifetime risk values and hazard quotients for chemicals detected in individual media were summed separately for carcinogens and noncarcinogens (please refer to Appendix C).

The default assumptions used in estimating risk based bench mark concentrations may not be representative and likely overstate the specific exposure present at a site (i.e. underestimate the concentration that would result in a lifetime excess cancer risk of  $1x10^{-6}$ ). Because the chemicals were detected in only one or two media (i.e. soil and or groundwater) all of the exposure pathways used to estimate the bench mark concentrations are not relevant. Therefore, the concentrations observed at the site may exceed the bench mark values (USEPA, 1994, USEPA, 1995, and FDEP, 1995) but actually result in a lower excess cancer risk than  $1x10^{-6}$ .

Reference is made to FDEP guidance documents (McDonald, 1993; Cleanup Goals for the Military Sites in Florida, July, 1994) which have been revised. In some cases, changes are slight, but in others, new elements or compounds have been added (such as beryllium in soil and benzo(a)anthracene in sediment). Please utilize the latest guidance documents in preparing the final document as conclusions and possibly recommendations may change.

2.

1.

Resource Conservation and Recovery Act (RCRA)
Facility Assessment Sampling Visit Report
Groups I and II SWMUs
U.S. Naval Station
Mayport Florida

Since the writing of the RFA, the State has released new guidelines for sediment quality ("Approach to the Assessment of Sediment Quality in Florida Coastal Waters", MacDonald 1994) and soil cleanup levels (Soil Cleanup Goals for Military Sites," FDEP, April 5, 1995). These guidance values are used in the final version of the RFA Sampling Visit Report for Group I and II SWMUs.

 I suggest that, during future sampling events, an additional sampling site be added to Site 49 at the discharge point for the helipad flyup rinse area as we have previously discussed.

The follow up investigation (ecological risk assessment) of SWMU 49 will include sampling at the discharge area for the helipad flyup rinse.

4. On page 4-7, Table 4-2, reference number 6 incorrectly relates Chapter 62-302 to the Florida Legislature, 1995. Please correct this error.

The citation will be updated to reference Chapter 62-302 of the Florida Administration Code (FAC) as amended in 1995.

5. Table 7-10, page 7-31 presents Water Quality Parameters for SWMU 48. This should be SWMU 28. Please correct it.

Comment acknowledged, corrections will be made to correct discrepancies between text, tables and figures.

### Response to FDEP Comments in Correspondence Dated June 7, 1995

Table 3-4 (CPCs in Surface Water Samples at SWMU 49), p. 3-11, screens constituents to Ambient Water Quality Criteria (AWQC), Florida Surface Water Quality Standards (FSWQS), and Background (BG). Where was the background sample locations? All background sampling locations for all media should be included in the text and on figures.

In an effort to reduce the redundant presentation of background information for the NAVSTA Mayport Corrective Action Program, information such as the location of background samples (surface and subsurface soil, surface water, sediment and groundwater samples) and analytical results are provided in the NAVSTA Mayport RCRA Corrective Action Program General Information Report (GIR) (ABB-ES, 1995).

2. Section 3. 5. 2, (Recommendations), p.3-33, discusses what possible action should be taken at SWMU 49; either no further action (NFA) or a monitoring program. The fact

# Resource Conservation and Recovery Act (RCRA) Facility Assessment Sampling Visit Report Groups I and II SWMUs U.S. Naval Station Mayport Florida

Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments (Long and others, 1993). Tables and text for sediment samples collected at SWMU 50 will be amended to reflect these comparison of the analytical data to bench mark concentrations in these two references.

The selection of a background sampling location is always difficult and controversial. The purpose of a background sample is to identify chemicals that are naturally occurring and introduced through man's activities. The selection of background sampling locations at NAVSTA Mayport is particularly difficult in that almost the entire facility has been created from material dredged from Mayport Turning Basin. The collection of surface water and sediment samples from the St. Johns River and Mayport Turning Basin were conducted to provide data from a similar environment from which SWMU 50 was constructed. However, it should be noted that long and short term comparability of the analytical data may be biased because of the routine dredging of both the St. Johns River and Mayport Turning Basin, variations in water quality with tidal fluctuations, and season of the year.

#### Response to FDEP Comments in Correspondence Dated August 21, 1995

1. The term "benchmark values" is used frequently. Please insert a brief explanation of the meaning of the term.

The term "benchmark values" is used to generically refer to human health or ecological based chemical concentrations for individual chemicals that have been used in the preliminary risk evaluation of analytes detected in surface and subsurface soil, surface water and sediment, and groundwater samples. The source of the benchmark values are discussed in the findings section for each SWMU. The sources of the benchmark values are included in the reference section of this response to comments and in the Group I and II RFA report.

2. Section 4.5.2: add small mammals such as racoons, foxes etc. to this section.

The last sentence of the fourth bullet on page 4-13 will be revised to include mammals and reptiles and will be stated as follows. These areas are viable habitat for small mammals, reptiles and birds.

3. Beryllium is misspelled in Table C-3.

Comment acknowledged, the table will be amended.

4. Tables C-3, C-8 and C-9 refer to units as  $mg/\ell$ ; they should be mg/kg.

Comment acknowledged, the tables will be amended.

# Resource Conservation and Recovery Act (RCRA) Facility Assessment Sampling Visit Report Groups I and II SWMUs U.S. Naval Station Mayport Florida

- 5. The SWMU number on Table C-7 is missing.
  - Comment acknowledged, SWMU 28 will be added to the table.
- 6. The response to comments by the Natural Resource Trustee (section 2.3 and 2.4) incorrectly refer to the Technical Review Section.

Comment acknowledged, the text will be amended to indicate Natural Resource Trustee.